Боеприпас осколочного действия с готовыми поражающими элементами

Изобретение относится к боеприпасам осколочного действия, а в частности к боеприпасам, имеющим готовые поражающие элементы, и может быть использовано в военном деле. Боеприпас осколочного действия с готовыми поражающими элементами содержит корпус с размещенным в нем центральным зарядом взрывчатого вещества, инициируемый с торца, и расположенные между корпусом и зарядом готовые поражающие элементы, образующие блок с помощью связующего вещества. Поражающие элементы выполнены в форме четырехугольных наклонных призм с высотой b и длиной основания l, уложенных друг за другом так, что угол наклона граней у направлен в сторону движения фронта детонации разрывного заряда, и сопрягающихся друг с другом наклонных граней. Угол наклона грани и длина основания поражающего элемента определяются по зависимостям. Изобретение направлено на сохранение целостности поражающих элементов, в процессе взрывного метания, и повышение их воздействия на цели. 4 ил.

 

Изобретение относится к боеприпасам осколочного действия, а в частности к боеприпасам, имеющим готовые поражающие элементы, и может быть использовано в военном деле.

Для достижения наибольшего могущества боеприпасов осколочного действия по поражению целей, таких как живая сила в бронежилетах, небронированная и легкобронированная техника, поражающие параметры осколков должны быть оптимальными. Под поражающими параметрами осколков понимаются скорость, масса и форма, которые определяют энергетические характеристики осколков в момент встречи с целью (преградой). Достигается это, например, использованием в боеприпасах готовых поражающих элементов (ГПЭ), имеющих заданную форму и массу. По форме ГПЭ чаще всего выполняются в виде шара, куба, короткого цилиндра (ролика) и изготавливаются из стали.

По способу метания ГПЭ известны две схемы:

1) метание пороховым (вышибным) зарядом, создающем осевое поле направленных вперед ГПЭ и применяемой в осколочно-пучковых снарядах;

2) метание взрывом разрывного заряда бризантного взрывчатого вещества (БВВ), создающем осесимметричное круговое поле осколков.

Вторая схема метания обеспечивает большую эффективность осколочного действия по поражению целей за счет кругового поля поражения и возможности сообщения ГПЭ больших скоростей разлета, поэтому широко используется в конструкциях осколочных боеприпасов.

Метание ГПЭ контактным взрывом БВВ реализуется по традиционной схеме взрывного нагружения корпуса осколочно-фугасных боеприпасов скользящим фронтом детонации по БВВ, инициируемым взрывателем, вдоль блока ГПЭ по оси боеприпаса и существенно отличается от «мягкого» порохового метания наличием интенсивных волновых процессов в блоке ГПЭ.

Известна боевая часть осколочного действия [1]. Боевая часть осколочного действия содержит корпус, заряд взрывчатого вещества, расположенную между ними матрицу с готовыми поражающими элементами в виде тел вращения.

Известна осколочная оболочка боеприпаса с заданной фрагментацией [2]. Осколочная оболочка с заданной фрагментацией выполнена из несоединенных между собой и установленных между взрывчатым веществом и корпусом боеприпаса удлиненных стержней, фрагменты которых разделены по поперечно расположенным и повернутым относительно друг друга поверхностям разрыва сплошности материала.

Известна боевая часть [3], которая содержит разрывной заряд и корпус, в котором готовые компактные поражающие элементы примыкают друг к другу и к внутренней поверхности цельнометаллической оболочки. Готовые поражающие элементы в своей центральной зоне выполнены цилиндрической формы, а в торцовых - конической.

Общими признаками, с предлагаемым авторами боеприпасом, являются корпус, центральный заряд бризантного взрывчатого вещества (БВВ), инициируемый с торца, и расположенные между корпусом и зарядом готовые поражающие элементы (ГПЭ), образующие блок, например, с помощью связующего вещества. Такие технические решения встречаются в конструкциях различных гранат, инженерных осколочных мин, сборно-клеевых осколочных боевых частей зенитных управляемых ракет [4, с. 213-214].

Рассмотренные конструкции боеприпасов имеют ряд недостатков, обусловленных наличием интенсивных волновых процессов в ГПЭ, возникающих в момент их взрывного метания и приводящих к снижению эффективности осколочного действия:

- ГПЭ могут разрушаться в момент взрывного нагружения в результате зарождения трещин из-за наличия интенсивных волновых процессов [5];

- ГПЭ могут разрушаться при встрече с преградой без ее пробития вследствие развития зародившихся трещин (приобретенной поврежденности), образовавшихся в материале элемента в момент взрывного нагружения.

