Способ изготовления ленты из магнитно-мягкого аморфного сплава с увеличенной магнитной индукцией на основе системы fe-ni-si-b

Изобретение относится к области металлургии, а именно к способам получения магнитно-мягких аморфных сплавов на основе системы Fe-Ni-Si-В, и может быть использовано при изготовлении сердечников для импульсных и широкополосных трансформаторов, трансформаторов вторичных источников питания, дросселей фильтров и резонансных контуров. Способ получения ленты из магнитно-мягкого аморфного сплава Fe-Ni-Si-B-Nb- включает приготовление расплава сплава Fe-Ni-Si-B, охлаждение на вращающемся закалочном металлическом диске и термическую обработку. В расплав добавляют 15-30% шихты в виде аморфной ленты сплава Fe-Si-B-Nb-Cu, а термическую обработку ведут по режиму, включающему нагрев до 450-500°С, выдержку 15-60 мин, охлаждение на воздухе и затем нагрев до 520-540°С, выдержку 5-15 мин, охлаждение на воздухе. Получают высокие значения магнитной индукции и низкий уровень коэрцитивной силы. 2 з.п. ф-лы, 1 пр.

 

Изобретение относится к области металлургии, конкретно к способам получения магнитно-мягких аморфных сплавов на основе системы Fe-Ni-Si-В, и может быть использовано при изготовлении магнитопроводов (сердечников) в импульсных и широкополосных трансформаторах, трансформаторов вторичных источников питания, дросселей фильтров и резонансных контуров.

Магнитная индукция в магнитно-мягких сплавах определяется соотношением количества ферромагнитных элементов (Fe и Ni) и аморфизирующих добавок: Si, В, Р, С. Наибольшей величиной магнитной индукции среди этих сплавов на основе системы Fe-Ni-Si-B обладает сплав 2 НСР. При величине индукции 1,5 Тл величина коэрцитивной силы сплава составляет 10-15 А/м.

Известен способ получения аморфной ленты из сплава типа 2 НСР с увеличенной магнитной индукцией, который включает в себя:

а) изготовление расплава, состоящего из 2,0% Ni, 6,0% Si, 3,0% В, 0,5% Nb, 88,5% Fe (по массе), причем никель, кремний, ниобий и частично железо вводят в расплав поэлементно, а бор и оставшуюся часть железа - в виде ферробора соответствующей концентрации;

б) приготовление ленты путем эжектирования расплава под давлением через сопло на вращающийся металлический диск;

в) термомагнитную обработку в поперечном магнитном поле с приложением упругих напряжений в направлении намагничивания.

При реализации такой технологии магнитная индукция сплава достигает величины 1,65-1,70 Тл. Однако, при этом с увеличением магнитной индукции одновременно происходит рост коэрцитивной силы до 50 А/м, что ухудшает магнитно-мягкие свойства сплава. ["Сталь", №6, С. 69-72. 2009].

Наиболее близким к предлагаемому способу является способ получения ленты из сплава типа 2 НСР с высокой магнитной индукцией, который включает:

а) приготовление расплава, состоящего из 1,6% Ni, 3,0% В, 5,4% Si, 0,8% Nb, 0,3% Cu и 88,9% Fe (по массе), причем никель, кремний, ниобий, медь и частично железо вводят в расплав поэлементно, а бор и оставшуюся часть железа - в виде ферробора соответствующей концентрации;

б) приготовление ленты путем эжектирования расплава под давлением через сопло на вращающийся металлический диск;

в) термомагнитную обработку ленты в поперечном магнитном поле с приложением упругих напряжений в направлении намагничивания ["Сталь" №3, С. 90-91. 2015 - прототип].

Такая технология позволяет увеличить значение магнитной индукции до значений В=1,65-1,8 Тл, но только при использовании схемы термомагнитной обработки, при которой охлаждение происходило при одновременном воздействии магнитного поля и упругой нагрузки и при этом величина коэрцитивной сохраняется на низком уровне и составляет 10-15 А/м.

Недостатком прототипа является технологическая сложность проведения термообработки одновременно в магнитном поле и при приложении внешних нагрузок определенной величины.

Задача, на решение которой направлено настоящее изобретение является получение высоких значений магнитной индукции сочетающихся с низкими значениями коэрцитивной силы.

Техническим результатом изобретения является получение высоких значений магнитной индукции и низким уровнем коэрцитивной силы с упрощением способа изготовления.

