Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из капиллярно-пористых материалов в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов заключается в создании в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксировании двух моментов времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя до и после момента наступления максимума сигнала преобразователя, и расчете коэффициента диффузии, при этом импульсное воздействие осуществляют дозой растворителя, рассчитываемой по формуле: , а моменты времени τ1 и τ2 фиксируют при достижении равных значений сигнала гальванического преобразователя в окрестности значения 0.9 Ер, где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; ρ0 - плотность исследуемого образца в сухом состоянии; Up - равновесная концентрация растворителя в исследуемом образце при контакте с насыщенными парами растворителя при заданной температуре; Ер - значение сигнала гальванического преобразователя при концентрации Up. Техническим результатом является повышение точности контроля и снижение затрат времени и средств на проведение исследований. 1 ил., 1 табл.

 

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии растворителей в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности.

Известен способ определения коэффициента массопроводности и потенциалопроводности массопереноса (А.С. 174005, кл. G01k N 421, 951, 1965), заключающийся в импульсном увлажнении слоя материала и измерении на заданном расстоянии от этого слоя изменения влагосодержания материала во времени. Коэффициент массопроводности вычисляется по установленной зависимости. Недостатком этого способа являются осуществление разрушающего контроля опытного образца при размещении датчиков во внутренних слоях исследуемого тела, невозможность определения коэффициента диффузии других растворителей, кроме воды, большая трудоемкость метода при подготовке образцов, необходимость индивидуальной градуировки датчиков по каждому материалу.

Наиболее близким является способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов (патент РФ на изобретение №2659195, МПК G01N 27/26, 28.06.2018, Бюл. №19), заключающийся в создании в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксировании двух моментов времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя до и после момента наступления максимума сигнала преобразователя, и расчете коэффициента диффузии по установленной зависимости.

Недостатками этого способа являются:

1. Невысокая точность, причиной которой является низкая чувствительность применяемого преобразователя при недостаточной или завышенной дозе вносимого растворителя при импульсном воздействии. При измерении коэффициента диффузии по данному способу существует большая вероятность того, что получаемые в эксперименте кривые изменения сигнала гальванического преобразователя во времени крайне затруднительно использовать для определения искомого коэффициента диффузии, т.к. эти изменения могут находиться на начальном участке статической характеристики гальванического преобразователя (см. статическую характеристику гальванического преобразователя в описании патента РФ 2492457, МПК11 G01N 27/26, G01N 13/00, 10.09.2013, Бюл. №25) в области малых концентраций с нестабильным сигналом (фигура 1, кривая 4) или на конечном участке статической характеристики в области высоких концентраций с крайне низкой чувствительностью преобразователя или в области свободного состояния растворителя в капиллярно-пористом теле, где чувствительность вообще отсутствует (фигура 1, кривая 1).

2. Значительные затраты времени на экспериментальный подбор вносимых импульсных доз растворителя для каждого нового исследуемого материала и нового растворителя, обеспечивающий требуемый уровень выходной характеристики гальванического преобразователя.

Техническая задача предлагаемого технического решения предполагает повышение точности контроля и снижение затрат времени и средств на проведение исследований.

Техническая задача достигается тем, что в способе определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов, имеющих по крайней мере одну плоскую поверхность (например, цементные или гипсовые плиты), включающем создание в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, измерении изменения ЭДС гальванического преобразователя с расположенными электродами преобразователя на этой поверхности по концентрической окружности относительно точки воздействия дозой растворителя, фиксировании двух моментов времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя до и после момента наступления максимума сигнала преобразователя, и расчете искомого коэффициента диффузии.

В отличие от прототипа (патент РФ на изобретение №2659195, МПК G01N 27/26, 28.06.2018, Бюл. №19) импульсное воздействие осуществляют дозой растворителя, рассчитываемой по формуле:

,

а моменты времени τ1 и τ2 фиксируют при достижении равных значений сигнала гальванического преобразователя в окрестности значения 0.9 Ер,

где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия;

ρ0 - плотность исследуемого образца в сухом состоянии;

Up - равновесная концентрация растворителя в исследуемом образце при контакте с насыщенными парами растворителя при заданной температуре;

Ер - ЭДС гальванического преобразователя при концентрации Up.

Сущность предлагаемого способа заключается в следующем: к плоской поверхности изделия с равномерным начальным распределением растворителя (в том числе и нулевым) прижимается зонд с импульсным точечным источником дозы растворителя и расположенными на концентрической окружности относительно точки импульсного воздействия на изделие электродами гальванического преобразователя. После импульсной подачи дозы растворителя в точку на поверхности изделия зонд обеспечивает гидроизоляцию поверхности изделия в зоне действия источника растворителя и прилегающей к ней области контроля распространения диффузанта. После подачи импульса растворителя (мгновенного увлажнения точки на поверхности изделия) фиксируют два момента времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя соответственно до и после момента наступления максимума сигнала преобразователя и рассчитывают коэффициент диффузии растворителя в исследуемом материале. Для повышения точности необходимо, чтобы в моменты времени τ1 и τ2 измеряемое значение ЭДС находилось на участке статической характеристики, характеризующегося стабильным сигналом преобразователя и высокой чувствительностью к изменению концентрации. Исследования показывают, что данный участок статической характеристики соответствует изменению ЭДС преобразователя в диапазоне:

где Ер - сигнал преобразователя, соответствующий переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния (максимальный сигнал на плато насыщения статической характеристики).

