Панель для дополнительной теплоизоляции стен

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий, предназначенных для уменьшения поступления теплоты из помещения в толщу стены при установке теплоизоляционных панелей внутри помещения или для защиты стен от воздействия неблагоприятных атмосферных процессов при установке панелей с внешней стороны здания теплофизических параметров панели в целом. Технической задачей является поддержание нормированных сроков эксплуатации панелей для дополнительной теплоизоляции стен в условиях вибрационных нагрузок и землетрясений, вызывающих образование сейсмических волн, путем устранения их перемещения по внутренней поверхности лицевой плоскости, за счет покрытия её тонковолокнистым базальтовым материалом, расположенном в виде комплектов, включающих попарно количеством не менее четырех витых пучков, каждый из которых продольно вытянутых по синусоиде. 6 ил.

 

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий, предназначенных для уменьшения поступления теплоты из помещения в окружающую среду при установке теплоизоляционных панелей внутри помещения или для защиты стен от воздействия неблагоприятных атмосферных процессов при установке панелей с внешней стороны здания теплофизических параметров панели в целом.

Известна панель для дополнительной теплоизоляции стен (см. патент РФ на полезную модель №126725, МПК Е 04 В 1/80, опубл. 10.09.2013 г.), содержащая листы, образующие лицевую и тыльную плоскости панели с воздушной прослойкой между ними, причем конструктивные элементы панели выполнены из материалов, не поддерживающих горение, имеющих низкую теплопроводность и выбранных из группы «полиуретановый поропласт» для тыльной плоскости, жесткий пенополиуретан с замкнутояичеистой структурой для разграничителей, пенополистирол, древесно-волокнистые плиты, листы сухой штукатурки для лицевой плоскости, при этом каждый из разграничителей, обеспечивающих сохранение минимальной постоянной толщины воздушной прослойки, а также возможность многократного снятия и установки всей панели или только ее лицевой плоскости, выполнен в виде соединения в единую конструктивную деталь по меньшей мере четырех ячеек, имеющих в центральной части, где сходятся ребра жесткости ячеек, канал для ввода крепежной детали, предназначенной для прикрепления лицевой плоскости к разграничителю, а ребра жесткости каждого из разграничителей утоплены в массу пластичного материала, из которого формируют лист, образующий тыльную плоскость панели, до начала его затвердевания, в результате чего получается прочное соединение каждого разграничителя с тыльной плоскостью панели, выполненной с возможностью прикрепления к стене с использованием крепежных деталей, при этом листы панели конструктивно сгруппированы пакетами по восемь штук с жестким соединением между собой тыльной и лицевой плоскостями и девятым в центре, который имеет возможность горизонтального перемещения относительно стены, причем крепежная деталь выполнена в виде стержня с двухсторонним резьбовым соединением, кроме того, одним концом стержень жестко соединен с крепежным каналом в центральной части разграничителя, а другим концом соединен с лицевой плоскостью каждого листа панели как с возможностью свободного горизонтального перемещения посредством гибких связей, так и жесткого соединения, при этом внутри панели на лицевой плоскости листа свободного горизонтального перемещения расположен вибратор, кроме того, на тыльной плоскости листов панели, конструктивно сгруппированных по восемь штук, выполнены криволинейные канавки с противоположным направлением касательной на каждой рядом расположенной паре листов панели, при этом на первом листе пары касательная криволинейной канавки имеет направление по ходу часовой стрелки, а на втором листе данной пары панели касательная криволинейной канавки имеет направление против хода часовой стрелки, причем панель снабжена термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для вентиляционного воздуха и комплекта дифференциальных термопар, «горячие» концы которых укреплены внутри проходного канала для вентиляционного воздуха, а «холодные» концы расположены на внешней поверхности.

Недостатком является снижение теплоизоляционных свойств панелей при эксплуатации с наличием в атмосферном воздухе, используемым в качестве вентилируемого в воздушных проходах и перемещающегося в проходном канале корпуса термоэлектрического генератора, мелкодисперсной влаги, которая, конденсируясь на «горячих» концах, образует «пятна» жидкости на внутренней поверхности проходного канала. Конденсатная пленка жидкости, являясь проводником электричества, приводит к рассеиванию электрического потенциала, вырабатываемого термоэлектрическим генератором, и, как следствие, термоЭДС, поступающая в качестве источника напряжения на вибратор, снижается. В результате в воздушной прослойке не осуществляется пульсирующее перемещение вентилируемого воздуха со снижением теплофизических параметров панели в целом.