Указанный технический результат достигается тем, что в способе изготовления ленты из магнитно-мягкого аморфного сплава Fe-Ni-Si-B-Nb-Cu с увеличенной магнитной индукцией, включающем приготовление расплава сплава Fe-Ni-Si-B, охлаждение на вращающемся закалочном металлическом диске и термическую обработку, согласно изобретению в расплав добавляют 15-30% шихты в виде аморфной ленты сплава Fe-Si-B-Nb-Cu, а термическую обработку ведут по режиму: нагрев до 450-500°С, выдержка 15-60 минут, охлаждение на воздухе, затем нагрев до 520-540°С, выдержка 5-15 минут, охлаждение на воздух. Получают ленту из сплава, содержащего мас. %: 1,4-1,7 никеля, 5,3-5,7 кремния, 2,6-3,0 бора, 0,5-1,1 ниобия, 0,2-0,5 меди, остальное железо. Сплав Fe-Ni-Si-B содержит, мас. %: 1,3-2,0 никеля, 2,8-3,2 бора, 4,9-5,5 кремния, остальное железо, а сплав Fe-Si-B-Nb-Cu содержит мас. %: 6.8-7,9 кремния, 1,2-1,9 бора, 3,9-5,6 ниобия, 0,8-1,3 меди, остальное железо.

Экспериментально установлено, что добавка в расплав на основе системы Fe-Ni-Si-B состава (мас. %) 1,3-2,0 никеля, 4,9-5,5 кремния, 2,8-3,2 бора, остальное железо 15-30% шихты сплава Fe-Si-B-Nb-Cu состава (мас. %) 6,8-7,9 кремния, 1,2-1,9 бора, 3,9-5,6 ниобия, 0,8-1,3 меди, остальное железо в виде аморфной ленты приводит к увеличению магнитной индукции в аморфной ленте, полученной из этого расплава до 1,8 Тл. При этом коэрцитивная сила составляет 10-15 А/м. При введении в расплав менее 15% шихты в виде аморфной ленты индукция возрастает с одновременным ростом коэрцитивной силы, а при введении в расплав более 30% шихты наблюдается снижение магнитной индукции до 1,35-1,40 Тл.

При проведении первой термообработки выдержка менее 15 минут не ведет к увеличению индукции, а при выдержке больше 60 минут достигнутое значение высокой индукции далее не растет. При проведении второй термообработки выдержка менее пяти минут не ведет к росту индукции, а при выдержке 15 минут начинается процесс кристаллизации с мгновенным ростом коэрцитивной силы до значений Н(с)=400-600 А/м и снижением индукции до значений 1,35-1,40 Тл.

Пример.

Сплав состава l,6%Ni+5,44%Si+2,78%B+0,78%Nb+0,28%Cu, остальное Fe выплавлялся при смешении в расплаве 80% сплава Fe-Ni-Si-B состава l,6%Ni+4,98%Si+2,85%В, остальное Fe с 20% шихты из сплава Fe-Si-B-Nb-Cu в виде аморфной ленты состава 6,8%Si+l,5%B+3,9%Nb+l,2%Cu, остальное Fe. Полученная аморфная лента проходила двухступенчатую термообработку по режиму: нагрев до 500°С, выдержка 20 минут, охлаждение на воздухе, затем нагрев до 530°С, выдержка 7 минут, охлаждение на воздухе. Магнитные свойства, измеренные на тороидальных образцах по стандартной методике, показали значение магнитной индукции 1,78 Тл и коэрцитивной силы 12 А/м.

Таким образом, высокие значения магнитной индукции с низкими значениями коэрцитивной силы получены без применения термомагнитной обработки совместно с упругими нагрузками определенной величины, как в прототипе, а по упрощенной схеме, заявленной в данном способе.

1. Способ получения ленты из магнитно-мягкого аморфного сплава Fe-Ni-Si-B-Nb-Cu с увеличенной магнитной индукцией, включающий приготовление расплава сплава Fe-Ni-Si-B, охлаждение на вращающемся закалочном металлическом диске с получением ленты и термическую обработку ленты, отличающийся тем, что в расплав добавляют 15-30% шихты в виде аморфной ленты сплава Fe-Si-B-Nb-Cu, а термическую обработку ведут по режиму, включающему нагрев до 450-500°С, выдержку 15-60 минут, охлаждение на воздухе, затем нагрев до 520-540°С, выдержку 5-15 минут и охлаждение на воздухе.

2. Способ по п. 1, отличающийся тем, что получают ленту из сплава, содержащего мас.%: 1,4-1,7 никеля, 5,3-5,7 кремния, 2,6-3,0 бора, 0,5-1,1 ниобия, 0,2-0,5 меди, железо - остальное.