Сигнал гальванического преобразователя из диапазона (1) для капиллярно-пористых материалов наблюдается в окрестности значения концентрации растворителя:

На фигуре 1 представлены кривые изменения ЭДС при диффузии этанола в плитах толщиной 50 мм, отформованных из пеногипсобетона, плотностью в сухом состоянии 600 кг/м. куб. ЭДС преобразователя представлена в относительных единицах к максимально возможной ЭДС преобразователя Ер при заданной температуре контроля. С увеличением вносимой дозы этанола увеличивается достигаемое в r0 значение максимума концентрации от кривой 4 к кривой 1. Исследования показывают, что значения моментов времени τ1 и τ2, соответствующие значениям ЭДС преобразователя из диапазона (1), надежно фиксируются (фигура 1, кривые 2, 3) при условии достижения в эксперименте максимума сигнала гальванического датчика из диапазона:

Изменение концентрации растворителя в капиллярно-пористом материале в зоне действия источника описывается функцией:

где U(r,τ) - концентрация растворителя на поверхности сферы радиусом r относительно точки импульсного подвода дозы растворителя к образцу в момент времени τ; D - коэффициент диффузии растворителя; ρ0 - плотность абсолютно сухого исследуемого материала; Q - количество жидкой фазы, подведенной из дозатора к плоской поверхности изделия исследуемого материала; U0 - начальная концентрация растворителя в исследуемом материале в момент времени τ=0.

Коэффициент диффузии связан с моментом времени τmax достижения максимума концентрации растворителя Umax (и ЭДС гальванического преобразователя Emax вследствие монотонности его статической характеристики) на расстоянии r=r0 следующим соотношением:

Примем для простоты U0=0. Учитывая (5), уравнение (4) для заданной точки контроля r=r0 можно преобразовать к виду:

Из (6) с учетом (5) можно получить значение достигаемого максимума Umax при τ=τmax:

Расчетная формула для определения коэффициента диффузии имеет вид (патент РФ на изобретение №2659195, МПК G01N 27/26, 28.06.2018, Бюл. №19):

Среднеквадратическая оценка 3D относительной погрешности определения искомого коэффициента диффузии при этом имеет вид:

где δr0=Δr0/r0 - относительная погрешность определения координаты расчетного сечения; δτ1=Δτ/τ1 и δτ2=Δτ/τ2 - относительная погрешность определения моментов времени соответственно τ1 и τ2 (при условии равенства абсолютных погрешностей определения моментов времени Δτ2≈Δτ1≈Δτ); - относительная погрешность измерения разности (τ21).

Анализ (9) показывает, что при прочих равных условиях доминантой является погрешность измерения разности

т.к. числитель выражения (абсолютная погрешность измерения момента времени) является константой. Поэтому для повышения точности определения искомого коэффициента диффузии необходимо использовать максимальное значение разности (τ21). Это достигается предпочтением в использовании кривой 2 (фигура 1) по сравнению с кривой 3. В этом случае разность (τ21) оказывается выше, следовательно, и точность определения коэффициента диффузии выше. При этом кривая 2 соответствует достижению Emax верхней границы диапазона (3), а для определения моментов времени τ1 и τ2 используются два одинаковых значения ЭДС преобразователя в окрестности верхней границы диапазона (1).

Таким образом, учитывая необходимость получения максимума концентрации Umax в окрестности значения (2), с учетом целесообразности использования верхних границ диапазонов (1) и (3), из (7) после вычисления констант получим выражение для оптимальной дозы импульсного воздействия:

В таблице 1 представлены результаты 20 - кратных измерений коэффициента диффузии этанола в плитах, отформованных из пеногипсобетона, толщиной 50 мм, плотностью в сухом состоянии 600 кг/м. куб. при расстоянии r0=4,0⋅10-3 м от электродов гальванического преобразователя до источника дозы растворителя. Равновесная концентрация растворителя Up при контакте с насыщенными парами этанола в газовой фазе составляет величину порядка 0.06 кг этанола на кг сухого материала. Рассчитанное по формуле (11) значение оптимальной дозы растворителя составило величину 8.5×10-6 кг.

Погрешность результата измерения определялась как половина доверительного интервала следующим образом:

где - среднеквадратическая погрешность отдельного измерения;

- математическое ожидание случайной величины;

tα,n - коэффициент Стьюдента при доверительной вероятности α и количестве измерений n.

