Способ флотационного отделения сфалерита и минералов меди от сульфидов железа

Изобретение относится к области обогащения полезных ископаемых. Способ флотационного отделения сфалерита и минералов меди от сульфидов железа включает кондиционирование измельченной пульпы с регулятором комплексообразования, собирателем, селективным к цинку и меди, и вспенивателем и выделение цинкового концентрата в пенный продукт флотации. В качестве регулятора комплексообразования используют роданид аммония. В качестве комплексообразующего собирателя используют дитиопирилметан (1-фенил-2,3-диметил-пиразолон-5-тион). При этом соотношение собирателя и регулятора комплексообразования составляет от 1:0,5 до 1:4. Способ обеспечивает селективное выделение ценных компонентов в концентрат при одновременном сокращении безвозвратных потерь ценных компонентов с общими хвостами. 1 табл.

 

Изобретение относится к области обогащения полезных ископаемых, в частности, к флотационному выделению сульфидных минералов, из концентратов и может быть использовано при флотационном обогащении сульфидных медно-цинковых пирит, пирротин и арсенопирит - содержащих, золотосодержащих руд, а также оловосодержащих руд сульфидного типа, которые содержат помимо касситерита сульфиды меди, цинка, свинца, серебра, а также железосодержащие сульфиды, присутствие которых в концентратах обогащения ухудшает их качество и осложняет дальнейший металлургический передел.

Известен способ обогащения сульфидных руд, включающий введение модификатора поверхности сфалерита для увеличения сорбции ксантогената, введение коллектора и вспенивателя. В данном способе в качестве агента, модифицирующего поверхность, используют медный купорос. Отделение сфалерита от минералов железа осуществляется в сильнощелочной известковой среде. [Богданов О.С., Максимов И.И., Поднек А.К., Янис Н.А. Теория и технология флотации руд. - М., Недра. 1980. - стр. 363.].

Однако в данном способе необходимо строго контролировать расход медного купороса, чтобы сократить непроизводительный расход ксантогената.

Известен способ флотации полиметаллических руд, включающий введение модификатора поверхности сфалерита, ксантогената и дополнительного собирателя МКОП, обладающего вспенивающей способностью. В качестве дополнительного собирателя используют реагент МКОП, полученный на основе маточного раствора производства бутилового ксантогената и оксида пропилена. Способ позволяет исключить из процесса флотации вспениватель и повысить извлечение меди и цинка. [Иванова Т.А., Заславская Н.Н., Тюрникова В.И. Получение, свойства и применение нового флотационного реагента. // Металлургические технологии при переработке руд и концентратов цветных металлов: Науч. трудов Гинцветмет - М., 1993. С. 119-123. А.С. №1457232 СССР и А.С. №1640868 СССР].

Однако для производства реагента МКОП необходимо использовать отход производства ксантогената со стабильным составом.

Известен способ флотационного отделения сфалерита и минералов меди от сульфидов железа, включающий кондиционирование измельченной пульпы в присутствии комплексообразующего собирателя и регулятора комплексообразования, В данном патенте в качестве комплексообразующего реагента селективного к цинку и меди диантипирилметан (1-фенил-2,3-диметил 4-диметиламинопиразолон-5), способный к образованию прочного соединения с этими металлами, а в качестве регулятора комплексообразования используют роданид аммония. [Чантурия В.А., Иванова Т.А., Чантурия Е.Л., Зимбовский И.Г. «Способ флотационного отделения сфалерита и минералов меди от сульфидов железа», Российский патент на изобретение, RU (11) 2504438(13) С1 заявка 2012129942/03,16.07.2012].

Однако указанный реагент способен легко окисляться ионами железа (3+) на поверхности железосодержащих сульфидов и вводной фазе пульпы, что может приводить к непроизводительному расходу реагента.

Наиболее близким по технической сущности, совокупности признаков и достигаемому результату можно признать способ флотации медно-цинковых сульфидных руд в щелочной известковой среде включающий введение медного купороса, кондиционирования пульпы с бутиловым ксантогенатом и вспенивателем При этом эффективность разделения существенно зависит от наличия примесей в разделяемых минералах. [Л.Я. Шубов, С.И. Иванков, Н.К. Щеглова Флотационные реагенты в процессах обогащения минерального сырья. Книга 2, стр. 165 (прототитп)].

Недостатком указанного способа является невысокое извлечение ценного компонента в концентрат, низкий индекс селективности, высокий расход флотореагентов, высокие потери металла с отвальными хвостами.

