Способ изготовления анизотропных гексагональных ферритов типа м

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок. При прессовании используют ферритизированный порошок гексаферрита в виде наночастиц размером 60-140 нм, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц. Величина магнитного поля при прессовании составляет 6-7 кЭ, при этом степень магнитной текстуры полученных гексагональных ферритов 89-91%. Изобретение позволяет получать гексагональные поликристаллические ферриты бария и стронция с высокой степенью магнитной текстуры при использовании меньших значений магнитного поля. 2 ил.

 

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры.

Известны способы получения поликристаллических гексагональных ферритов бария и стронция, включающие смешивание оксида бария (оксида стронция) с оксидом железа в соответствующих пропорциях, сухой и мокрый помол, ферритизацию порошка, прессование заготовок из измельченной шихты и спекание (см. Летюк Л.М., Костишин В.Г., Гончар А.В. Технология ферритовых материалов магнитоэлектроники. - М.: МИСиС, 2005. - 352 с.). Указанные способы не позволяют изготовлять анизотропные гексаферриты бария и стронция.

Наиболее близким к предложенному техническому решению является «Способ изготовления анизотропного стронциевого феррита» (см. Андреев В.Г., Гончар А.В., Летюк Л.М., Меньшова С.Б. и Егоров Р.Н. Патент РФ №2256534. Опубликовано 20.07.2005 г. Бюл. №20). Однако указанный способ требует высоких магнитных полей и не всегда позволяет получить требуемое значение степени магнитной текстуры.

Техническим результатом изобретения являлось получение гексагональных поликристаллических ферритов бария и стронция с высокой степенью магнитной текстуры при использовании меньших значений магнитного поля.

Технический результат достигается следующим образом.

Способ изготовления анизотропных гексагональных ферритов типа М, включающий изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок, отличающийся тем, что при прессовании используют ферритизированный порошок гексаферрита, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц, а величина магнитного поля при прессовании составляет 6-7 кЭ.

Изобретение поясняется фигурами, где фиг. 1 - фотографии порошка гексаферрита бария, полученного методом химического соосаждения при различных увеличениях, и фиг. 2 - фотографии порошка гексаферрита стронция, полученного методом химического соосаждения при различных увеличениях.

Сущность изобретения состоит в следующем. Метод химического соосаждения позволяет получить порошок гексаферрита в виде наночастиц размером 60-140 нм. При прессовании заготовки в магнитном поле частицы гексаферрита, имея вид пластинок в виде гексагонов, ориентируются в магнитном поле, создавая таким образом магнитную текстуру в образце. Наноразмерные частицы для полной ориентации в магнитном поле требуют существенно меньшие значения магнитного поля.

Изобретение реализуется следующим образом.

Из порошков гексаферритов прессовали сырые заготовки с формами шайб диаметром 10 мм и толщиной 3,0 мм. Давление прессования составляло 8 МПа. Благодаря технологии химического соосаждения полученные наночастицы требуют меньшие значения магнитного поля, поэтому намагничивающее поле в конце прессования составляет 6-7 кЭ, а не 10 кЭ и выше, как при классической технологии. Дополнительное воздействие на порошок ультразвуком в ходе прессования в постоянном магнитном поле обеспечивает повышение степени ориентации частиц гексаферрита. При интенсивных колебаниях наноразмерных частиц 60-140 нм в интервале частот 0,5-2,0 МГц снижается межчастичное взаимодействие. После прессования сырые заготовки сушились в естественных условиях, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Степень магнитной текстуры образцов оценивалась по формуле:

где: D - степень магнитной текстуры в процентах; и Br// - остаточная магнитная индукция поперек и вдоль оси текстуры соответственно.

Частотный диапазон ультразвука используемого ультразвука выбран, исходя из следующих соображений. При использовании частоты ультразвука меньше 0,5 МГц получаемые образцы обладают пониженными значениями магнитных параметров. При использовании ультразвука с частотой больше 2,0 МГц падает степень магнитной текстуры полученных образцов.

Пример 1. Порошок бариевого гексаферрита был получен методом химического соосаждения. Методика получения нанопорошка описана в работах

(см.: 1. Костишин В.Г., Тимофеев А.В., Читанов Д.Н. Особенности получения наноразмерных порошков гексаферритов бария BaFe12O19 методом прекурсора в полимере. Химическая технология, 2018, №1. - С. 11-15.