3. Способ по п. 1 или 2, отличающийся тем, что приготавливают расплав сплава Fe-Ni-Si-B, содержащего, мас.%: 1,3-2,0 никеля, 2,8-3,2 бора, 4,9-5,5 кремния, железо – остальное, и в расплав добавляют шихту в виде аморфной ленты сплава Fe-Si-B-Nb-Cu, содержащего, мас.%: 6.8-7,9 кремния, 1,2-1,9 бора, 3,9-5,6 ниобия, 0,8-1,3 меди, железо - остальное.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно, к ленте из ферромагнитного аморфного сплава для применения в сердечниках трансформаторов, ротационных машинах, электрических дросселях, магнитных датчиках и устройствах с генерацией импульсной мощности.

Изобретение относится к электротехнике, к магнитопроводам электротехнических трансформаторов, имеющих многослойную структуру из аморфной или нанокристаллической ленты, и к способам их изготовления.

Изобретение относится к области электротехники, а именно к магнитопроводам силовых трансформаторов, материалом выполнения которых является аморфная электротехническая сталь или нанокристаллический магнитомягкий сплав.

Изобретение относится к области электротехники, а именно к магнитопроводам силовых трансформаторов, материалом выполнения которых является аморфная электротехническая сталь.

Изобретение относится к изготовлению трансформаторов. .

Изобретение относится к электротехнике, к трехфазным трансформаторам и их производству. .

Изобретение относится к области электротехники, в частности к магнитопроводам трансформаторов и реакторов различного назначения. .

Изобретение относится к области электротехники, в частности к магнитопроводам насыщающихся реакторов и импульсных трансформаторов. .

Изобретение относится к металлургии, а именно к магнитным сплавам на основе железа, предназначенным для изготовления магнитопроводов трансформаторов и других магнитных элементов радиотехники и электротехники.

Изобретение относится к области электротехники, а именно, к магнитопроводам трансформаторов, дросселей насыщения и других магнитных элементов. .

Изобретение относится к технологии изготовления поликристаллических магнитотвердых анизотропных ферритов и может использоваться при изготовлении гексаферритов бария и гексаферритов стронция с высокой степенью магнитной текстуры.

Изобретение относится к порошковой металлургии, в частности к композициям для изготовления магнитотвердых ферритов. Может использоваться в процессах очистки сточных вод, в магнитных фильтрах, в качестве размольных и перемешивающих тел в электромагнитных аппаратах.

Изобретение относится к области создания композиционных материалов, в частности к получению магнитоактивных эластичных композитов (полимеров), предназначенных для изготовления управляемых магнитным полем элементов цементной смеси, а также к методам крепления газо-нефте-вододобывающих скважин при цементировании обсадных колонн на разных этапах строительства и эксплуатации скважины, при необходимости обеспечивая предельно низкие значения флюидопроницаемости тампонирующего материала за эксплуатационной колонной.

Группа изобретений относится к изготовлению спеченного магнита R-Fe-B. Магнит состоит из 12-17 ат.% R, 0,1-3 ат.% M1, 0,05-0,5 ат.% M2, от 4,8+2×m до 5,9+2×m ат.% B и остальное – Fe.

Изобретение относится к электротехнике. Технический результат состоит в повышении диапазона детектирования и стабильности частоты.

Изобретение относится к способу производства редкоземельного магнита, в частности к редкоземельному магниту, содержащему Sm, Fe и N, а также к устройству для его производства.

Изобретение относится к регулируемым элементам индуктивности. Технический результат – создание устройства и способа, обеспечивающих возможность быстрой настройки регулируемого элемента индуктивности без увеличения его размеров, веса и потребляемой мощности.

Изобретение относится к области металлургии, в частности к аморфным и нанокристаллическим магнитомягким сплавам на основе железа, получаемым в виде тонкой ленты литьем расплава на поверхность охлаждающего тела и его скоростной закалкой и используемым, в основном, для изготовления из ленты сердечников трансформаторов и дросселей.
Изобретение относится к текстильным материалам и может быть использовано для изготовления магнитных систем в различных областях техники. Ферромагнитная фильтровальная сетка, выполненная способом ткачества переплетением полимерных нитей, содержащая связующее полимерное вещество и порошок высококоэрцитивного ферромагнитного материала, одинарная или многослойная.

Изобретение относится к технологии выращивания кристаллов Co3Sn2S2, которые могут быть использованы в области экспериментальной физики как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля.

Изобретение относится к нанокристаллическому сплаву на основе железа и способу его формирования и может быть использовано в трансформаторе, индукторе, входящем в состав двигателя магнитном сердечнике.
Наверх