Известна панель для дополнительной теплоизоляции стен (см. патент РФ на изобретение №2629503 МПК Е04B1/80, опубл. 20.08.2017), содержащий панель для дополнительной теплоизоляции стен, содержащая листы, образующие лицевую и тыльную плоскости панели с воздушной прослойкой между ними, причем конструктивные элементы панели выполнены из материалов, не поддерживающих горение, имеющих низкую теплопроводность и выбранных из группы «полиуретановый поропласт» для тыльной плоскости, жесткий пенополиуретан с замкнутояичеистой структурой для разграничиелей, пенополистирол, древесно-волокнистые плиты, листы сухой штукатурки для лицевой плоскости, при этом каждый из разграничителей обеспечивающих сохранение минимальной постоянной толщины воздушной прослойки, а также возможность мнократного снятия и установки всей панели или только ее лицевой плоскости, выполнен в виде соединения в единую конструктивную деталь по меньшей мере четырех ячеек, имеющих в центральной части, где сходятся ребра жесткости ячеек, канал для ввода крепежной детали, предназначенной для прикрепления лицевой плоскости к разграничителю, а ребра жесткости каждого из разграничителей утоплены в массу пластичного материала, из которого формируют лист, образующий тыльную плоскость панели, до начала его затвердевания, в результате чего получается прочное соединение каждого разграничителя с тыльной плоскостью панели, выполненной с возможностью прикрепления к стене с использованием крепежных деталей, при этом листы панели конструктивно сгруппированы пакетами по восемь штук с жестким соединением между собой тыльной и лицевой плоскостями и девятым в центре, который имеет возможность горизонтально перемещаться относительно стены, причем крепежная деталь выполнена в виде стержня с двухсторонним резьбовым соединением, кроме того, одним концом стержень жестко соединен с крепежным каналом в центральной части разграничителя, а другим концом соединен с лицевой плоскостью каждого листа панели как с возможностью свободного горизонтального перемещения посредством гибких связей, так и жесткого соединения, при этом внутри панели на лицевой плоскости листа свободного горизонтального перемещения расположен вибратор, кроме того, на тыльной плоскости листов панели, конструктивно сгруппированных по восемь штук, выполнены криволинейные канавки с противоположным направлением касательной на каждой рядом расположенной паре листов панели, при этом на первом листе пары касательная криволинейной канавки имеет направление по ходу часовой стрелки, а на втором листе данной пары панели касательная криволинейной канавки имеет направление против хода часовой стрелки, причем панель снабжена термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для вентиляционного воздуха и комплекта дифференциальных термопар, «горячие» концы которых укреплены внутри проходного канала для вентиляционного воздуха, а «холодные» концы расположены на внешней поверхности, при этом «горячие» концы комплекта дифференциальных термопар покрыты диэлектриком из оксида тантала и закреплены на внутренней поверхности проходного канала для вентиляционного воздуха.

Недостатком является снижение прочностных параметров при землетрясениях приводящих к разрушению элементов, составе панели под воздействием сейсмических волн перемещающихся по внутренней поверхности лицевой плоскости и возникающих также при работе закрепленного вибратора, как последствие вибрационных нагрузок.

Технической задачей является поддержание нормированных сроков эксплуатации панелей для дополнительной теплоизоляции стен в условиях вибрационных нагрузок и землетрясений, вызывающих образование сейсмических волн, путем устранения их перемещения по внутренней поверхности лицевой плоскости, за счет покрытия её тонковолокнистым базальтовым материалом, расположенном в виде комплектов, включающих попарно количеством не менее четырех витых пучков, каждый из которых продольно вытянут по синусоиде.

