Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки



Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки
Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки
Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки
Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки
Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки
Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки
Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки
G01N23/00 - Исследование или анализ материалов радиационными методами, не отнесенными к группе G01N 21/00 или G01N 22/00, например с помощью рентгеновского излучения, нейтронного излучения (G01N 3/00-G01N 17/00 имеют преимущество; измерение силы вообще G01L 1/00; измерение ядерного или рентгеновского излучения G01T; введение объектов или материалов в ядерные реакторы, извлечение их из ядерных реакторов или хранение их после обработки в ядерных реакторах G21C; конструкция или принцип действия рентгеновских аппаратов или схемы для них H05G)
A61B6/00 - Приборы для радиодиагностики, например комбинированные с оборудованием для радиотерапии (рентгеноконтрастные препараты A61K 49/04; препараты, содержащие радиоактивные вещества A61K 51/00; радиотерапия как таковая A61N 5/00; приборы для измерения интенсивности излучения, применяемые в ядерной медицине, например измерение радиоактивности живого организма G01T 1/161; аппараты для получения рентгеновских снимков G03B 42/02; способы фотографирования в рентгеновских лучах G03C 5/16; облучающие приборы G21K; рентгеновские приборы и их схемы H05G 1/00)

Владельцы патента RU 2705257:

Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр радиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ радиологии" Минздрава России) (RU)

Изобретение относится к медицине и может быть использовано для оценки результата лечения онкологических больных при использовании неоадьювантной химиолучевой терапии (НХЛТ) больных раком прямой кишки. Для текстурного анализа используют MP-изображения в режиме Т2-ВИ в аксиальной плоскости на уровне центра опухоли, полученные с помощью импульсной последовательности FSE и с высоким пространственным разрешением: TR (период повторения последовательности) - 4020 мс, ТЕ (время появления эхосигнала) - 97 мс, толщина среза/шаг - 3,0/0,3 мм, FoV (размер поля обзора) - 250 мм, МТХ (размер матрицы/пиксели) - 286×512. Далее выбранные изображения загружают в программу Mazda ver.4.6 и проводят сегментацию изображения. Определяют параметры текстуры методом матрицы совместной встречаемости уровней серого GLCM на расстоянии 2 пикселя и в четырех разных направлениях - 00,450,900,1350. Полученные значения усредняют и с помощью компьютерной программы проводят автоматическое вычисление 11 параметров текстурного анализа. Из них проводят оценку по 5 параметрам текстурного анализа на основе балльной системы, а именно:

-AngScMom≥0,0022, то 1 балл, если<0,0022 - 0 баллов,

- InvDfMom≥0,12 - 1 балл, если<0,12 - 0 баллов,

- Entropy≤2,75 - 1 балл, если>2,75 - 0 баллов,

- DifEntrpy≤1,32 - 1 балл, если>1,32 - 0 баллов,

- SumEntrp≤1,8 - 1 балл, если>1,8 - 0 баллов. И если сумма полученных баллов >2, то пациент ответил на НХЛТ, если ≤2, то пациент не ответил на НХЛТ. Способ позволяет индивидуализировать дальнейшую тактику лечения, использовать менее агрессивные, органосохраняющие варианты хирургического лечения за счет комплексной клинической оценки результата лечения, включающей данные МРТ. 7 ил., 4 табл., 4 пр.

 

Изобретение относится к медицине и может быть использовано для оценки результата лечения онкологических больных, в частности, при использовании неоадьювантной химиолучевой терапии (НХЛТ) больных раком прямой кишки.

В международной и отечественной практике хорошо известны способы оценки эффективности химиолучевой терапии больных раком прямой кишки по данным магнито-резонансной томографии (МРТ). Они включают исследования динамики максимального размера опухоли (RECIST), динамики объема опухоли в результате лечения, а также определение степени регрессии опухоли (cTRG) и показателя диффузии.

Однако оценка диагностической эффективности МРТ после ХЛТ по перечисленным параметрам варьируется. А так же не установлено единых МРТ критериев разделения больных на группы с хорошим и плохим ответом на НХЛТ. Кроме того существуют сложности в оценке эффективности НХЛТ в случае муцинозной аденокарциномы.

Известен способ оценки ответа опухоли на основе динамики уменьшения максимального размера опухоли (RECIST) по данным МРТ исследования. На основе МР-изображений опухоли проводят оценку одной величины - максимальный размер опухоли. В соответствии с RECIST различают следующие варианты ответа опухоли на терапию: CompleteResponse (CR): - исчезновение всех измеряемых очагов;

PartialResponse (PR): - уменьшение измеряемых очагов на 30% и более;

StableDisease (SD): - уменьшение измеряемых очагов менее, чем на 30% или увеличение их менее, чем на 20%;

ProgressiveDisease (PD): - увеличение опухолевых очагов на 20% и более (Therasse Р, Arbuck SG, Eisenhauer ЕА, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. JNatlCancerInst2000; 92:205-216).