Схема волновых процессов, приводящих к образованию трещин при взрывном нагружении, показана на фиг. 1.

При прохождении волны детонации по заряду ВВ со скоростью D происходит последовательное ударное нагружение материала оболочки (элементов).

В зоне контакта «фронт детонации - материал элемента» (точка В) скачкообразно возрастает давление, величина которого рассчитывается по зависимости

где ρвв - плотность ВВ.

В результате ударного приложения нагрузки к внутренней поверхности корпуса (элемента) по нему начнет распространяться упругая волна сжатия Се, Скорость распространения упругой волны будет определяться физико-механическими характеристиками металла и в акустическом приближении может быть рассчитана по зависимости

где Е - модуль Юнга;

ρм - плотность металла.

Частицы металла, находящиеся за фронтом упругой волны, будут перемещаться в направлении движения волны, а те частицы, которые в рассматриваемый момент времени находятся между наружной поверхностью и фронтом волны сжатия, будут находиться в состоянии покоя.

Поскольку скорость детонации БВВ превышает скорость упругой волны в материале элемента, то по материалу элемента вслед за фронтом детонации перемещается косой фронт упругой волны сжатия. При этом угол наклона фронта упругой волны сжатия к внутренней поверхности элемента определяется скоростью детонации БВВ и скоростью распространения упругих напряжений в материале элемента и равняется

Вслед за упругой волной сжатия по материалу элемента распространяется пластическая волна сжатия Ср, но с меньшей скоростью, зависящей от модуля объемного сжатия материала элемента

где K - модуль объемного сжатия материала.

За фронтом пластической волны материал переходит из упругого напряженного состояния в пластическое, и по материалу распространяется зона интенсивной пластической деформации со скоростью Up, которая может быть рассчитана по зависимости

где Р - давление детонации.

Когда фронт упругой волны сжатия выйдет на внешнюю поверхность элемента, частицы материала получают возможность квазисвободного перемещения в пределах упругих деформаций, и с внешней поверхности в обратном направлении начнет распространяться упругая волна разгрузки со скоростью Се, изменяя сжимающие напряжения за своим фронтом на растягивающие.

В момент встречи фронта упругой волны разгрузки с границей зоны интенсивной пластической деформации (точка А) дальнейшее распространение волны разгрузки прекращается. Образуются две зоны напряженного состояния стенок корпуса (фиг. 1):

снаружи - упругая зона растяжения;

изнутри - пластическая зона сжатия.

В этот момент времени все частицы материала элемента, которые находятся за фронтом волны разгрузки, будут вовлечены в движение, и наружная зона растяжения получает возможность резкого смещения, давая возможность перемещения и внутренней зоны деформации. Собственно, в этот момент начинается движение элемента под действием продуктов детонации в рассматриваемом сечении и волновые процессы затухают. Внутри элемента в этот момент в упругой зоне растяжения b1 зарождаются микро и макротрещины различной интенсивности, которые могут приводить к разрушению элемента в момент метания или оставаться в элементе, вызывая нарушение его сплошности (приобретенная поврежденность), которые могут привести к разрушению элемента при встрече с преградой.

Задачей изобретения является сохранение целостности ГПЭ при взрывном метании за счет исключения условия образования микро и макротрещин в материале готовых поражающих элементов при взрывном метании и, как следствие, увеличение могущества осколочного действия.

Изобретение поясняется графическими материалами. На фиг. 1 изображена схема волновых процессов, приводящих к образованию трещин. На фиг. 2 общий вид боеприпаса осколочного действия, на фиг. 3 готовый поражающий элемент, на фиг. 4 схема волновых процессов в ГПЭ от действия продуктов детонации заряда взрывчатого вещества, поясняющая принцип исключения зарождения трещин в предлагаемых ГПЭ.

Для решения поставленной задачи в предлагаемом боеприпасе (фиг. 2), содержащем корпус 1 с размещенным в нем центральным зарядом взрывчатого вещества 2 и расположенными между корпусом и зарядом готовыми поражающими элементами 3, поражающие элементы (фиг. 3) выполнены в форме четырехугольных наклонных призм с высотой b и длиной основания , уложенных друг за другом так, что угол наклона граней у направлен в сторону движения фронта детонации разрывного заряда и сопрягающихся друг с другом наклонными гранями, при этом угол наклона грани определяется по зависимости

где D - скорость детонации заряда взрывчатого вещества, м/с;

Се - скорость звука в материале элемента, м/с,

а длина основания элемента определяется по зависимости

где b - толщина элемента, мм.