Технический результат достигается тем, что панель для дополнительной теплоизоляции стен содержит листы, образующие лицевую и тыльную плоскости панели с воздушной прослойкой между ними, причем конструктивные элементы панели выполнены из материалов, не поддерживающих горение, имеющих низкую теплопроводность и выбранных из группы «полиуретановый поропласт» для тыльной плоскости, жесткий пенополиуретан с замкнутояичеистой структурой для разграничиелей, пенополистирол, древесно-волокнистые плиты, листы сухой штукатурки для лицевой плоскости, при этом каждый из разграничителей обеспечивающих сохранение минимальной постоянной толщины воздушной прослойки, а также возможность мнократного снятия и установки всей панели или только ее лицевой плоскости, выполнен в виде соединения в единую конструктивную деталь по меньшей мере четырех ячеек, имеющих в центральной части, где сходятся ребра жесткости ячеек, канал для ввода крепежной детали, предназначенной для прикрепления лицевой плоскости к разграничителю, а ребра жесткости каждого из разграничителей утоплены в массу пластичного материала, из которого формируют лист, образующий тыльную плоскость панели, до начала его затвердевания, в результате чего получается прочное соединение каждого разграничителя с тыльной плоскостью панели, выполненной с возможностью прикрепления к стене с использованием крепежных деталей, при этом листы панели конструктивно сгруппированы пакетами по восемь штук с жестким соединением между собой тыльной и лицевой плоскостями и девятым в центре, который имеет возможность горизонтально перемещаться относительно стены, причем крепежная деталь выполнена в виде стержня с двухсторонним резьбовым соединением, кроме того, одним концом стержень жестко соединен с крепежным каналом в центральной части разграничителя, а другим концом соединен с лицевой плоскостью каждого листа панели как с возможностью свободного горизонтального перемещения посредством гибких связей, так и жесткого соединения, при этом внутри панели на лицевой плоскости листа свободного горизонтального перемещения расположен вибратор, кроме того, на тыльной плоскости листов панели, конструктивно сгруппированных по восемь штук, выполнены криволинейные канавки с противоположным направлением касательной на каждой рядом расположенной паре листов панели, при этом на первом листе пары касательная криволинейной канавки имеет направление по ходу часовой стрелки, а на втором листе данной пары панели касательная криволинейной канавки имеет направление против хода часовой стрелки, причем панель снабжена термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для вентиляционного воздуха и комплекта дифференциальных термопар, «горячие» концы которых укреплены внутри проходного канала для вентиляционного воздуха, а «холодные» концы расположены на внешней поверхности, при этом внутренняя поверхность лицевой плоскости покрыта тонковолокнистым базальтовым материалом, расположенным в виде комплектов, включающих попарно количеством не менее четырех витых пучков, каждый из которых продольно вытянут по синусоиде по высоте панели, причем выступы и впадины синусоид при совмещении являются концентратами, перемещающихся сейсмических волн, при этом участки наибольшего сближения синусоид составляют узлы, способствующие образованию стоячих волн.

На фиг.1 изображена принципиальная схема пакета из восьми листов панели для дополнительной теплоизоляции стены здания с девятым листом в центре, соединенным с вибратором, и термоэлектрическим генератором; на фиг.2 – вид А-А фиг.1; на фиг.3 – крепление центрального листа панели с вибратором; на фиг.4 – тыльная сторона листов панели, конструктивно сгруппированных по восемь штук с криволинейными канавками противоположного направления движения касательных, на фиг.5 – разрез проходного канала для вентиляционного воздуха с «горячими» концами комплекта дифференциальных термопар, покрытых диэлектриком из оксида тантала, на фиг. 6 – комплект тонковолокнистого базальтового материала, включающего попарно количеством не менее четырех витых пучков, каждый из которых продольно вытянут по синусоиде по высоте панели.

Конструкция для дополнительной теплоизоляции включает стену 1, панель 2 для дополнительной теплоизоляции, состоящую из лицевой 3 и тыльной 4 плоскостей, между которыми находится воздушная прослойка 5. Тыльная плоскость 4 крепится к стенке 1 известными способами, например прижатием к стене планками, через которые можно ввести в толщу стенки крепежные элементы меньшей длины, чем потребовалось бы в случае прикрепления к стенке собранной панели. Между тыльной 4 и лицевой 3 плоскостями размещены разграничители 6, предназначенные для сохранения минимального воздушного зазора постоянной величины и представляющие собой ребра жесткости 7 с крепежным каналом 8. Листы 9 конструктивно между собой соединены в комплексы, из них восемь листов жестко соединены с разграничителями 6, а лист 10 в центре имеет возможность горизонтального перемещения относительно стены 1.

Крепежная деталь 11 выполнена в виде стержня с двухсторонним резьбовым соединением, причем одним концом 12 стержень 11 жестко соединен с крепежным каналом 8 в центральной части разграничителя 6 и другим концом 13 соединен с лицевой плоскостью 3 каждого листа 10 панели 2 как с возможностью свободного горизонтального перемещения посредством гибких связей, например пружины 14 и 15, так и жесткого соединения с лицевой плоскостью 3 листа 9, при этом внутри панели 2 на лицевой плоскости 3 листа 10 свободного горизонтального перемещения расположен вибратор 16.

