Способ повышения точности позиционирования подвижных объектов

Изобретение относится к способам навигации и может быть использовано для повышения точности определения местоположения подвижных объектов, движущихся по локсодромическим траекториям. Способ позиционирования подвижных объектов заключается в том, что до начала движения подвижного объекта (ПО) на основании картографической информации известная траектория движения ПО разбивается на участки, аппроксимируемые с заданной точностью локсодромическими отрезками, на которых существует функциональная связь между геоцентрическими координатами, позволяющая выразить две координаты через третью. При движении ПО по локсодромической траектории измеренные навигационной системой текущие геоцентрические координаты ПО проецируются на истинную локсодромическую траекторию движения ПО. При этом координаты точки проекции определяются с учетом связи между геоцентрическими координатами на локсодромии и вычисления для одной из координат в каждый момент времени измерений нелинейной временной рекурсии, полученной в результате линеаризации нелинейного трансцендентного уравнения, полученного из условия минимума длины ортодромического отрезка между точкой с измеренными координатами ПО и точкой проекции на истинную локсодромическую траекторию его движения, координаты которой принимаются за истинные текущие геоцентрические координаты ПО. Технический результат – повышение точности определения текущих координат (позиционирования) подвижных объектов, движущихся по локсодромическим траекториям. 1 ил.

 

Изобретение относится к способам навигации и может быть использовано для повышения точности определения местоположения подвижных объектов, движущихся по локсодромическим траекториям.

Известны способы позиционирования подвижных объектов на основе приема спутниковых навигационных сигналов [ГЛОНАСС. Принципы построения и функционирования / Под ред. А.И. Перова, В.Н. Харисова. 3-е изд., перераб. М.: Радиотехника, 2005. 688 с.], инерциальных измерений [Андреев В.Д. Теория инерциальной навигации: автономные системы / Изд-во "Наука", Глав. ред. физико-математической лит-ры, 1966. 579 с.] и др. Недостатком данных способов является невозможность уменьшения ошибок определения координат подвижных объектов, обусловленных инструментальными и методическими погрешностями навигационных систем и их чувствительных элементов.

Техническим результатом является повышение точности определения текущих координат (позиционирования) подвижных объектов, движущихся по локсодромическим траекториям.

Поставленная задача возникает при необходимости высокоточного позиционирования различных подвижных объектов (ПО) - морских судов, автомобилей, локомотивов и др., движущихся по локсодромическим траекториям.

Технический результат достигается благодаря тому, что до начала движения ПО на основании картографической информации известная траектория движения ПО разбивается на участки, аппроксимируемые с заданной точностью локсодромическими отрезками, на которых существует функциональная связь между геоцентрическими координатами, позволяющая выразить две координаты через третью, а при движении ПО по локсодромической траектории измеренные навигационной системой текущие геоцентрические координаты ПО проецируются на истинную локсодромическую траекторию движения ПО, при этом координаты точки проекции определяются с учетом связи между геоцентрическими координатами на локсодромии и вычисления для одной из координат в каждый момент времени измерений нелинейной временной рекурсии, полученной в результате линеаризации нелинейного трансцендентного уравнения, полученного из условия минимума длины ортодромического отрезка между точкой с измеренными координатами ПО и точкой проекции на истинную локсодромическую траекторию его движения, координаты которой принимаются за истинные текущие геоцентрические координаты ПО.

Суть предложенного способа состоит в следующем. При решении задачи определения текущих координат ПО, движущегося по известной траектории, по зашумленным показаниям навигационной системы (НС) любого типа, точность позиционирования ПО можно существенно повысить путем точного трехмерного проецирования его координат, определенных по зашумленным измерениям НС, на истинную пространственную траекторию движения ПО. С этой целью на основании картографической информации (например, электронной карты) известная траектория движения ПО разбивается до начала движения на участки, аппроксимируемые с заданной точностью отрезками траектории, имеющими постоянный азимутальный угол А (т.н. локсодромическими отрезками).

Это позволяет решить задачу трехмерного проецирования координат ПО как задачу определения геоцентрических координат ξ, η, ζ точки пересечения D кратчайшей линии (ортодромии), проведенной на сфере Земли из точки текущего местоположения ПО С с координатами ξ1, η1, ζ1, определенной по зашумленным измерениям НС, с локсодромическим траекторным отрезком FG, аппроксимирующим текущий интервал траектории его движения (фиг. 1).

Зависимость длины ортодромии CD (точнее, косинуса длины ортодромии CD) от геоцентрических координат определяется из выражения скалярного произведения векторов ОС ξ1, η1, ζ1 и OD ξ, η, ζ:

где r - радиус Земли.

Данное выражение позволяет решить задачу проецирования координат ПО, определенных по зашумленным измерениям НС, как задачу минимизации длины дуги CD за счет выбора соответствующих геоцентрических координат. При решении используем известную связь между геоцентрическими координатами на локсодромической траектории, позволяющую выразить две координаты ξ, ζ через третью координату η [Соколов С.В. Синтез аналитических моделей пространственных траекторий и их применение для решения задач спутниковой навигации // Прикладная физика и математика, Т. 1. вып. 2. 2013. С. 3-12]:

где ξ0, ζ0, η0 - геоцентрические координаты точки начала локсодромической траектории, А - азимутальный угол.