Предлагаемый боеприпас работает следующим образом.

При инициировании заряда взрывчатого вещества по нему начинает распространяться детонация со скоростью D (фиг. 4). В момент времени Т1 фронт детонации выходит в сечение, где начинается основание элемента. В зоне контакта «фронт детонации - внутренняя поверхность элемента» скачкообразно возрастает давление и по материалу элемента начнут распространяться упругая волна сжатия Се, пластическая волна сжатия Ср, зона интенсивной пластической деформации Up скорости которых определяются соответственно по зависимостям (2), (4) и (5). В момент времени Т2 в материале элемента будут сформированы различные зоны волновых процессов. Как видно из фиг. 4, при угле наклона у грани элемента, рассчитанного по зависимости (6), угол встречи фронта упругой сжатия Се с боковой поверхностью элемента составит 180°-α°-γ°=90°, т.е. реализуется режим нерегулярного отражения упругой волны сжатия от боковой поверхности элемента [6]. Таким образом, по мере распространения детонации фронт упругой волны сжатия перемещается вдоль элемента по нормали в режиме нерегулярного отражения. В результате взаимодействия фронта упругой волны сжатия с боковой поверхностью элемента в режиме нерегулярного отражения исключается распространение внутрь элемента интенсивной упругой волны разгрузки, за фронтом которой частицы материала элемента из состояния покоя вовлекаются в состояние движения в направлении распространения упругой волны сжатия. Так как трещины, предопределяющие разрушение элемента при взрывном нагружении, возникают в момент встречи упругой волны разгрузки с границей зоны интенсивной пластической деформации Up, то предлагаемая конструкция боеприпаса с готовыми поражающими элементами исключает процесс зарождения микро и макротрещин в элементах.

В момент времени Т3 фронт упругой волны сжатия Ce проходит боковую поверхность элемента и выходит на ребро, с которого начинается поверхность верхнего (наружного) основания элемента. С этого момента нерегулярное отражение переходит в регулярное и начинается реализация механизма формирования трещин, представленная на фиг. 1. Таким образом момент времени Т3 определяет граничную точку элемента, когда исключаются условия зарождения трещин. В этот момент времени фронт детонации D пройдет вдоль элемента на расстояние которое определяет длину основания элемента при заданной его толщине b и рассчитывается по зависимости

где b - толщина элемента, мм.

В момент времени Т3 фронт детонации D переходит на следующий элемент и схема нагружения следующего элемента повторяется.

Источники информации

1. Патент RU 2106596 С1. Боевая часть осколочного действия.

2. Патент RU 2267739 С1. Осколочная оболочка боеприпаса с заданной фрагментацией.

3. Патент RU 2227265 С1. Боевая часть.

4. Средства поражения и боеприпасы: учебник / А.В. Бабкин [и др.]; под общ. ред. В.В. Селиванова. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. - 984 с.

5. Направленные осколочные потоки. В. Одинцов. Журнал «Техника и вооружение» №8, №9/2000 г.

Боеприпас осколочного действия с готовыми поражающими элементами, содержащий корпус с размещенным в нем центральным зарядом взрывчатого вещества, инициируемый с торца, и расположенные между корпусом и зарядом готовые поражающие элементы, образующие блок с помощью связующего вещества, отличающийся тем что, поражающие элементы выполнены в форме четырехугольных наклонных призм с высотой b и длиной основания l, уложенных друг за другом так, что угол наклона граней γ направлен в сторону движения фронта детонации разрывного заряда, и сопрягающихся друг с другом наклонными гранями, при этом угол наклона грани определяется по зависимости

где D - скорость детонации заряда взрывчатого вещества, м/с;

Се - скорость звука в материале элемента, м/с,

а длина основания элемента l определяется по зависимости

где b - толщина элемента, мм.



 

Похожие патенты:

Изобретение относится к боеприпасам и, в частности, к осколочным гранатам ручных гранатометов и может быть использовано при создании боеприпасов. Технический результат - повышение боевой эффективности гранаты за счет увеличения площади поражения.

Изобретение относится к ракетной технике и может быть использовано при разработке корпусов головных частей реактивных снарядов и ракет. Технический результат - повышение боевой эффективности за счет увеличения осколочного поражающего действия как по живой силе, так и защищенным целям.