На тыльной плоскости 4 листов 9 панели 2, конструктивно сгруппированных по восемь штук, выполнены криволинейные канавки 17 с противоположным направлением движения касательной на каждой рядом расположенной паре 18 листов 9 панели 2. При этом на первом 19 листе 9 пары 18 панели 2 касательная криволинейной канавки 17 имеет направление по ходу 20 часовой стрелки, а на втором 21 листе 9 данной пары 18 панели 2 касательная криволинейной канавки 17 имеет направление против хода 22 часовой стрелки (см., например, стр.509, М.Я.Выгодский. Справочник по высшей математике. - М., 1965.- 872 с.).

Термоэлектрический генератор 23 выполнен в виде корпуса 24 с проходным каналом 25 для вентиляционного воздуха и комплекта дифференциальных термопар 26. «Горячие» концы 27 комплекта дифференциальных термопар 26 укреплены внутри проходного канала 25 для вентиляционного воздуха, а «холодные» концы 28 дифференциальных термопар 26 расположены на поверхности 29 корпуса 24 термоэлектрического генератора 23. Входной патрубок 30 проходного канала 25 для вентиляционного воздуха соединен с воздушной прослойкой 5, а выходной патрубок 31 соединен с окружающей средой (AT). «Горячие» концы 27 комплекта дифференциальных термопар 26 покрыты диэлектриком 32 из оксида тантала и укреплены на внутренней поверхности 33 проходного канала 25 для вентиляционного воздуха.

Внутренняя плоскость 34 лицевой 3 поверхности покрыта тонковолокнистым базальтовым материалом 35, расположенным в виде комплектов 36 включающих попарно 37 и 38 количеством не менее четырех витых пучков, каждый из которых продольно вытянут по синусоиде 39, 40, 41 и 42 по высоте панели 2, причем выступы 43 и впадины 44 синусоид 39, 40, 41 и 42 при совмещении являются концентратами, перемещающихся сейсмических волн 45, при этом участки наибольшего сближения синусоид 39, 40, 41 и 42 составляет узлы 46 и 47, способствующие образованию стоячих волн 48.

Теплообмен при эксплуатации панели для дополнительной теплоизоляции стен осуществляется следующим образом.

Изменяющиеся в течении суток температурный перепад между наружным воздухом окружающей среды и внутренним воздухом здания приводит к колебаниям вентилируемого воздуха в воздушной прослойке 5, которые совместно с вибрационными нагрузками вибраторе 16 создают сейсмические волны, перемещающихся по внутренней плоскости 34 лицевой поверхности, кроме того возникающие при землетрясения сейсмические волны 45 также интенсифицируют разрушения панелей.

При покрытии лицевой плоскости 34 лицевой поверхности тонковолокнистым базальтовым материалом 35 поддерживается заданный температурный режим вентилируемого воздуха в воздушной прослойке. В связи с тем, что тонковолокнистым базальтовым материалом 35 обладает теплоизолирующими свойствами, а выполнение его в виде витых пучков, позволяет аккумулировать теплоту как наружного воздуха с его высокой положительной температурой, а так же при наличии солнечной радиации, так и теплоты внутреннего воздуха здания при низких температурах окружающей среды, то это снижает энергоемкость поддержания нормированного температурного режима в воздушной прослойке 5 с обеспечением эффективной теплозащиты здания (см., например, Волокнистые материалы из базальтов Украины. Киев, Техника, 1971 – 76 с., ил).

Различные плотности материала панели 2 по плоскости 34 и тонковолокнистого базальтового материала 35 приводят к изменяющимся скоростным воздействиям перемещающихся сейсмических волн 45 и последующим вибрационным всплескам, разрушающим конструктивные элементы как самой панели 2, так и оборудования в воздушной прослойке 5.

Покрытие внутренней плоскости 34 лицевой 3 поверхности тонковолокнистым базальтовым материалом 35 комплектами 36, включающих попарно 37 и 38 количеством не менее четырех витых пучков, каждый из которых продольно вытянут по синусоиде 39, 40, 41 и 42 по высоте панели 2 приводит к тому, что сейсмические волны 45 перемещаются по направляющим синусоидам и концентрируются в их выступах 43 и впадинах 44. При этом выделяются участки наибольшего сближения попарно 37 и 38, расположенных витых пучков, которые способствуют появлению узлов 46 и 47 способствующие образованию стоячих волн 48 (см., например, Ландау Л.Ю., Лифшиц Е.Н. Теоретическая физика. М.: Наука. ( 1968 – 836 с., ил), которые гасят сейсмические волны 45 и нейтрализуют резонансные всплески по внутренней плоскости 34 лицевой 3 поверхности 2. Следовательно, устраняет вызванные воздействием сейсмических волн 45 интенсивное разрушение элементов панели 2 как в процессе постоянной эксплуатации т.е. в процессе работы вибратора 16, так и при землетрясениях, что обеспечивает нормированные сроки эксплуатации зданий с дополнительной теплоизоляции стен.