2. Костишин В.Г., Тимофеев А.В., Налогин А.Г., Кожитов Л.В., Козлов В.В. Способ получения наноразмерных частиц гексаферрита бария. Патент РФ №2611442. Опубликовано 22.02.2017 г. Бюллетень №6).

Для порошка бариевого гексаферрита, полученного методом химического соосаждения характерна правильная пластинчатая форма частиц и небольшой их разброс по размерам (фиг. 1).

На основе имеющегося порошка BaFe12O19 была спрессована сырая заготовка. Она имела форму шайбы диаметром 10 мм и толщиной 3,0 мм. Используемое давление прессования равнялось 8 МПа, величина намагничивающего поля в конце прессования составляла 6,7 кЭ с дополнительным воздействием ультразвука частотой 0,5 МГц. После прессования сырая заготовка сушилась в естественных условиях в течение двух суток, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Как видно из результатов табл. 1, технология химического соосаждения является весьма эффективной по сравнению с традиционной керамической технологией для получения пластин гексаферритов с высокой степенью магнитной текстуры. На основе порошков гексаферритов, полученных методом химического соосаждения, в пластинах гексаферритов удается достичь магнитной текстуры ~ 91%, что на 22% выше, чем при тех же условиях и на том же оборудовании позволяет достичь традиционная керамическая технология.

Пример 2. Порошок стронциевого гексаферрита был получен методом химического соосаждения. Методика получения нанопорошка описана в работах

(см.: 1. Kostishyn V.G., Timofeev A.V., Chitanov D.N. Obtaining of nanostructured powders of barium and strontium hexaferrite by the polymer precursor method. Journal of Nano-and Electronic Physics, 2015, vol. 7, Issue 4. - P. 04066.

2. Костишин В.Г., Тимофеев А.В., Налогин А.Г., Панина Л.В. Способ получения наноразмерных частиц гексаферрита стронция. Патент РФ №2612289. Опубликовано 06.03.2017 г. Бюллетень №7).

Для порошка стронциевого гексаферрита, полученного методом химического соосаждения характерна правильная пластинчатая форма частиц и небольшой их разброс по размерам (фиг. 2).

Порошок SrFe12O19 был спрессован в сырую заготовку. Она представляла собой шайбу диаметром 10 мм и толщиной 3 мм. Используемое давление прессования равнялось 8 МПа, величина намагничивающего поля в конце прессования составляла 6,5 кЭ с дополнительным воздействием ультразвука частотой 1,1 МГц. После прессования сырая заготовка сушилась в естественных условиях в течение двух суток, после чего проводилась операция спекания в печи с резистивным нагревом при температуре 1200°С в течение двух часов.

Как видно из результатов табл. 2, технология химического соосаждения является весьма эффективной по сравнению с традиционной керамической технологией для получения пластин гексаферритов с высокой степенью магнитной текстуры. На основе порошков гексаферритов, полученных методом химического соосаждения, в пластинах гексаферритов стронция удается достичь магнитной текстуры ~ 89%, что на 23% выше, чем при тех же условиях и на том же оборудовании позволяет достичь традиционная керамическая технология.

Способ изготовления анизотропных гексагональных ферритов типа М, включающий изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок, отличающийся тем, что при прессовании используют ферритизированный порошок гексаферрита в виде наночастиц размером 60-140 нм, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц, а величина магнитного поля при прессовании составляет 6-7 кЭ, при этом степень магнитной текстуры полученных гексагональных ферритов 89-91%.



 

Похожие патенты:

Изобретение относится к порошковой металлургии, в частности к композициям для изготовления магнитотвердых ферритов. Может использоваться в процессах очистки сточных вод, в магнитных фильтрах, в качестве размольных и перемешивающих тел в электромагнитных аппаратах.

Изобретение относится к области создания композиционных материалов, в частности к получению магнитоактивных эластичных композитов (полимеров), предназначенных для изготовления управляемых магнитным полем элементов цементной смеси, а также к методам крепления газо-нефте-вододобывающих скважин при цементировании обсадных колонн на разных этапах строительства и эксплуатации скважины, при необходимости обеспечивая предельно низкие значения флюидопроницаемости тампонирующего материала за эксплуатационной колонной.

