Способ старта ракеты из широкофюзеляжного носителя

Изобретение относится к космической технике, а более конкретно к стартовым установкам. При старте ракеты из широкофюзеляжного носителя выполняют старт из контейнера, размещенного на носителе, и меры по безударному выдвижению ракеты. Меры включают применением дефлектора группового действия, размещаемого на носителе в районе пусковой установки и применение газодинамической системы поперечной стабилизации и склонения. Достигается упрощение конструкции. 1 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к способам старта ракет с борта воздушного носителя и может найти применение для обеспечения старта управляемых ракет, противоракет и баллистических ракет.

Уровень техники

1) Известны аналоги изобретения, имеющее назначение, совпадающее с назначением предлагаемого изобретения: способы старта ракет, предназначенные для использования на воздушных носителях:

- Способ вывода полезного груза в околоземное пространство с использованием авиационного ракетно-космического комплекса и авиационный ракетно-космический комплекс, Патент РФ № 2265558, B64G 1/00, дата публикации: 06.09.2005;

- Способ запуска многоступенчатой космической ракеты-носителя с использованием самолета-носителя и многоступенчатая ракета-носитель, Патент РФ № 2265559, B64G 1/00, дата публикации: 06.09.2005.

Общим недостатком этих изобретений, по-нашему мнению, является размещение и старт ракет соосно строительной оси носителя, что либо ограничивает углы бросания ракеты, либо вынуждает самолет совершать маневр кабрирования для старта ракеты, что вызывает падение скорости бросания ракеты в момент отцепки и снижает, таким образом, эффект применения воздушного старта.

В качестве прототипа изобретения, наиболее близкого по сути к предлагаемому изобретению и которому присуща совокупность признаков, наиболее близкая к совокупности существенных признаков предлагаемого изобретения, рассмотрен способ, предложенный в патенте США – Method for launching a missile, патент № US 2012/0024136 A1, дата публикации 02.02.2012.

Предложенный способ воздушного старта ракет предполагает старт ракеты с использованием маршевого двигателя ракеты из пусковой трубы, размещенной вертикально (или почти вертикально) в фюзеляже самолёта, и дополнительно включает в себя:

- самоустанавливающиеся пусковые скользящие направляющие рельсы с механическим ограничителем на одной стороне, по которым движется колодка, присоединенная к ракете и движущаяся вдоль остающейся длины рельса, пока ракета не выйдет за пределы самолета, посредством чего исключаются боковые вибрации (колебания) стартующей ракеты;

- дефлектор в каждой пусковой трубе, прикрепленный к пусковым скользящим направляющим рельсам и выдвигаемый вместе с направляющими рельсами, обеспечивающий отклонение окружающего потока воздуха вокруг ракеты, до момента отсоединения ракеты от направляющих рельсов после выхода из пусковой трубы;

- двигатели или гидравлические приводы, обеспечивающие расширение дефлектора во время старта ракеты;

- газовые горелки высокой скорости, смонтированные на носителе или на верхней части дефлектора, обеспечивающие расширение защищаемой зоны пуска по высоте;

- систему возвращения рельсов и дефлектора назад в пусковую трубу, выключение газовых горелок, что обеспечивает снижение бокового нагружения носителя и результирующих опрокидывающих сил, действующих на носитель.

По мнению разработчиков данного способа, воздушный метод базирования ракет, использующий вертикальный (или почти вертикальный) старт ракет обеспечивает всеракурсный обстрел целей и является эффективной мерой для организации противовоздушной и противоракетной обороны, старта ударных баллистических и аэробаллистических ракет в наступательных наземных операциях, установке минных заграждений, запуска спутников и т.п.