Подогретый в воздушной прослойке 5 вентиляционный воздух, перемещаясь по проходному каналу 25 корпуса 24 термоэлектрического генератора 23, охлаждается, а вследствие насыщенности его мелкодисперсной и парообразной атмосферной влагой на «горячих» концах 27 комплекта дифференциальных термопар 26 образуются мелкодисперсные и конденсирующиеся из атмосферного, используемого в качестве вентилируемого воздуха, капельки влаги. В связи с тем что «горячие» концы 27 комплекта дифференциальных термопар 26 укреплены на внутренней поверхности 33 проходного канала 24, то по мере укрупнения коагуляции капельки влаги образуют «пятна» жидкости, переходящие в конденсатную пленку, наличие которой приводит к рассеиванию электрического потенциала, вырабатываемого термоэлектрическим генератором 23. Следовательно, напряжение в виде термоЭДС, подаваемое на вибратор 16, а также на дежурное освещение, снижается. В результате при уменьшении напряжения на приводе (на фиг. не показан) вибратора 16 не осуществляется пульсирующее перемещение вентилируемого воздуха с последующим ухудшением теплозащитных свойств воздушной прослойки 5, следовательно, панель не выполняет в полной мере функцию дополнительной теплоизоляции стен.

При покрытии «горячих» концов 27 комплексом дифференциальных термопар 26 диэлектриком 32 устраняется рассеивание электрического потенциала (см., например, Химическая энциклопедия. – Т.4 – М.: Советская энциклопедия. 1995 – 496 с., ил.) и термоэлектрический генератор 23 осуществляет подачу нормированных значений напряжения как на привод вибратора 16, так и на дежурное освещение здания. Кроме того, покрытие внутренней поверхности 33 проходного канала 25 для вентиляционного воздуха, где укреплены «горячие» концы 27 комплекта дифференциальных термопар 26 оксидом тантала в виде стеклоподобной нанообразной пленки, выполняющей функцию диэлектрика 32, приводит к снижению интенсивности образования мелкодисперсной конденсирующейся влаги, что устраняет коррозионное разрушение материала проходного конца 25, так как отсутствует налипание «пятен» жидкости с их коррозионно-разрушающим действием (см., например, Литвинова В.А., Саврук Е.В. Наноразмерные пленки оксида тантала, полученные ионно-плазменным методом // Сборник трудов региональной научно-практической конференции «Современные проблемы и достижения аграрной науки в животноводстве, растениеводстве и экономике». – Томск: ТСХИ НГАУ. – Вып. 12. – 2010. – С. 299-301).

При установке панели для дополнительной теплоизоляции стен, например, с внешней стороны здания по мере подъема вверх под действием как свободной конвекции, так и вынуждающей силы вибратора вентиляционный воздух нагревается за счет передачи тепла по толщине стены от внутреннего воздуха помещения. Причем температура внутреннего воздуха и соответственно количество передаваемого в воздушную прослойку тепла зависит от типа помещения и изменяется от 15 до 22°С в соответствии со СНиП 23-01-99 Строительная климатология. - М.: Стройиздат, 2008. При этом температура наружного воздуха, особенно в зимнее время, достигает в зависимости от климатической зоны эксплуатации здания минус 30°С и ниже. Выходящий из воздушной прослойки 5 подогретый вентиляционный воздух поступает через входной патрубок 30 в проходной канал 25 для вентиляционного воздуха и далее выбрасывается через выходной патрубок 31 в окружающую среду, т.е. атмосферу (AT).