Однако у данного способа низкая воспроизводимость измерения длины опухоли. Кроме того, не установлено критериев для оценки ответа в полых органах, таких как прямая кишка. А так же уменьшение размера новообразования не всегда является достоверным признаком опухолевой регрессии и может быть обусловлено уменьшением перифокального отека окружающих тканей.

Известен способ оценки эффективности НХЛТ по данным динамики объема опухоли. На основе MP-изображений проводят оценку динамики объема опухоли. У пациентов с хорошим ответом происходит уменьшение объема опухоли на 70-75% (Nougaret S, Rouanet Р, Molinari N, Pierredon MA, BibeauF, Azria D, etal. MR volumetric measurement of lower rec-tal cancer helps predict tumor response and outcome aftercombined chemotherapy and radiation therapy. Radiology 2012; 263(2): 409-18 [epub 2012/03/23).

Недостатком способа является отсутствие уменьшения в объеме опухоли, несмотря на хорошие результаты гистологического исследования. А так же низкая воспроизводимость измерения объема опухоли.

Известен способ оценки физиологических параметров тканей на основании регистрации скорости внутри- и внеклеточной диффузии молекул (Kremser С., JudmaierW., HeinP. etal. Preliminary results on the influence of chemoradiation on apparent diffusion coefficients of primary rectal carcinoma measured by magnetic resonance imaging // StrahlentherOnkol. 2003. Bd. 179. S. 641-649), в котором для оценки ответа опухоли на НХЛТ по данным МРТ исследования используют диффузионно взвешанные изображения (DWI). Проводят оценку MP - изображений в DWI режиме, на которых участок фиброзных изменений гипоинтенсивного сигнала на DWI с высоким b-фактором, остаточная опухолевая ткань определяется как зона высокого (гиперинтенсивного) сигнала на DWI с высоким b-фактором.

Однако, способ связан с трудностями в интерпретации DWI в случае муцинозной аденокарциномы.

Прототипом предложенного технического решения является МРТ оценка ответа опухоли по определению степени регрессии опухоли (mrTRG) основанной на системе Mandard (Patel UB etal. MRI after treatment of locally advanced rectal cancer: how to report tumor response-the MERCURY experience. AJRAmJRoentgenol. 2012; 199(4):W486-95). При проведении MPT исследования получают изображения в режиме Т2-ВИ (взвешенные изображения) по которым проводят визуальную оценку изображения опухоли до и после НХЛТ. По результатам которой определяют соотношения фиброзной ткани, которая имеет низкую интенсивность MP-сигнала, и остаточной опухолевой ткани, средней интенсивности MP-сигнала. Данная система включает 5 степеней регрессии опухоли: TRG1 - соответствует отсутствие опухолевых клеток, TRG2 - сохранение немногочисленных опухолевых клеток на фоне фиброзных изменений; TRG3 - большое количество сохраненных опухолевых клеток на фоне преобладания фиброза; TRG4 - опухолевые элементы преобладают над фиброзными изменениями; TRG5 - отсутствие признаков регрессии опухоли, отсутствие фиброза.

Однако в данном способе оценка ответа опухоли осуществляется по качественным критериям, интерпретация которых разными специалистами может различаться, и, соответственно, результаты оценки могут варьировать.

Технический результат заявляемого изобретения заключается в разделении больных на группы ответивших и не ответивших на НХЛТ на основе количественной оценки параметров текстуры опухоли после НХЛТ.

Технический результат достигается тем, что также как и в известном способе, используют МРТ изображения в режимеТ2, которые затем подвергаются текстурному анализу, на основании результатов которого каждый случай стратифицируется в соответствии с определенными критериями.

Особенность заявляемого способа заключается в том, что для текстурного анализа используют MP - изображения в режиме Т2-ВИ в аксиальной плоскости на уровне центра опухоли, полученные с помощью импульсной последовательности FSE и с высоким пространственным разрешением: TR (период повторения последовательности) - 4020 мс, ТЕ (время появления эхосигнала) - 97 мс, толщина среза/шаг - 3,0/0,3 мм, FoV (размер поля обзора) - 250 мм, МТХ (размер матрицы/пиксели) - 286×512, далее выбранные изображения загружают в программу Mazda ver.4.6 и проводят сегментацию изображения, определяют параметры текстуры методом матрицы совместной встречаемости уровней серого GLCM на расстоянии 2 пикселя и в четырех разных направлениях - 00,450,900,1350, полученные значения усредняют и с помощью компьютерной программы проводят автоматическое вычисление 11 параметров текстурного анализа, из них проводят оценку по 5 параметрам текстурного анализа на основе балльной системы, а именно:

-AngScMom ≥0,0022, то 1 балл, если <0,0022 - 0 баллов,

- InvDfMom ≥0,12 - 1 балл, если <0,12 - 0 баллов,

- Entropy ≥2,75 - 1 балл, если >2,75 - 0 баллов,

- DifEntrpy ≤1,32 - 1 балл, если >1,32 - 0 баллов,

- SumEntrp ≤1,8 - 1 балл, если >1,8 0 баллов,

и если сумма полученных баллов >2, то пациент ответил на НХЛТ, если <2, то пациент не ответил на НХЛТ.