Изобретение относится к боеприпасам, а именно к надкалиберным пучковым гранатам ручных гранатометов. Технический результат - повышение эффективности действия гранаты.

Изобретение относится к ракетной технике и может быть использовано при разработке корпусов головных частей сверхзвуковых реактивных снарядов и ракет. Технический результат - повышение боевой эффективности снаряда за счет увеличения осколочного и фугасного поражающего действия, обеспечения заданных аэробаллистических характеристик поражающих элементов в районе цели, повышения надежности функционирования за счет снижения воздействия аэродинамического нагрева на элементы конструкции.

Осколочно-фугасный снаряд. .

Изобретение относится к боеприпасам, в частности к надкалиберным пучковым гранатам, к ручному гранатомету. Технический результат – улучшение массово-габаритных характеристик и траектории полета, а также увеличение боевой эффективности.

Изобретение относится к области вооружения, а именно к разработке боевых частей для боеприпасов (снарядов, гранат, мин) и ракет. Боевая часть состоит из корпуса, взрывателя, заряда и поражающих элементов, расположенных между корпусом и зарядом.

Изобретение относится к боеприпасам и, в частности, к надкалиберным пучковым гранатам, к ручному гранатомету. Технический результат - увеличение боевой эффективности гранаты.

Изобретение относится к боеприпасам и, в частности, к кассетным снарядам с осколочными боевыми элементами. Технический результат – повышение надежности работы кассетных снарядов за счет оптимального использования их внутренней полости.

Изобретение относится к боеприпасам, и в частности к надкалиберным пучковым гранатам, к ручному гранатомету. Технический результат – повышение боевой эффективности гранаты с улучшением ее массово-габаритных характеристик.

Изобретение относится к области боеприпасов и взрывной техники, используемой в мирных целях. Взрывное устройство содержит корпус с прижимной крышкой, размещенный между ними заряд взрывчатого вещества, систему инициирования и пружинную систему температурной компенсации, установленную между фланцем корпуса и прижимной крышкой.

Изобретение относится к взрывотехнике, а именно к резанию металлов и других твердых материалов взрывом, и может быть использовано для разделки и утилизации металлоконструкций как на поверхности земли, так и под водой или в условиях горных работ, в том числе и в чрезвычайных ситуациях.

Мобильный пункт ремонта боеприпасов предназначен для проведения капитального ремонта артиллерийских боеприпасов калибра 37-152 мм и минометных боеприпасов калибра 82, 120 мм.

Изобретение относится к детонирующему шнуру, который может быть использован для взрывных работ в нефтегазовой, угольной, горнодобывающей отраслях, строительстве. Шнур содержит сердцевину из сыпучего порошкообразного взрывчатого вещества бризантной группы, заключенную в несколько нитяных оболочек разного плетения и в защитный слой из водонепроницаемого материала с одной или несколькими продольными армирующими нитями внутри первой оболочки.

Изобретение относится к оборонной технике и может быть использовано в различных кумулятивных боеприпасах (КБП), предназначенных для поражения целей высокоскоростными поражающими элементами (ПЭ).

Изобретение относится к области взрывных работ и может найти применение при разделке на металлолом громоздких металлических конструкций, реконструкции и демонтаже бетонных и железобетонных сооружений, плановой ликвидации вооружения и военной техники, ликвидации аварийных ситуаций.

Изобретение относится к области вскрытия продуктивных пластов в нефтяных, газовых и нагнетательных скважинах, а именно к кумулятивным перфораторам, посредством элементов которого осуществляют закрепление заряда в каркасе перфоратора и прижатие детонирующего шнура перфоратора к заряду.

Изобретение относится к боеприпасам для борьбы с бронетехникой, включая роботизированную бронетехнику. Ударное ядро состоит из взрывного бризантного вещества со сферической выемкой, расположенной на переднем торце заряда и обложенной листовым металлом, взрывателя и устройства дистанционного подрыва заряда, расположенных на противоположном втором торце заряда, наружного корпуса, головного обтекателя и головного датчика преобразователя импульса удара в электрический импульс для самоподрыва боеприпаса, связанного с взрывателем при помощи электрического проводника.

Изобретение относится к взрывным работам. Кумулятивный заряд может быть использован для перфорации нефтяных и газовых скважин, взрывного бурения шпуров, разрушения негабаритов горных пород, прибивания металлических листов в промышленности и в строительстве.

Изобретение относится к отрасли горной промышленности, а именно к технике ведения взрывных работ, и может быть использовано при специальных взрывных работах, например при контурном взрывании.
Наверх