В результате контакта подогретого вентиляционного воздуха с «горячими» концами 27 комплекта дифференциальных термопар 26, а «холодных» концов 28 с наружным воздухом, т.к. они расположены на внешней поверхности 29 корпуса 24 термоэлектрического генератора 23, на каждом элементе комплекта дифференциальных термопар 26 возникает термоЭДС до 6,96 мВ при использовании в качестве термопар, например, хромель-копеля (см., например, Иванова Г.Н. Теплотехнические измерения и приборы. - М.: Энергоиздат, 1984. 230 с.). Это позволяет получить напряжение на выходе термоэлектрического генератора 23 в пределах 12-36 В (см., например. Технические основы теплотехники. Теплотехнический эксперимент. Справочник /Под общ. ред. В.М.Зорина. - М.: Энергоиздат, 1980. 560 с.), что вполне достаточно для дежурного освещения, например, входа в здание и/или отдельных помещений. Следовательно, использование тепла, передаваемого вентиляционному потоку в воздушной прослойке 5 в процессе теплопотерь стен, как энергетического потенциала для получения напряжения в термоэлектрическом генераторе 23 снижает энергоемкость применения панелей для дополнительной теплоизоляции зданий.

При установке панелей для дополнительной теплоизоляции внутри помещения процесс получения электрической энергии с использованием термоэлектрического генератора 23 осуществляется аналогичным образом, используя тепловой потенциал, образованный температурным перепадом воздуха внутри помещения, и воздуха, перемещающегося в воздушной прослойке 5 и охлажденного внутренней поверхностью наружных стен здания.

При наличии мелкодисперсной и парообразной влаги в атмосферном воздухе при размещении панели для дополнительной теплоизоляции с внешней стороны стены 1 здания данная влагопаровоздушная смесь под действием свободной конвенции поступает в воздушную прослойку 5, где конденсируется ее влажная составляющая и в виде пленки конденсата стекает по наружной поверхности стены 1.

В результате не только резко снижаются теплоизоляционные свойства воздушной прослойки 5 (см., например, стр.181-183, В.Н.Богословский. Строительная теплофизика. - М.: Стройиздат, 1980. 400 с., ил.), но и ухудшаются надежностные эксплуатационные параметры стены 1, за счет ее увлажнения из-за образования застойных зон неподвижного воздуха в воздушных прослойках 5, что наблюдается при ламинарном движении вентилируемого воздуха за счет свободной конвенции.

Для устранения данного явления предлагается компоновка листов 9 панели 2, например, по девять штук, причем расположенный в центре лист 10 имеет возможность горизонтального перемещения на крепежной детали в виде стержня 11 под воздействием вибратора 16 (см., например, стр. 10-27. Вибрационные машины и технологии / С.Ф.Яцун [и др.]. Изд. «Элм», 2006. 408 с.). В этом случае в воздушной прослойке 5 наблюдается пульсирующее перемещение атмосферного воздуха, находящегося между тыльной 4 и лицевой 3 плоскостями листа 10.

В результате образуются волны, поперечно перемещающиеся в воздушных полостях 5 листов 9, и возмущающий поток воздуха, перемещающийся по криволинейным канавкам 17 панели 2. Криволинейные канавки 17 на тыльной плоскости листов 9 выполнены таким образом, что воздушный пограничный слой потока атмосферного воздуха перемещается, например, на одном листе 9 пары 18 по ходу 20 часовой стрелки, а на втором 21 листе 9 данной пары 18 атмосферный воздух перемещается против хода 22 часовой стрелки.

Тогда на границе листа 9 и листа 10 образуется завихрение противоположного направления. Это приводит к микровзрывам, интенсифицирующим теплообмен атмосферного воздуха в воздушной прослойке (см., например, Меркулов А.П. Вихревой эффект и его применение в промышленности. - М.: Машиностроение, 1979. 386 с).

Кроме того, перемещение под действием свободной конвенции по соседним воздушным прослойкам 5 листов 9, которые скомпонованы рядом с листом 10, приводит к турбулизации пограничного слоя воздуха, контактирующего с тыльной 4 плоскостью панели 2 у стены 1, то есть ликвидируются застойные воздушные зоны, а это и ускоряет образование конденсатной пленки на поверхности стены 1.

Как следствие данного теплообмена обеспечивается существенная экономия энергоресурсов, необходимых как для отопления помещений здания, покрытого панелью, скомпонованной из листов с жесткой и гибкой связями тыльной и лицевой поверхностями, так и для поддержания надежной эксплуатации строительных конструкций зданий путем устранения их увлажнения при изменяющемся погодно-климатическом воздействии.