Изобретение иллюстрируется подробным описанием, примерами и иллюстрациями, на которых изображено:

Фиг. 1 - 1 Roc-кривые для параметров текстурного анализа: a) AngScMom, InvDfMom; б) SumEntrp, DifEntrp, Entropy;

Фиг. 2 - диаграмма: Roc-кривая балльной системы для обучающей выборки.

Фиг. 3-диаграмма: Roc-кривая балльной системы для контрольной выборки.

Фиг. 4 - МРТ малого таза, режим Т2-ВИ, косо-аксиальный срез. Изображение после НХЛТ. Опухоль по левой полуокружности прямой кишки заместилась фиброзом. Пациент из группы ответивших на лечение. По данным патоморфологического исследования степень патоморфоза 3.

Фиг. 5 - МРТ малого таза,Т2-ВИ, косо-аксиальный срез. Изображение после сегментации. Белым цветом выделена область для автоматического расчета параметров текстуры после НХЛТ.

Фиг. 6 - МРТ малого таза, режим Т2-ВИ, косо-аксиальный срез. Изображение после НХЛТ. Опухоль по правой полуокружности прямой кишки заместилась фиброзом. Пациент из группы не ответивших на лечение. По данным патоморфологического исследования степень патоморфоза 2.

Фиг.7 - МРТ малого таза,Т2-ВИ, косо-аксиальный срез. Изображение после сегментации. Белым цветом выделена область для автоматического расчета параметров текстуры после НХЛТ.

Способ осуществляют следующим образом.

Пациентам через 4-8 недель после окончания НХЛТ проводится МРТ исследование малого таза на томографе Siemens MAGNETOM Symphony 1,5Т с получением Т2-ВИ в косо-аксиальной плоскости, перпендикулярно стенке кишки на уровне опухоли с высоким пространственным разрешением. Используют импульсную последовательность FSE (FastSpinEcho) со следующими параметрами:TR (период повторения последовательности) - 4020 мс, ТЕ (время появления эхосигнала) - 97 мс, толщина среза/шаг - 3,0/0,3 мм, FoV (размер поля обзора) - 250 мм, МТХ (размер матрицы/пиксели) - 286×512, размер пикселя 0,87×0,49 мм. Для текстурного анализа из серии изображений, полученных с помощью указанной последовательности, выбирают изображение на уровне центра опухоли (Фиг. 4, Фиг. 5), вручную выполняют сегментирование изображения (Фиг. 6, Фиг. 7) и загружают в компьютерную программу Mazda ver.4.6. В этой программе параметры текстуры определяются методом матрицы совместной встречаемости уровней серого (GLCM) на расстоянии 2 пикселя и в четырех разных направлениях (00, 450, 900, 1350); значения, полученные в четырех разных направлениях усредняются. Глубина серого цвета изображений составляет 6 бит/пиксель, а нормализация яркости изображения проводится в диапазоне [μ-3σ, μ+3σ], где μ - среднее значение уровня серого, а σ - стандартное отклонение. Для каждой опухоли рассчитывается 11 параметров текстуры: Второй угловой момент (AngScMom), Однородность (InvDfMom), Контраст (Contrast), Корреляция (Correlat), Дисперсия (SumofSqs), Суммарное среднее (SumAverg), Энтропия (Entropy), Суммарная дисперсия (SumVarnc), Суммарная энтропия (SumEntrp), Дифференциальная дисперсия (DifVarnc), Дифференциальная энтропия (DifEntrp). Для оценки ответа опухоли на НХЛТ используют балльную систему. Если показатели текстурного анализа отвечают следующим условиям:

- AngScMom больше или равно 0,0022, то 1 балл, если меньше 0,0022 - 0 баллов,

- InvDfMom больше или равно 0,12 - 1 балл, если меньше 0,12 - 0 баллов,

- Entropy меньше или равно 2,75 - 1 балл, если больше 2,75 - 0 баллов,

- DifEntrpy меньше или равно 1,32 - 1 балл, если больше 1,32 - 0 баллов

- SumEntrp меньше или равно 1,8 - 1 балл, если больше 1,8 - 0 баллов

Если сумма полученных баллов оказалась больше 2, то в этом случае пациента относили к группе ответивших на НХЛТ, если меньше или равна 2, то пациент не ответил на НХЛТ.

Подтверждение достижения технического результата.