Технической задачей изобретения является повышение эффективности отделения сульфидных минералов цинка и меди от сульфидов железа из медно-цинковых или полиметаллических руд и продуктов обогащения.

Технический результат, получаемый при реализации изобретения, состоит в обеспечении селективного выделения ценных компонентов в концентрат при одновременном сокращении безвозвратных потерь ценных компонентов с общими хвостами в присутствии комплексообразующего реагента-собирателя селективного к цинку и меди, регулятора комплексообразования и вспенивателя.

Для достижения указанной цели предложено использовать разработанный способ флотационного отделения сфалерита и минералов меди от сульфидов железа, включающий кондиционирование измельченной пульпы с регулятором комплексообразования, собирателем, селективным к цинку и меди, и вспенивателем, и выделение цинкового концентрата в пенный продукт флотации, причем в качестве, регулятора комплексообразования используют роданид аммония или сернокислую медь. В качестве собирателя используют дитиопирилметан (1-фенил-2,3-диметил-пиразолон-5-тион). В предпочтительном варианте реализации используют соотношение собирателя и роданида аммония составляющее 1:2. Желательно применять разработанный способ для пульпы с крупностью частиц (- 0,1 мм). Способ реализуется следующим образом.

В качестве комплексообразующего реагента селективного к цинку и меди используют дитиопирилметан, способный к образованию прочного соединения с данными металлами, а в качестве регулятора комплексообразования используют роданид аммония, при этом соотношение собирателя и регулятора комплексообразования составляет от 1: 0,5 до 1: 4.

Кроме того, в качестве регулятора комплексообразования используют сернокислую медь, а в качестве дополнительного собирателя используют ксантогенат (БКс) или любой другой сульфгидрильный собиратель.

При реализации способа могут быть использованы:

- дитиопирилметан (1-фенил-2,3-диметил-пиразолон-5-тион) представляющий собой белый или желтоватый кристаллический продукт, незначительно растворим в воде, хорошо растворим в минеральных кислотах и в уксусной кислоте, ацетоне, хлороформе, диметилформамиде и спиртах, Мв. 420,63, т.пл. 236-237°С.

- роданид аммония (NH4CNS) ГОСТ 27067-86 или роданид натрия

- уксусная кислота (УК) ГОСТ 18270-72

- (сульфгидрильный) собиратель, бутиловый ксантогенат калия (БКс), соответствующий (ГОСТ 7927-75) либо другие алкилксантогенаты или алкилдитиокарбаматы и др.

- вспениватели: Сосновое масло ГОСТ 6792-74, или Метилизобутилкарбинол (МИБК) ТУ 6-02-891-78.

Селективность действия дитиоптрилметана, основана на способности к образованию трудно растворимого комплексного соединения с цинком Zn (C13H17ON3)2(NCS)2 или соединения с медью на поверхности сульфидных минералов и одновременной способностью к образованию растворимого в воде соединения с ионами железа (3+) на поверхности пирита или других железосодержащих сульфидов. Введение регуляторов комплексообразования роданидионов, или сернокислой меди приводит к образованию более устойчивых комплексных соединений дитиопирилмтана с цинком и более сильной гидрофобизации поверхности сфалерита. Введение сернокислой меди перед собирателем приводит к одновременному образованию комплексов 1-фенил-2,3-диметил-пиразолон-5-тиона с цинком и медью на поверхности сфалерита.

Для осуществления флотационного разделения сфалеририта и пирита в лабораторных условиях была использована лабораторная механическая флотомашина, в промышленных условиях может быть использована флотомашина любого типа.

Для подтверждения эффективности данного способа было проведено сравнение его со способом, выбранным в качестве прототипа.

Эксперименты проводили на выше указанном лабораторном оборудовании с использованием в качестве вспенивателя метилизобутилкарбинола (МИБК), используемые минералы были измельчены до (-0,1+0,044 мм).

Необходимую для опытов крупность получали истиранием минералов в фарфоровой мельнице и рассеиванием на классы на ситах.

1. По способу - прототипу (опыт 1 в таблице).

Навеску измельченного минерала пирита или сфалерита (1 грамм) помещали во флотационную камеру, заливали водным раствором рН10,5 (СаО); вводили CuSO4 200 г/т, затем кондиционировали пульпу с собирателем БКс 100(г/т), подавали вспениватель МИБК, перемешивали 0,5 мин., затем флотировали в течение 3-х минут.