Оригинальность предлагаемого технического решения заключается в том, что покрытие лицевой поверхности панели тонковолокнистым базальтовым материалом повышает эффективность дополнительной теплоизоляции стен, обеспечивая заданный температурный режим в воздушной прослойке в изменяющихся погодно-климатических условиях эксплуатации зданий вследствие аккумулирования тепловой энергии витыми пучками, одновременно поддерживает нормированные сроки эксплуатации как элементов, так и панели в целом при возникновении сейсмических волн возникающих при землетрясениях и работе вибратора в воздушной прослойке за счет расположения покрытия из тонковолокнистого базальтового материала в виде комплектов, где попарно количеством не менее четырех витых пучков, вытянутых по синусоиде с получением выступов и впадин, которые при совмещении являются концентратами перемещающихся сейсмических волн, а участки наибольшего сближения синусоид составляют узлы, способствующие образованию стоячих волн, гасящие сейсмические волны и, соответственно, предотвращающие интенсивное разрушение панелей.

Панель для дополнительной теплоизоляции стен, содержащая листы, образующие лицевую и тыльную плоскости панели с воздушной прослойкой между ними, причем конструктивные элементы панели выполнены из материалов, не поддерживающих горение, имеющих низкую теплопроводность и выбранных из группы «полиуретановый поропласт» для тыльной плоскости, жесткий пенополиуретан с замкнутояичеистой структурой для разграничиелей, пенополистирол, древесно-волокнистые плиты, листы сухой штукатурки для лицевой плоскости, при этом каждый из разграничителей, обеспечивающих сохранение минимальной постоянной толщины воздушной прослойки, а также возможность многократного снятия и установки всей панели или только ее лицевой плоскости, выполнен в виде соединения в единую конструктивную деталь по меньшей мере четырех ячеек, имеющих в центральной части, где сходятся ребра жесткости ячеек, канал для ввода крепежной детали, предназначенной для прикрепления лицевой плоскости к разграничителю, а ребра жесткости каждого из разграничителей утоплены в массу пластичного материала, из которого формируют лист, образующий тыльную плоскость панели, до начала его затвердевания, в результате чего получается прочное соединение каждого разграничителя с тыльной плоскостью панели, выполненной с возможностью прикрепления к стене с использованием крепежных деталей, при этом листы панели конструктивно сгруппированы пакетами по восемь штук с жестким соединением между собой тыльной и лицевой плоскостями и девятым в центре, который имеет возможность горизонтально перемещаться относительно стены, причем крепежная деталь выполнена в виде стержня с двухсторонним резьбовым соединением, кроме того, одним концом стержень жестко соединен с крепежным каналом в центральной части разграничителя, а другим концом соединен с лицевой плоскостью каждого листа панели как с возможностью свободного горизонтального перемещения посредством гибких связей, так и жесткого соединения, при этом внутри панели на лицевой плоскости листа свободного горизонтального перемещения расположен вибратор, кроме того, на тыльной плоскости листов панели, конструктивно сгруппированных по восемь штук, выполнены криволинейные канавки с противоположным направлением касательной на каждой рядом расположенной паре листов панели, при этом на первом листе пары касательная криволинейной канавки имеет направление по ходу часовой стрелки, а на втором листе данной пары панели касательная криволинейной канавки имеет направление против хода часовой стрелки, причем панель снабжена термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для вентиляционного воздуха и комплекта дифференциальных термопар, «горячие» концы которых укреплены внутри проходного канала для вентиляционного воздуха, а «холодные» концы расположены на внешней поверхности, кроме того, «горячие» концы комплекта дифференциальных термопар покрыты диэлектриком из оксида тантала и закреплены на внутренней поверхности проходного канала для вентиляционного воздуха, отличающаяся тем, что внутренняя поверхность лицевой плоскости покрыта тонковолокнистым базальтовым материалом, расположенным в виде комплектов, включающих попарно количеством не менее четырёх витых пучков, каждый из которых продольно вытянут по синусоиде по высоте панели, причем выступы и впадины синусоид при совмещении являются концентратами перемещающихся сейсмических волн, при этом участки наибольшего сближения синусоид составляют узлы, способствующие образованию стоячих волн.



 

Похожие патенты:

Изобретение относится к области строительства. Строительный элемент по первому варианту представляет собой готовое изделие для возведения зданий, имеет форму, основанную на параллелепипеде, и имеет канал и/или нишу для распаячной коробки на основании и/или на боковой грани и/или на продольной боковой грани, причем канал может является поперечным, или продольным, или Г-образным, или Т-образным, или Х-образным и может быть сопряжен с нишей для распаячной коробки и в профильном разрезе может быть выполнен на основе геометрических форм, таких как прямоугольник, треугольник, круг, шестиугольник и т.д.