Группа изобретений относится к изготовлению спеченного магнита R-Fe-B. Магнит состоит из 12-17 ат.% R, 0,1-3 ат.% M1, 0,05-0,5 ат.% M2, от 4,8+2×m до 5,9+2×m ат.% B и остальное – Fe.

Изобретение относится к электротехнике. Технический результат состоит в повышении диапазона детектирования и стабильности частоты.

Изобретение относится к способу производства редкоземельного магнита, в частности к редкоземельному магниту, содержащему Sm, Fe и N, а также к устройству для его производства.

Изобретение относится к регулируемым элементам индуктивности. Технический результат – создание устройства и способа, обеспечивающих возможность быстрой настройки регулируемого элемента индуктивности без увеличения его размеров, веса и потребляемой мощности.

Изобретение относится к области металлургии, в частности к аморфным и нанокристаллическим магнитомягким сплавам на основе железа, получаемым в виде тонкой ленты литьем расплава на поверхность охлаждающего тела и его скоростной закалкой и используемым, в основном, для изготовления из ленты сердечников трансформаторов и дросселей.
Изобретение относится к текстильным материалам и может быть использовано для изготовления магнитных систем в различных областях техники. Ферромагнитная фильтровальная сетка, выполненная способом ткачества переплетением полимерных нитей, содержащая связующее полимерное вещество и порошок высококоэрцитивного ферромагнитного материала, одинарная или многослойная.

Изобретение относится к технологии выращивания кристаллов Co3Sn2S2, которые могут быть использованы в области экспериментальной физики как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля.

Изобретение относится к области черной металлургии, в частности к производству электротехнической анизотропной стали, применяемой при изготовлении магнитопроводов силовых и распределительных трансформаторов.
Изобретение относится к радиопоглощающим конструкционным материалам. Материал содержит 30-60 мас.% карбида кремния, 20-50 мас.% наполнителей в виде ферритов на основе ВаО и СoО и остальное керамическая связка на основе титаната марганца и оксида алюминия.

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим пучком быстрых электронов с выдержкой при температуре спекания в течение 30-90 минут под непрерывным электронным пучком.

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м за счёт снижения температуры синтеза и обжига.

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция, что обеспечивает повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м за счёт снижения температуры синтеза и обжига.

Изобретение относится к получению однофазного нанокристаллического порошка феррита висмута BiFeO3 с ферромагнитными свойствами. Способ включает смешивание нитратов висмута Bi(NO3)3, нитратов железа Fe(NO3)3, глицерина и воды с получением раствора, выпаривание полученного раствора с образованием геля и нагрев его до температуры вспышки с образованием порошка.

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение коэрцитивной силы по намагниченности изделий из гексаферрита стронция больше 235 кА/м.

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м.

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита стронция.

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, позволяющее снизить температуру обжига, обеспечивающую удельную намагниченность не менее 50 Тл⋅м3/кг, повышенную коэрцитивную силу по намагниченности и остаточную индукцию.

Изобретение относится к тонкопленочной технологии получения мультиферроиков, а именно получению прозрачных наноразмерных пленок феррита висмута, которые обладают свойствами мультиферроика при комнатной температуре, так как температура Кюри BiFeO3 830°С, а температура антиферромагнитного перехода 370°С, и может быть использовано в производстве магнитооптических устройств записи, хранения и обработки информации.

Изобретение относится к обработке давлением и может быть использовано при прессовании тонкоизмельченных материалов. Устройство содержит силовой блок с основным приводом (29), гидравлический вибратор (37), траверсу (36) нижней части основной плиты (30), нагрузочную плиту (31) с опорами (35), четыре стойки (32), нижнюю штамповую пластину (33) и штамп (34).

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры. Изготовление анизотропных гексаферритов типа М включает изготовление заготовок прессованием порошка в магнитном поле с воздействием ультразвука частотой 0,5-2,0 МГц и последующее спекание полученных заготовок. При прессовании используют ферритизированный порошок гексаферрита в виде наночастиц размером 60-140 нм, полученный методом химического соосаждения с использованием полимера и воздействия ультразвука частотой 10÷25 кГц. Величина магнитного поля при прессовании составляет 6-7 кЭ, при этом степень магнитной текстуры полученных гексагональных ферритов 89-91. Изобретение позволяет получать гексагональные поликристаллические ферриты бария и стронция с высокой степенью магнитной текстуры при использовании меньших значений магнитного поля. 2 ил.

Наверх