2) Техническая проблема. Основной проблемой обеспечения вертикального (или почти вертикального) старта с движущегося носителя является сильное аэродинамическое воздействие набегающего потока воздуха на боковую поверхность ракеты, препятствующее безударному выходу ракеты из фюзеляжа носителя, существенному моменту вращения ракеты в плоскости тангажа при выходе из корпуса носителя при неравномерном воздействии набегающего потока воздуха. Предложенный прототипом способ (метод) предлагает решение этой проблемы, однако предложенное решение имеет существенные недостатки, основными из которых являются:

- наличие в пусковой трубе системы выдвигаемых пусковых скользящих направляющих рельсов для обеспечения соосного безударного выдвижения ракеты из пусковой трубы, которые ограничивают пространство для раскрытия аэродинамических поверхностей ракеты и требуют значительного усиления корпуса носителя и самих направляющих для удержания массы ракеты в комплексе с массой дефлектора, прикрепленного к рельсам, а также для парирования существенного бокового аэродинамического нагружения комплекса «ракета-рельсы-дефлектор» в условиях вибрационных знакопеременных нагрузок, вызванных воздушными вихрями Карно, обтекающими цилиндрическое тело;

- наличие на ракете специальных колодок для движения ракеты по выдвигаемым пусковым скользящим направляющим рельсам пусковой установки, увеличивающих ее массу и аэродинамическое сопротивление в полете.

Раскрытие сущности изобретения.

Сущность предлагаемого способа вертикального воздушного старта ракеты с борта носителя альтернативен известному решению того же назначения (патент США № US 2012/0024136 A1) и обеспечивает решение той же проблемы и достижение того же технического результата более простыми техническими средствами. Предлагаемое техническое решение основано на применении новой совокупности существенных признаков, достаточной для реализации назначения изобретения:

- применение дефлектора группового действия, размещаемого на носителе в районе пусковой установки для снижения уровня бокового аэродинамического нагружения сразу на все стартующие ракеты;

- применение газодинамической системы поперечной стабилизации и склонения на ракете для парирования неравномерного аэродинамического воздействии турбулентного потока воздуха за дефлектором группового действия, что обеспечивает соосный безударный выход ракеты из пускового контейнера (пусковой трубы);

- задержка старта ракеты относительно выдачи команды на открытие стрельбы на время, достаточное для раскрытия дефлектора группового действия;

- задержка старта газодинамической системы поперечной стабилизации и склонения ракеты относительно момента старта ракеты на время, достаточное для выхода соплового аппарата газодинамической поперечной системы стабилизации и склонения ракеты из пускового контейнера в воздух.

Технический результат (эффект применения) предлагаемого способа заключается в отсутствии необходимости:

- применения сложной конструкции выдвигаемых пусковых скользящих направляющих рельсов для обеспечения соосного безударного движения ракеты при выходе из пусковой трубы, требующих сложного конструкторско-технологического решения для обеспечения их прочности и изгибной жесткости;

- дополнительного укрепления конструкции рельсов для выдвижения на них индивидуального дефлектора раздвигаемой конструкции;

- применения мощных ракетных двигателей («газовых горелок») на корпусе носителя или дефлектора, создающих вертикальный газовый барьер для набегающего потока воздуха;

- увеличения прочности и устойчивости формы носителя для крепления системы выдвигаемых пусковых скользящих направляющих рельсов с прикрепленным к ним дефлектором и газовым горелкам.

Осуществление изобретения

Для осуществления изобретения могут быть использованы средства, известные до даты приоритета изобретения и широко используемые в конструкции летательных аппаратов и систем управления ракет:

- газодинамическая система управления ракетой (система поперечной стабилизации и склонения) - «Физические основы устройства и функционирования стрелково-пушечного и ракетного оружия», Часть II, учебное пособие для студентов ВУЗов, под ред. проф. В.В. Ветрова и проф. В.П. Строгалева, издательство ТулГУ, Тула, 2007, стр. 167, 345…352;

Для правильного осуществления изобретения должна соблюдаться правильная последовательность работы средств, необходимых для осуществления изобретения:

- старт ракеты задерживается относительно выдачи команды на открытие стрельбы на время, достаточное для раскрытия дефлектора группового действия;

- запуск газодинамической системы поперечной стабилизации и склонения ракеты задерживается относительно момента старта ракеты на время, достаточное для выхода соплового аппарата газодинамической поперечной системы стабилизации и склонения ракеты из пускового контейнера в воздух.