На основании данных таблицы 1 рассчитана погрешность результата измерения коэффициента диффузии этанола, которая составила 6.2%≈6%.

Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов, заключающийся в создании в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксировании двух моментов времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя до и после момента наступления максимума сигнала преобразователя, и расчете коэффициента диффузии, отличающийся тем, что импульсное воздействие осуществляют дозой растворителя, рассчитываемой по формуле:

,

а моменты времени τ1 и τ2 фиксируют при достижении равных значений сигнала гальванического преобразователя в окрестности значения 0.9 Ер,

где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; ρ0 - плотность исследуемого образца в сухом состоянии; Up - равновесная концентрация растворителя в исследуемом образце при контакте с насыщенными парами растворителя при заданной температуре; Ер - значение сигнала гальванического преобразователя при концентрации Up.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии растворителей в строительных материалах и конструкциях.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и определении коэффициентов диффузии растворителей в ортотропных капиллярно-пористых материалах в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к способу и аппарату для оценивания рассеивающих свойств порошка. Способ оценивания рассеивающих свойств порошка включает следующие операции: порошок, подлежащий оцениванию, сбрасывают на поверхность жидкости, находящейся в емкости, создавая в емкости рассеяние порошка в форме пыли, и измеряют концентрацию пыли в воздухе внутри емкости посредством пылемера.

Устройство содержит корпус, защитный кожух, чувствительный элемент, устройство для обработки и передачи информации. Корпус выполнен цилиндрическим с продольным прямоугольным вырезом и с коническим наконечником на одном из его торцов, а с другой стороны содержит последовательно размещенные плоский круглый упор, выполненный с возможностью перемещения вдоль корпуса, устройство обработки и передачи информации и рукоятку для ввода в материал.

Изобретение относится к методам аналитического контроля и может быть использовано для определения количественного содержания высокодисперсного кремнезема в шликере на основе кварцевого стекла.

Изобретение может быть использовано в датчиках резистивного типа для обнаружения твердых частиц в потоке отработавших газов. Способ обнаружения твердых частиц в потоке отработавших газов заключается в том, что регулируют работу двигателя в соответствии с распределением твердых частиц на множестве пар электродов, расположенных внутри общего корпуса датчика твердых частиц.

Пылемер может быть использован для управления вентиляционным оборудованием, а также для определения общей доли респирабельной фракции пыли, вызывающей профессиональные легочные заболевания.

Изобретение относится к океанологическим исследованиям и предназначено для проведения исследований планктона путем фиксации исследуемого объема импульсами когерентного оптического излучения.

Изобретение может быть использовано в двигателях внутреннего сгорания. Система обнаружения твердых частиц в выпускном патрубке двигателя содержит первую, наружную трубу (210) и вторую, внутреннюю трубу (220).

Изобретение относится к области измерительной техники и касается модуля лазерного датчика для определения размера частиц для определения качества воздуха. Модуль содержит лазер, детектор, электрический возбудитель и блок оценки.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии растворителей в строительных материалах и конструкциях.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и определении коэффициентов диффузии растворителей в ортотропных капиллярно-пористых материалах в бумажной, легкой, строительной и других отраслях промышленности.

Группа изобретений относится к области биотехнологии. Предложен способ анализа поведения веществ in vitro, устройство для анализа поведения молекул, а также средство для испытания вещества in vitro.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных и газовых залежей, при количественной интерпретации геофизических исследований скважин (ГИС), эксплуатации нефтяных месторождений.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к области изучения свойств смачивания. Для определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы получают трехмерное изображение внутренней структуры образца.

Изобретение относится к наглядным пособиям для изучения физики твердого тела и ее приложений к процессу коррозии. Электрод помещают в водный раствор электролита.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к области измерительной техники и может быть использовано для измерения содержания жиров в жидкости. В настоящем изобретении предлагается способ определения присутствия жиров в телесной жидкости путем фотографирования капли телесной жидкости и расчета изменения площади контакта капли телесной жидкости и коэффициента диффузии площади контакта.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из капиллярно-пористых материалов в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов заключается в создании в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксировании двух моментов времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя до и после момента наступления максимума сигнала преобразователя, и расчете коэффициента диффузии, при этом импульсное воздействие осуществляют дозой растворителя, рассчитываемой по формуле:, а моменты времени τ1 и τ2 фиксируют при достижении равных значений сигнала гальванического преобразователя в окрестности значения 0.9 Ер, где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; ρ0 - плотность исследуемого образца в сухом состоянии; Up - равновесная концентрация растворителя в исследуемом образце при контакте с насыщенными парами растворителя при заданной температуре; Ер - значение сигнала гальванического преобразователя при концентрации Up. Техническим результатом является повышение точности контроля и снижение затрат времени и средств на проведение исследований. 1 ил., 1 табл.

Наверх