Данный способ выполнен у 64 больных, имевших на момент исследования верифицированный рак прямой кишки, в том числе 42 пациента обучающей и 22 пациента тестовой выборки. Результаты текстурного анализа во всех случаях были верифицированы патоморфологически при гистологическом исследовании операционных препаратов, включавшем определение степени лечебного патоморфоза опухоли по Лушникову с выделением четырех степеней патоморфоза, характеризующихся следующими признаками: I степень (слабый) - дистрофические изменения отдельных опухолевых клеток; II степень (умеренный) - появление очагов некроза и дистрофические изменения опухолевых клеток; III степень (выраженный) - обширные поля некроза, резко выраженные дистрофические изменения опухолевых клеток, сохраняют жизнеспособность немногочисленные опухолевые клетки; IV степень (резко выраженный, полный) - отсутствие опухолевых элементов. Ответившими по данным патоморфологического исследования считали пациентов, имевших степень патоморфоза III и IV, не ответившими - пациентов с патоморфозом опухоли, соответствовавшим I и II.

Предлагаемые критерии оценки эффективности НХЛТ были подобраны на основании результатов статистического анализа данных обучающей выборки. Для создания балльной системы оценки были использованы результаты текстурного анализа в обучающей выборке, включавшей 22 ответивших и 20 не ответивших пациентов по данным патоморфологической оценки операционных препаратов.

Было установлено, что в обучающей выборке текстура опухолей у больных, ответивших на лечение, достоверно отличалась от не ответивших по 5 из 11 определяемых параметров: второй угловой момент (р=0,000002), однородность (р=0,031), суммарная энтропия (р=0,0011), энтропия (р=0,000003) и дифференциальная энтропия (р=0,048);

Установлена высокая прямая корреляционная связь между степенью патоморфоза и значением второго углового момента(rs=0,77) и высокая обратная корреляция со значением энтропии(rs=-0,77), умеренная обратная корреляционная связь со значениями дифференциальной энтропии (rs=-0,33), и суммарной энтропии (rs=-0,46) и умеренная прямая корреляционная связь со значением параметра однородности (rs=0,38).

Для каждого из указанных параметров была оценена информативность диагностического теста методом характеристических кривых (ROC-анализ), который показывает зависимость между чувствительностью и специфичностью диагностики (Фиг. 1 а, б).

Площадь под кривой, отражающая общую диагностическую эффективности теста, имела следующие значения:

- AngScMom, 0,932,

- InvDfMom, 0,70,

- Entropy, 0,92,

- DifEntrp 0,68,

- SumEntrp 0,79.

Таким образом, в систему балльной оценки вошли количественные значения 5параметров текстуры AngScMom, InvDfMom, Entropy, DifEntrp,SumEntrp для каждого из которых была найдена точка разделения, определявшая присвоение 0 или 1 балла. Выбор точки разделения с помощью ROC-кривой для каждого параметра базировался на пороговом значении параметра, при котором достигалось оптимальное соотношение чувствительности и специфичности и которое составило:

AngScMom - 0,0022, (80%, 90%),

InvDfMom - 0,12, (64%, 70%),

Entropy - 2,75, (90%, 80%),

DifEntrp - 1,35(70%, 64%),

SumEntrp - 1,8, (80%, 73%).

Исходя из этого, критериями для присвоения 1 балла по каждому параметру стали следующие значения:

AngScMom больше или равно 0,0022;

InvDfMom больше или равно 0,12;

Entropy меньше или равно 2,75;

DifEntrp меньше или равно 1,32;

SumEntrp меньше или равно 1,8.

Если сумма полученных баллов оказалась больше 2, то пациента относили к группе ответивших на НХЛТ, если меньше или равна 2, то пациент не ответил на НХЛТ.

При использовании балльной системы в обучающей выборке получены результаты МРТ стратифицировании пациентов на ответивших и не ответивших, представленные в таблице 1.

Площадь под ROC-кривой (Фиг. 2) для обучающей выборки составила0,94. Параметры диагностики в обучающей выборке представлены в таблице 2.

Полученные результаты свидетельствуют о хороших диагностических возможностях предложенной балльной системы на основе параметров текстуры Т2 ВИ, в связи с чем она была протестирована на 22 пациентах контрольной выборки. Текстурный анализ МРТ изображения и разделение пациентов на его основе с помощью балльной системы на ответивших и не ответивших проводились без знания информации о результатах гистологической оценки лечебного патоморфоза у этих пациентов. При использовании предложенных критериев балльной системы получены результаты, представленные в таблице 3.

Площадь под ROC-кривой в контрольной (тестовой) выборке (Фиг. 3) составила

0,92.

Параметры диагностики представлены в таблице 4.

Таким образом, результаты тестирования балльной системы в контрольной выборке показали, что она достаточно надежна для дифференциации пациентов, ответивших и не ответивших на НХЛТ

Примеры использования предложенного способа оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки.

Пример 1.

Больной Д., 1966 года рождения, с диагнозом рак ср. ампулярного отдела прямой кишки, T3N2M0.