2. По способу флотационного разделения сульфидных минералов с использованием дитиопирилметана (опыты 2-4 в таблице)

Навеску измельченного минерала пирита или сфалерита (1 грамм) помещали во флотационную камеру, заливали водой, вводили собиратель ДТМ 50, 100 или 200 (г/т) и кондиционировали пульпу с собирателем 1 мин, подавали вспениватель МИБК, перемешивали 0,5 мин., затем флотировали в течение 3 минут.

3. По способу флотационного разделения сульфидных минералов с использованием дитиопирилметана (опыт 5 в таблице), но перед подачей собирателя ДТМ (100 г/т) вводили регулятор CuSO4 200 г/т.

4. По способу флотационного разделения сульфидных минералов с использованием дитиопирилметана (опыты 6-8 в таблице), но одновременно с собирателем ДТМ (100 г/т) вводили регулятор комплексообразования роданид аммония NH4SCN при весовом отношении ДТМ: NH4SCN от 1:1 до 1:4.

5. По способу флотационного разделения сульфидных минералов с использованием дитиопирилметана (опыт 9 в таблице), но навеску измельченного халькопирита (1 грамм) помещали во флотационную камеру, заливали водой, вводили собиратель ДТМ, 100 (г/т) и кондиционировали пульпу с собирателем 1 мин, подавали вспениватель МИБК, перемешивали 0,5 мин., затем флотировали в течение 3 минут.

6. По способу флотационного разделения сульфидных минералов с использованием дитиопирил (опыт 10 в таблице), но одновременно с собирателем ДТМ (100 г/т) вводили регулятор комплексообразования роданид аммония NH4SCN при весовом отношении ДТМ: NH4SCN 1:2.

6

Анализ данных таблицы показывает, что наилучшими условиями разделения пирита и сфалерита по предлагаемому способу являются условия опыта 7 и опыт 8. В отсутствии регулятора комплексообразования (опыт 2-4) извлечение сфалерита при расходах ДТМ 50-300 г/т не превышает 63,5%, при извлечении пирита <3%. Разработанный способ позволяет обеспечить разницу в извлечении минералов пирита и сфалерита на 5,8% выше по сравнению со способом - прототипом.

Способ флотационного отделения сфалерита и минералов меди от сульфидов железа, включающий кондиционирование измельченной пульпы в присутствии комплексообразующего собирателя и регулятора комплексообразования, введение вспенивателя и выделение сульфидных минералов цинка и меди в пенный продукт флотации, отличающийся тем, что в качестве комплексообразующего собирателя, селективного к цинку и меди, используют дитиопирилметан, способный к образованию прочного соединения с упомянутыми металлами, а в качестве регулятора комплексообразования используют роданид аммония, при этом соотношение собирателя и регулятора комплексообразования составляет от 1:0,5 до 1:4.



 

Похожие патенты:

Изобретение относится к гидрометаллургии платиновых металлов, а именно к регенерации и разделению платиновых металлов из отработанных материалов сплава Pt-Pd-Rh. Сплав растворяют с получением раствора хлорокомплексов H2PtCl6, H2PdCl4, H3RhCl6.

Изобретение относится к области нефтепереработки и нефтехимии, а именно к удалению мышьяка и его соединений из нефтяных фракций, и может быть использовано на нефтеперерабатывающих предприятиях при очистке нефтяных фракций от примесей для последующего получения дизельного топлива и других нефтепродуктов.

Способ получения металлического палладия относится к гидрометаллургии благородных металлов и может быть использован для получения палладия в виде металла. Палладий в виде соли растворяют, а затем восстанавливают до металла муравьиной кислотой.
Предложен способ экстракции и выделения, включающий стадию контактирования органической фазы, содержащей в качестве экстрагента диалкилдигликольамидокислоту с общей формулой R1R2NCOCH2OCH2COOH, с водной фазой, содержащей скандий и цирконий и/или гафний, с целью экстракции циркония и/или гафния в органическую фазу.

Изобретение относится к области цветной металлургии и может быть использовано для селективного извлечения никеля и кобальта из сульфатных растворов кучного выщелачивания окисленных никелевых руд.

Изобретение относится к способу селективного и экологически чистого совместного извлечения свинца и серебра в качестве концентрата из отходов гидрометаллургического производства.

Изобретение относится к способу удаления натрия из технологического потока гидрометаллургического процесса, содержащего хлорид аммония, хлорид никеля, хлорид меди, хлорид кобальта и/или хлорид магния.