Пример осуществления изобретения приведен на схеме устройства, реализующего предлагаемый способ старта ракеты из широкофюзеляжного носителя, где цифрами обозначены:

1. Дефлектор на корпусе носителя, снижающий аэродинамическое нагружение набегающим потоком стартующие ракеты.

2. Система старта ракеты.

3. Двигатель поперечного газодинамического управления и склонения ракеты, обеспечивающий парирование неравномерного аэродинамического воздействия турбулентного потока воздуха за дефлектором.

Способ старта ракеты из широкофюзеляжного носителя, основанный на вертикальном старте ракеты из пускового контейнера, размещенного на носителе, включающий меры по обеспечению безударного соосного выдвижения ракеты в набегающий поток воздуха, отличающийся тем, что применяется дефлектор группового действия, размещаемый на носителе в районе пусковой установки ракет, и газодинамическая система стабилизации и склонения, устанавливаемая на ракете.



 

Похожие патенты:

Изобретение относится к космической технике, а более конкретно к оборудованию для заправки топливом. Соединительный модуль (12) для заправки космической ракеты-носителя топливом содержит наземную часть (18), полетную часть (16) и соединительное звено (24).

Изобретение относится к области машиностроения, а более конкретно к гидроприводам. Гидропривод ракетного комплекса монтирован на раме шасси подвижного агрегата ракетного комплекса.

Изобретение относится к криогенным системам заправки топливом, в частности для передачи криогенной среды между ракетой-носителем и пусковой вышкой. Криогенная система (1) заправки топливом характеризуется наличием шланга (80) подачи топлива для соединения ракеты-носителя (100) и пусковой вышки (200).

Изобретение относится к транспортно-установочному оборудованию, а именно к транспортно-установочным агрегатам (ТУА) стартовых комплексов ракет космического назначения (РКН).

Группа изобретений относится к управлению реконфигурацией наземного автоматизированного комплекса управления космическими аппаратами (НАКУ КА). НАКУ КА и способ управления его реконфигурацией на базе нейросетевых технологий и элементов искусственного интеллекта с использованием базы знаний на основе технологии блокчейн включают использование для управления направленной реконфигурацией НАКУ КА нейросетевого комплекса.

Группа изобретений относится к ракетно-космической технике. Способ термостатирования бортовой аппаратуры полезного груза (ПГ), размещенного внутри головного обтекателя (ГО) космической головной части (КГЧ) ракеты космического назначения (РКН), включает вдув термостатирующей среды во внутреннее пространство ГО, ее перетекание вдоль ГО с последующим истечением из него.

Изобретение относится к средствам спасения космонавтов в аварийной ситуации на старте. Система содержит каркас (1) с площадкой (2) (на уровне посадки в космический корабль), расположенной в изолированном помещении (3), лифт с кабиной (4), где установлено защищенное спасательное транспортное средство (5) с автономным приводом перемещения.

Изобретение относится к области машиностроения и может быть использовано в электрогидравлических системах управления поворотным кольцом стартовых ракетных комплексов (ЭГСУ ПК СРК).

Изобретение относится к системам заправки ракетным топливом (РТ) космического аппарата (КА). Система питания РТ КА содержит бортовое устройство (100), включающее корпус (110) с отверстием (112) питания, ведущим к бортовому баку (120), и клапан (134), выполненный с возможностью выборочного перекрывания или открывания указанного отверстия (112) питания, и наземное устройство (200), содержащее трубопровод (210) питания со свободным концом (212), корпус (240) органа управления, окружающий указанный свободный конец (212) трубопровода (210) питания и снабженный приводом (250).

Изобретение относится к наземному оборудованию для изделий ракетно-космической техники. Подвижный агрегат (3) содержит емкость (8) для перевозки компонентов ракетного топлива (КРТ) на высокопроходимой колесной базе (2).
Наверх