Больному проведено комбинированное лечение. После операции проведено патоморфологическое исследование с определением степени патоморфоза по Лушникову. В данном случае значение степени патоморфоза равно II. По окончанию лечения проведено MP-исследование. На основе выбранных MP-изображений в режиме Т2-ВИ проведен текстурный анализ опухоли.

Получены следующие значения прогностических критериев:

AngScMom - 0,0016,

InvDfMom - 0,107,

Entropy - 2,88,

DifEntrp - 1,41,

SumEntrp - 1,87.

Проводили оценку полученных показателей текстурного анализа, а именно полученное значение:

-AngScMom меньше 0,0022,

- InvDFMom меньше 0,12,

- значение Entropy больше 2,75,

- DifEntrp больше 1,32,

- SumEntrp больше 1,8.

Ни один из параметров текстуры не удовлетворяет данным условиям, значит сумма баллов равна 0. Соответственно пациент не ответил на лечение.

Пример2.

Больной Б., 1957 года рождения, с диагнозом рак ср. ампулярного отдела прямой кишки, T4N1M0.

Больному проведено комбинированное лечение. После операции проведено патоморфологическое исследование с определением степени патоморфоза по Лушникову. В данном случае значение степени патоморфоза равно 2. По окончанию лечения проведено MP-исследование. На основе выбранных MP-изображений в режиме Т2-ВИ проведен текстурный анализ опухоли.

Получены следующие значения прогностических критериев:

- AngScMom - 0,0019;

- InvDfMom - 0,097,

- Entropy - 2,8,

-DifEntrp - 1,39,

- SumEntrp - 1,81.

Проводили оценку полученных показателей текстурного анализа, а именно:

- AngScMom меньше 0,0022,

- InvDFMom меньше 0,12,

- значение Entropy больше 2,75,

DifEntrp больше 1,32,

SumEntrp больше 1,8.

Каждое из полученных значений параметров текстуры не удовлетворяет заданным условиям, соответственно сумма баллов 0. Соответственно пациент не ответил на лечение. Пример 3.

Больной С., 1956 года рождения, с диагнозом рак н. ампулярного отдела прямой кишки, T3N1M0.

Больному проведено комбинированное лечение. После операции проведено патоморфологическое исследование с определением степени патоморфоза по Лушникову. В данном случае значение степени патоморфоза III. По окончанию лечения проведено MP-исследование. На основе выбранных MP-изображений в режиме Т2-ВИ проведен текстурный анализ опухоли.

Получены следующие значения прогностических критериев:

AngScMom - 0,00221,

InvDfMom - 0,089,

Entropy - 2,72,

DifEntrp - 1,44,

SumEntrp - 1,77.

Проводили оценку полученных показателей текстурного анализа, а именно:

- AngScMom болыпе 0,0022,

- InvDFMom меньше 0,12,

- значение Entropy меньше 2,75,

- DifEntrp больше 1,32,

- SumEntrp меньше 1,8.

Только три значения параметров текстуры AngScMom, Entropy, SumEntrp удовлетворяют данным условиям, соответственно только в трех случаях присваиваем один балл, итоговая сумма баллов 3. Соответственно пациент ответил на лечение.

Пример 4.

Больной Ш., 1959 года рождения, с диагнозом рак н. ампулярного отдела прямой кишки, T3N2M0.

Больному проведено комбинированное лечение. После операции проведено патоморфологическое исследование с определением степени патоморфоза по Лушникову. В данном случае значение степени патомрофза III. По окончанию лечения проведено МР-исследование. На основе выбранных MP-изображений в режиме Т2-ВИ проведен текстурный анализ опухоли.

Получены следующие значения прогностических критериев:

- AngScMom - 0,0026;

- InvDfMom - 0,15,

- Entropy - 2,74,

- DifEntrp - 1,27,

- SumEntrp - 1,71.

Проводили оценку полученных показателей текстурного анализа, а именно:

- полученные значения AngScMom больше 0,0022,

- InvDFMom больше 0,12,

- значение Entropy меньше 2,75,

- DifEntrp меньше 1,32,

- SumEntrp меньше 1,8.

Все пять параметров текстуры удовлетворяют заданным условиям, значит, в каждом из случаев присваивался 1 балл, сумма баллов равна 5. Пациент ответил на лечение.

Предложенный способ позволяет объективно, на основе количественных данных, оценить эффективность проведенной НХЛТ, используя балльную систему для5параметров текстурного анализа (AngScMom, InvDfMom, Entropy, DifEntrp, SumEntrp) T2 ВИ магнитно-резонансного изображения опухоли через 4-8 недель после окончания лечения. Использование изобретения в клинической практике позволит индивидуализировать дальнейшую тактику лечения, на основе комплексной клинической оценки результата лечения, включающей данные МРТ, использовать менее агрессивные, органосохраняющие варианты хирургического лечения, а в некоторых случаях полностью избежать хирургического вмешательства.

Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки, включающий проведение МРТ и текстурный анализ опухоли пациента после НХЛТ, отличающийся тем, что для текстурного анализа используют MP - изображения в режиме Т2-ВИ в аксиальной плоскости на уровне центра опухоли, полученные с помощью импульсной последовательности FSE и с высоким пространственным разрешением: TR (период повторения последовательности) - 4020 мс, ТЕ (время появления эхосигнала) - 97 мс, толщина среза/шаг - 3,0/0,3 мм, FoV (размер поля обзора) - 250 мм, МТХ (размер матрицы/пиксели) - 286×512, далее выбранные изображения загружают в программу Mazda ver.4.6 и проводят сегментацию изображения, определяют параметры текстуры методом матрицы совместной встречаемости уровней серого GLCM на расстоянии 2 пикселя и в четырех разных направлениях - 00, 450, 900, 1350, полученные значения усредняют и с помощью компьютерной программы проводят автоматическое вычисление 11 параметров текстурного анализа, из них проводят оценку по 5 параметрам текстурного анализа на основе балльной системы, а именно:

-AngScMom ≥0,0022, то 1 балл, если <0,0022 - 0 баллов,

- InvDfMom ≥0,12 - 1 балл, если <0,12 - 0 баллов,

- Entropy ≤2,75 - 1 балл, если >2,75 - 0 баллов,

- DifEntrpy ≤1,32 - 1 балл, если >1,32 - 0 баллов,

- SumEntrp ≤1,8 - 1 балл, если >1,8 - 0 баллов,

и если сумма полученных баллов >2, то пациент ответил на НХЛТ, если <2, то пациент не ответил на НХЛТ.



 

Похожие патенты:

Группа изобретений относится к области лучевого воздействия. Способ сканирования содержит этапы, на которых осуществляют получение данных детектирования подлежащего досмотру объекта при радиационном сканировании с использованием детектора; регулировку выходной мощности дозы излучения пучка ускорителя и/или уровня выходной энергии пучка электронов устройства радиационного излучения в соответствии с данными детектирования, содержащую определение идеальной выходной мощности дозы излучения пучка и/или идеального уровня выходной энергии пучка электронов согласно алгоритму преобразования для преобразования данных детектирования в идеальную выходную мощность дозы излучения пучка ускорителя и/или идеальный уровень выходной энергии пучка электронов; настройку выходной мощности дозы излучения пучка ускорителя и/или уровня выходной энергии пучка электронов на идеальную выходную мощность дозы излучения пучка и/или идеальный уровень выходной энергии пучка электронов.

Использование: для протонной радиографии. Сущность изобретения заключается в том, что в камере для размещения объекта исследования сначала размещают тест-объект, который представляет собой подложку с одинаковыми реперными отметками, например стальными шарами, в узлах ортогональной решетки и закрепленным в центре подложки протяженным элементом, например трубкой; осуществляют юстировку тест-объекта перпендикулярно оси магнитооптической системы по цифровому изображению протонного пучка, который пропускают через магнитооптическую систему и камеру с тест-объектом, добиваясь путем углового перемещения тест-объекта соответствия размера сквозного отверстия трубки на изображении фактическому геометрическому размеру.

Использование: для измерения внутреннего объема объекта. Сущность изобретения заключается в том, что при измерении внутреннего объема неметаллического объекта, содержащего металлические элементы, выполняют следующие операции: внутренний объем объекта заполняют наполнителем многократного использования, объект бесконтактно сканируют с использованием компьютерного томографа, результаты сканирования используют для автоматизированного построения трехмерной модели внутреннего объема объекта, внутренний объем объекта измеряют с использованием компьютерной обработки полученной трехмерной модели, при этом рентгеновская плотность наполнителя отлична от рентгеновской плотности объекта и в качестве наполнителя используют кварцевый песок для избежания артефактов от металлических элементов на изображении объекта.

Устройство рентгеновского излучения содержит: вакуумную камеру (3), уплотненную по периферии и содержащую внутри высокий вакуум; несколько блоков (1) эмиссии электронов, индивидуально независимых друг от друга и расположенных в линейном ряду, чтобы быть установленными на одном конце вакуумной камеры (3); анод (2), установленный на другом конце в вакуумной камере (3), в направлении длины параллельный плоскости, в которой находятся сетки (103) блоков (1) эмиссии электронов, а в направлении ширины образующий с этой плоскостью угол заданной величины; систему (7) питания и управления, содержащую высоковольтный источник (702) питания, источник (704) питания нитей накала, устройство (703) управления сетками и систему (701) управления, причем каждый блок (1) эмиссии электронов содержит: нить (101) накала, катод (102), соединенный с нитью (101) накала, вывод (105) нити накала, выходящий от двух концов нити (101) накала, сетку (103), предусмотренную над катодом (102) и напротив него, изолирующий опорный элемент (104), имеющий отверстие и окружающий катод (102) и нить (101) накала, и соединительный и фиксирующий элемент (109), присоединенный на наружном крае нижнего конца изолирующего опорного элемента (104); и источник (704) питания нитей накала, соединенный с выводом (105) нити накала.