Изобретение относится к строительству и может быть применено при возведении отапливаемых зданий и сооружений различного назначения. Наружная стеновая панель включает наружный и внутренний бетонные слои и слой утеплителя, которые соединены между собой связями.

Изобретение относится к производству многослойной сборной панели обогрева пола. .

Изобретение относится к средству противопожарной защиты для рамки для входов кабелей и вводов труб. .

Изобретение относится к многослойному строительному элементу, состоящему из центрального слоя и поверхностных слоев, расположенных на двух противоположных основных поверхностях центрального слоя.

Изобретение относится к области строительства, а именно к греющим панелям, которые могут быть использованы в качестве съемной конструкции - опалубки для бетонных работ или подвесных потолков, или как несущая конструкция ограждения здания - стен перекрытия, полов.

Изобретение относится к строительству , а именно к панелям с отопительными приборами, и может быть использовано при строительстве панельных жилых и общественных зданий и сооружений.

Изобретение относится к строительству, в частности к конструкциям плит перекрытия подпольных каналов вентилируемых зданий и может быть использовано для сушильных камер, овинов, хранилищ сельхозпродукции.

Изобретение относится к области строительства, а именно к вентиляционным устройствам в стенах панельных зданий. .

Настоящее изобретение относится к непрерывному способу получения однородных плит на линии, содержащей по меньшей мере два конвейера, находящихся на расстоянии друг от друга.
Изобретение относится к изготовлению изделий, таких как облицовочные панели, плитки, плинтуса и т.п. Способ состоит в том, что сначала приготавливают целлюлозную массу следующим образом в весовом соотношении: в смеситель наливают от 60 до 80% воды, затем добавляют от 2 до 10% гидрофибизатора и перемешивают с водой 3 минуты, затем добавляют от 5 до 15% клея ПВА и перемешивают содержимое 5 минут, затем добавляют от 5 до 25% перемолотой целлюлозы и перемешивают все до однородной густой массы.

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий. Технической задачей предлагаемого изобретения является поддержание нормированных прочностных параметров стен при длительной эксплуатации в условиях вибрационных воздействий от работы вибратора, перемещающего вентилируемый воздух в воздушной прослойке, путем гашения вибрационных усилий в гибкой связи в виде пружины за счёт выполнения гибкой мембраны в канале для ввода крепёжной детали.

Настоящее изобретение относится к модифицированной плите (10) OSB (ориентированно-стружечной плите) с верхней стороной и нижней стороной, при этом верхняя и/или нижняя сторона плиты (1) покрыта по меньшей мере двумя слоями (2, 3) бумаги, при этом первый слой (2) бумаги пропитан по меньшей мере одной смолой и второй слой (3) бумаги является слоем необработанной бумаги.

Группа изобретений относится к области строительства, а именно к конструкционной панели, а также соединительному элементу, и может быть использовано для строительства зданий и сооружений, холодильников, судов из железобетона, а также в других областях техники, требующих применение многослойных армированных конструкционных материалов.

Изобретение относится к строительству наземных малоэтажных зданий и может применяться в возведении стеновых конструкций, перекрытий покрытий и в устройстве скатных крыш.

Изобретение относится к строительным панелям, особенно панелям пола, и способу изготовления таких строительных панелей, которые содержат декоративную поверхность и прозрачный поверхностный слой, который нанесен цифровым способом нанесения покрытия.

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий, предназначенных для уменьшения поступления теплоты из помещения в толщу стены при установке теплоизоляционных панелей внутри помещения или для защиты стен от воздействия неблагоприятных атмосферных процессов при установке панелей с внешней стороны здания.

Изобретение относится к области производства клееных деревянных конструкций. Способ склеивания шпоновых листов в многослойной панели заключается в нанесении слоя клеевого, или адгезивного, или связующего состава.

Изобретение относится к строительству зданий из многослойных панелей и может быть использовано в панельном домостроении с повышенными требованиями к качеству конечного продукта и срокам реализации.

Изобретение относится к области строительства. Энергоэффективная огнестойкая многослойная изолирующая панель состоит из конструктивоформирующего слоя из пеноалюминия закрытоячеистой или открытоячеистой структуры и последующих, нанесенных как минимум с одной стороны объемоформирующего, теплоизолирующего и связующего слоя из жесткого пенополимера закрытоячеистой структуры, огнестойкого пеноминерального жесткого закрытоячеистого слоя в виде стыкуемых в замок пластин, и отделочного слоя из общеприменимых негорючих и слабогорючих строительных материалов.
Наверх