Изобретение относится к гидрометаллургии редких металлов, а конкретно к способам переработки висмутсодержащих материалов с получением висмута нитрата основного. Получение висмута нитрата основного проводят путем обработки висмутсодержащего материала азотной кислотой.

Изобретение относится к способам регенерации свободного цианида из вод, содержащих тиоцианаты, цианиды и тяжелые металлы. Способ регенерации свободного цианида из вод, содержащих тиоцианаты и тяжелые металлы, включает селективное окисление в кислых средах, улавливание синильной кислоты из отходящих газов в щелочной поглотитель, подщелачивание вод после их окислительной обработки.

Способ получения низкокремнистого высокочистого пентоксида ванадия (V2O5) из смешанного раствора, содержащего ванадий, хром и кремний. Способ включает следующие стадии: во-первых, из раствора, содержащего ванадий, хром и кремний, с помощью соли амфотерного металла и/или соли щелочного металла удаляют кремний, затем удаляют другие примеси посредством регулирования величины pH и осуществляют разделение твердого вещества и жидкости.

Изобретение относится к способу избирательной флотации каинита из размолотых неочищенных калийных солей или, например, из кристаллизованных солевых смесей, полученных способом выпаривания, которые кроме каинита могут содержать и другие минералы, как, например, галит, сильвин и другие солевые минералы, для получения концентрированной фракции каинита и остаточной фракции.

Изобретение относится к композиции коллектора, включающей простой моноаминоалкиловый эфир, и к способу обработки руд, таких как магнетитовые руды, такой композицией коллектора.
Предложенная группа изобретений относится к способам и композициям для улучшения разделения, относящегося к типу пенной флотации. Микроэмульсия для улучшения эффективности разделения пенной флотацией содержит непрерывную фазу, которая представляет собой текучий носитель и дисперсную фазу.

Предложенная группа изобретений относится к устройствам и способам отделения мелких частиц угля от частиц золообразующих компонентов. Способ отделения частиц угля от частиц золообразующих компонентов включает образование пузырьков внутри воды во флотационной камере, введение водной суспензии угольной мелочи, содержащей более чем 35 мас.% твердых частиц, содержащих дискретные частицы угля и дискретные частицы золообразующих компонентов, в пузырьки внутри упомянутой флотационной камеры для угля таким образом, чтобы пузырьки захватывали и флотировали частицы угля и образовывали угольную пену, причем угольная мелочь в водной суспензии имеет размер частиц менее чем около 750 мкм и сбор угольной пены.

Предложенная группа изобретений относится к устройствам и способам отделения мелких частиц угля от частиц золообразующих компонентов. Способ отделения частиц угля от частиц золообразующих компонентов включает образование пузырьков внутри воды во флотационной камере, введение водной суспензии угольной мелочи, содержащей более чем 35 мас.% твердых частиц, содержащих дискретные частицы угля и дискретные частицы золообразующих компонентов, в пузырьки внутри упомянутой флотационной камеры для угля таким образом, чтобы пузырьки захватывали и флотировали частицы угля и образовывали угольную пену, причем угольная мелочь в водной суспензии имеет размер частиц менее чем около 750 мкм и сбор угольной пены.

Изобретение относится к получению кремний-углеродсодержащих наноструктур из техногенных отходов и может быть использовано для извлечения наноразмерных частиц диоксида кремния и углерода из шламов газоочистки электротермического производства кремния флотацией.
Изобретение относится к переработке отходов тепловых электростанций, в частности к способу выделения несгоревшего углерода из золы-уноса ТЭС с получением алюмосиликатного продукта.

Изобретение относится к способам получения редкоземельных металлов (РЗМ) или их оксидов из бедного или техногенного сырья с помощью метода ионной флотации. Процесс ионной флотации осуществляли в лабораторной флотационной машине механического типа 137 В-ФЛ.

Предложенная группа изобретений относится к использованию эмульгаторов в композициях вторичных флотореагентов, содержащих разветвленный спирт и/или алкоксилат, и к использованию таких композиций для пенной флотации несульфидных руд, в особенности, фосфатных руд, в сочетании с первичным флотоагентом, который представляет собой анионное или амфотерное поверхностно-активное соединение.
Группа изобретений относится к способам, композициям для улучшения эксплуатационных характеристик вспенивателя при разделении в результате пенной флотации суспензии в среде.
Наверх