Использование: для диагностики реальной структуры нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики эволюции нанотонких пространственных структур включает электронно-микроскопические, микродифракционные исследования, выявление последовательности пространственных структур путем анализа картин изгибных контуров, присутствующих на их электронно-микроскопических изображениях, выполнение расчетов с использованием стандартных кристаллографических формул для определения значений параметров, характеризующих сложность организации их решетки, определение геометрии решетки путем анализа поверхностей искривления решетки, затем определение кооперативных движений структурных единиц, обусловливающих сложность организации решетки, анализируя вращения обратной решетки, и расчетным путем энтропии n-й − Sn и энтропии (n + 1)-й − Sn+1 пространственных диссипативных структур и установление их соотношения.

Использование: для исследования материалов при ударно-волновом нагружении с помощью протонной радиографии. Сущность изобретения заключается в том, что получают экспериментальное изображение пучка протонов с помощью системы регистрации после прохождения через объект исследования с последующей обработкой изображения и сравнения с расчетными данными, включающими форму и положение ударной волны и/или детонационной волны и/или геометрию объекта из исследуемого материала.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к области нефтяной геологии и может использоваться для определения смачиваемости нефтенасыщенных горных пород. Способ определения смачиваемости горных пород методом рентгеновской томографии керна включает изготовление из керна горных пород стандартных цилиндрических образцов, экстрагирование их от нефти и высушивание до стабилизации массы, последующее томографирование полученных сухих образцов с получением 2D-срезов, насыщение сухих образцов раствором йодида натрия и проведение повторного томографирования насыщенных образцов керна с получением 2D-срезов, затем, используя полученные при томографировании 2D-срезы, производят 3D-реконструкцию образцов путем сравнения указанных 3D-реконструкций для сухих и насыщенных образцов, определяя при этом поровые объемы указанных образцов, и определяют смачиваемость горной породы с использованием установленных поровых объемов образцов, в качестве раствора йодида натрия для насыщения сухих образцов используют раствор концентрацией 300 г/л и насыщение проводят под вакуумом в течение не менее 3 часов, при этом при проведении 3D-реконструкции образцов определяют поровый объем не всего образца, а только сердцевины образца на расстоянии 3-5 мм от верхнего и нижнего торцов образца и 5-6 мм от боковых сторон образца с использованием определенных при проведении 3D-реконструкции образцов их поровых объемов, далее рассчитывают показатель пропитки - К пропитки - как отношение разности объема пор между сухим V1 и насыщенным образцом V2 к объему пор в сухом образце V1 по следующей формуле: и по полученному значению показателя пропитки К пропитки судят о смачиваемости керна посредством установления категории его гидрофильности или гидрофобности.

Изобретение относится к иконике для создания систем визуализации в инфракрасном, ультрафиолетовом, рентгеновском и других участках спектра электромагнитных излучений.
Изобретение относится к области спектроскопических измерений и касается способа определения тяжелых металлов в почве. При осуществлении способа исследуемый образец почвы наносят слоем толщиной 5-10 микрон на атомно-гладкую поверхность кристалла меди, отжигают при температуре 150°С в течение 5 минут и помещают в вакуумную камеру с давлением остаточных газов на уровне 10-8 миллибар.

Изобретение относится к области медицины, а именно к способам лечения плоскоклеточного рака полости рта и глотки в сочетании с лучевым и лекарственным воздействием.
Изобретение относится к гинекологии и может использоваться для комплексного физиотерапевтического лечения и профилактики пролапса гениталий у женщин. Осуществляют проведение процедур лазерной обработки слизистой влагалища с помощью импульсного фракционного CO2-лазера, проводят курсы процедур тренировки мышц тазового дна, в том числе с устройствами-тренажерами.

Группа изобретений относится к медицине. Устройство для кросслинкинга тканей глазного яблока содержит: инструмент, предназначенный для введения фотосенсибилизатора и наночастиц в ткани глазного яблока, и источник лазерного излучения, выполненный с возможностью испускать излучение, которое предназначено для одновременной активации каждого из фотосенсибилизатора и наночастиц, причем источник лазерного излучения также содержит один или более из кристалла генерации второй гармоники и кристалла генерации третьей гармоники для генерирования излучения, предназначенного для создания канала через слой эпителия тканей глазного яблока; систему для направления и фокусировки лазерного излучения по отношению к тканям глазного яблока и компьютер для управления системой.