Для определения значения переменной η*, обеспечивающего минимальную длину ортодромического отрезка CD, продифференцируем cosCD по η и приравняем полученное выражение к нулю:

откуда имеем уравнение:

Аналитическое решение трансцендентного уравнения (4) не представляется возможным, в связи с чем линеаризуем левую часть (4) в окрестности некоторого значения η*, получая в результате линейное уравнение:

где

Решая (5) для к-го момента времени и выбирая в качестве точки линеаризации η* значение данной координаты, полученное на предыдущем, (к-1)-м, временном шаге (что при существующих частотах съема навигационных измерений (≥100 Гц) даже для скоростных объектов обеспечивает весьма малые значения Δη), имеем следующее нелинейное рекуррентное выражение для определения текущих координат объекта в геоцентрической системе координат по зашумленным измерениям:

Остальные координаты ξk, ζk точки D вычисляются по соотношениям (2), определяя тем самым координаты ПО на его истинной траектории движения, максимально близкие к координатам, определенным по зашумленным измерениям навигационной системы.

Предложенный способ позиционирования подвижных объектов позволяет существенно повысить точность определения текущих координат ПО за счет исключения ошибок измерения, приводящих к отклонению от истинной траектории движения ПО (т.е. приводящих к позиционированию ПО вне истинной траектории).

Способ позиционирования подвижных объектов, заключающийся в том, что до начала движения подвижного объекта (ПО) на основании картографической информации известная траектория движения ПО разбивается на участки, аппроксимируемые с заданной точностью локсодромическими отрезками, на которых существует функциональная связь между геоцентрическими координатами, позволяющая выразить две координаты через третью, а при движении ПО по локсодромической траектории измеренные навигационной системой текущие геоцентрические координаты ПО проецируются на истинную локсодромическую траекторию движения ПО, при этом координаты точки проекции определяются с учетом связи между геоцентрическими координатами на локсодромии и вычисления для одной из координат в каждый момент времени измерений нелинейной временной рекурсии, полученной в результате линеаризации нелинейного трансцендентного уравнения, полученного из условия минимума длины ортодромического отрезка между точкой с измеренными координатами ПО и точкой проекции на истинную локсодромическую траекторию его движения, координаты которой принимаются за истинные текущие геоцентрические координаты ПО.



 

Похожие патенты:

Предложенная группа изобретений относится к средствам для оценки положения транспортных средств. Устройство оценки положения транспортного средства содержит: блок выявления положений целевого объекта; блок выявления величины перемещения; блок хранения положений целевого объекта; блок получения картографической информации; блок оценки положения транспортного средства, выполненный с возможностью, посредством сопоставления данных положений целевого объекта, хранимых в блоке хранения положений целевого объекта, с положениями целевого объекта в картографической информации, оценивать положение транспортного средства у транспортного средства; и блок выявления точки поворота, выполненный с возможностью выявлять точку поворота транспортного средства по величинам перемещений транспортного средства.

Группа изобретений относится к устройству и способу оценки собственной позиции. Устройство оценки собственной позиции осуществляет способ, в котором обнаруживают относительную позицию цели, присутствующей около транспортного средства, и транспортного средства.

Настоящее изобретение относится к устройству оценки положения транспортного средства и способу оценки положения транспортного средства. В данном устройстве оценки положения транспортного средства определяются положения ориентира на периферии транспортного средства, и наряду с этим определяются величины перемещений транспортного средства, и положения ориентира сохраняются в качестве данных о положении ориентира на основе величин перемещений.

Группа изобретений относится к области оценки собственной позиции. Оценка собственной позиции осуществляется по способу устройством, которое обнаруживает позиции ориентиров, присутствующих вокруг транспортного средства, и накапливает обнаруженные позиции ориентиров в качестве данных на основе величины перемещения транспортного средства.

Группа изобретений относится к области оценки собственного положения. Оценка собственного положения осуществляется по способу устройством, которое обнаруживает положение ориентира для ориентира, присутствующего в окружении подвижного объекта, обнаруживает величину перемещения подвижного объекта и накапливает положения ориентиров, каждый из которых получается посредством перемещения обнаруженного положения ориентира на величину перемещения.

Настоящее изобретение относится к устройствам определения позиции транспортного средства. Устройство определения позиции транспортного средства включает в себя устройство 5 хранения данных, которое сохраняет картографическую информацию 51, содержащую позиции наземных объектов, расположенных вблизи дорог, модуль 61 оценки позиции транспортного средства, который оценивает текущую позицию транспортного средства P в картографической информации 51, камеру 1, которая захватывает изображение зоны вокруг транспортного средства P, модуль 64 идентификации зон, который идентифицирует зону Q, в которой расположен наземный объект, который должен служить в качестве цели распознавания, причем зона Q идентифицируется в картографической информации 51 на основе предварительно определенного состояния, модуль 65 распознавания наземных объектов, который распознает на изображении наземный объект в зоне Q, модуль 66 вычисления относительной позиции, который вычисляет в картографической информации 51 относительную позицию транспортного средства P относительно позиции распознанного наземного объекта, и модуль 67 коррекции позиции, который корректирует текущую позицию транспортного средства P на основе относительной позиции, вычисленной посредством модуля 66 вычисления относительной позиции.

Изобретение относится к области навигации летательных аппаратов (ЛА), использующей на расчетном участке трассы радиолокационные измерения карты высот местности для определения уходов и коррекции данных инерциальной навигационной системы (ИНС) о местоположении ЛА.

Изобретение относится к области навигационного приборостроения и может найти применение в системах обнаружения цели. Технический результат – повышение точности.

Изобретение относится к навигационным системам для прокладки маршрута к по меньшей мере одному объекту инфраструктуры. Технический результат заключается в обеспечении возможности нахождения объектов инфраструктуры, не находящихся на пути следования маршрута.

Изобретение относится к области навигации движущихся объектов (ДО) и может быть использовано при построении различных систем локации, предназначенных для уточнения местоположения любых ДО и управления их движением.
Наверх