Группа изобретений относится к медицинской технике, а именно к средствам для ультразвуковой обработки открытых ран. Устройство для очистки ран с помощью ультразвука в виде переносного приспособления содержит встроенный вибропривод, встроенный ультразвуковой генератор, встроенный источник питания для вибропривода и для ультразвукового генератора и сменную чистящую насадку, приводимую в действие виброприводом для абразивного удаления налета с раны, при этом чистящая насадка содержит акустический преобразователь, выполненный с возможностью преобразования электрических колебаний, генерируемых ультразвуковым генератором, в звуковые волны, устройство для усиления, и/или распределения, и/или передачи ультразвуковых волн и щетинки и/или чешуйки для абразивного удаления.

Группа изобретений относится к системе, способу и компьютеру, запрограммированному компьютерной программой для выполнения терапевтической процедуры. Система для выполнения терапевтической процедуры содержит удлиненный вводимый элемент для введения в тело, причём удлинённый вводимый элемент является катетером, блок определения температуры для определения температуры вдоль катетера, блок определения внутренней части для определения того, какая часть катетера находится внутри тела, на основании определенной температуры, таким образом обеспечивающий сегментацию катетера на основании температуры, блок выполнения терапевтической процедуры для выполнения терапевтической процедуры посредством использования катетера таким образом, что терапевтическая процедура выполняется только в определённой внутренней части катетера, при этом блок выполнения терапевтической процедуры содержит блок перемещения, выполненный с возможностью перемещения источника излучения в положение облучения для терапевтической обработки тела в положении облучения в пределах катетера, и блок управления брахитерапией, выполненный с возможностью управления блоком перемещения, при этом сегментация катетера на основании температуры используется для предотвращения нахождения положения облучения за пределами тела.
Изобретение относится к области медицины, а именно к онкологии, может быть использовано для лечения послеоперационной лимфореи с использованием фотодинамической терапии.

Группа изобретений относится к генерации синтетических изображений с помощью алгоритмов машинного обучения для использования в радиотерапии, а именно к системам и способам для генерации изображений компьютерной томографии (КТ) из изображений магнитно-резонансной томографии (МРТ) с использованием нейронных сетей.

Изобретение относится к медицинской технике, а именно к холодноплазменным устройствам для обработки кожи. Устройство содержит корпус, имеющий торцевую поверхность, генератор холодной плазмы, выполненный с возможностью генерирования холодной плазмы, которая создает активные частицы для обработки кожи, причем генератор холодной плазмы по существу равномерно отдален от кожи во время использования, и манипулятор, выполненный с возможностью проведения манипуляций с кожей для увеличения воздействия активных частиц на бактерии на коже во время использования устройства, причем манипулятор проходит между генератором холодной плазмы и кожей во время использования и содержит подвижный элемент, выполненный с возможностью контакта с кожей во время использования холодноплазменного устройства.

Изобретение относится к медицинской технике. Устройство для магнитосветового воздействия содержит светодиодный источник излучения, имеющий в своем составе группу полупроводниковых излучателей, а также кольцевой источник магнитного поля в виде полого контейнера, образованного верхней и нижней крышками и выполненного с осевым каналом.

Группа изобретений относится к медицинской технике, а именно к средствам радиационного детектирования в нейтрон-захватной терапии. Система детектирования излучения для системы нейтрон-захватной терапии содержит пучок заряженных частиц, вход пучка заряженных частиц, выполненный с возможностью пропускания пучка заряженных частиц, модуль нейтронной генерации, генерирующий нейтронный пучок после осуществления ядерной реакции между модулем нейтронной генерации и пучком заряженных частиц, формирователь пучка, используемый для регулировки потока и качества нейтронного пучка, генерируемого модулем нейтронной генерации, и выход пучка, примыкающий к модулю нейтронной генерации, при этом система детектирования излучения содержит устройство детектирования излучения, используемое для детектирования в реальном времени γ-лучей, мгновенно испускаемых при излучении нейтронного пучка, и выполнена с возможностью вычисления величины концентрации бора по детектированному сигналу γ, причем концентрация бора рассчитывается по формуле А: где B(t) - это концентрация бора во время t, единицей B(t) является ppm (миллионная доля), единицей времени t является секунда, k - это измеренная величина, GC(t) - это величина, полученная после того, как число фонового γ вычтено из общего числа γ предустановленной энергетической зоны, детектированного во время t, причем k рассчитывается по формуле В: где B(t0) - это концентрация бора во время t0, единицей B(t0) является ppm, единицей времени t0 является секунда, GC(t0) - это величина, полученная после того, как число фонового γ вычтено из общего числа γ предустановленной энергетической зоны, детектированного во время t0, причем B(t0) рассчитывается по формуле С: где Bblood(t0) - это концентрация бора в крови, измеренная во время t0, единицей Bblood(t0) является ppm и RT/N - это отношение концентрации бора, которое может быть получено на основе ПЭТ или экспериментальных данных или на теоретической основе, к концентрации бора в нормальной ткани.

Изобретение относится к медицине, а именно к кардиологии. Предложен способ, в котором: регистрируют электрокардиограмму (ЭКГ) или электрограмму желудочков (ЭГЖ) сердца.
Наверх