Устройство для обеззараживания жидкостей ультрафиолетовым излучением

Изобретение относится к устройству для обеззараживания жидкостей ультрафиолетовым излучением. Устройство имеет герметичный цилиндрический корпус-реактор (1), внутри которого вдоль его оси расположена выполненная в виде прямой трубки УФ-лампа (2), помещенная в герметичный защитный кварцевый чехол (3). Чехол (3) имеет открытый выход через торец корпуса-реактора (1) для подключения электропитания лампы (2). Корпус-реактор (1) имеет входной (4) и выходной (5) патрубки, расположенные у его торцов. Внутри корпуса-реактора (1) между входным (4) и выходным (5) патрубками установлены один или несколько рассекателей потока (6) в виде поперечных оси лампы перегородок, имеющих несколько кольцевых зон равной ширины с общим центром на оси лампы (2) и равномерно расположенными по эти зонам отверстиями (7) для прохода жидкости. При этом ближайшая к общему центру зона образована промежутком между защитным кожухом (3) лампы и краем перегородки (6) и полностью открыта для прохода жидкости, а суммарная площадь проходных отверстий (7) каждой зоны не превышает этого показателя для зоны, ближайшей к ней со стороны общего центра, с возможностью создания и поддержания рассекателями распределения скорости потока жидкости таким образом, чтобы она была максимальна у поверхности защитного кожуха лампы и постепенно убывала при удалении от него. Технический результат заключается в увеличении равномерности облучения УФ-излучением всего объема обрабатываемой жидкости и, как следствие, увеличение степени обеззараживания и производительности устройства. 4 ил.

 

Изобретение относится к области обеззараживания жидкостей, в том числе воды, ультрафиолетовым (УФ) излучением. Устройство для обеззараживания жидкостей ультрафиолетовым излучением имеет герметичный цилиндрический корпус-реактор 1, внутри которого вдоль его оси расположена выполненная в виде прямой трубки УФ-лампа 2, помещенная в герметичный защитный кварцевый чехол 3, имеющий хотя бы с одной стороны открытый выход через торец корпуса реактора 1 для подключения электропитания лампы 2. Корпус-реактор имеет входной 4 и выходной 5 патрубки, расположенные у его торцов. Внутри корпуса-реактора 1 между входным 4 и выходным 5 патрубками установлены один или несколько рассекателей потока 6. Поток обрабатываемой жидкости входит через входной патрубок 4 в корпус-реактор 1 и движется вдоль его оси к выходному патрубку 5, при этом рассекатели 6 создают и поддерживают распределение продольной скорости потока такое, что она максимальна у поверхности защитного кожуха 3 и постепенно убывает при удалении от оси лампы. Зависимость продольной скорости потока от расстояния от оси лампы будет оптимальной, если ее вид будет приближен к виду зависимости от этого расстояния средней по длине лампы интенсивности УФ-облучения. Технический результат заключается в увеличении равномерности облучения УФ-излучением всего объема обрабатываемой жидкости и, как следствие, увеличение степени обеззараживания и/или производительности устройства. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области обеззараживания жидкостей, в том числе воды, с помощью обработки ультрафиолетовым (УФ) излучением с длиной волны бактерицидного диапазона.

Устройство для обеззараживания жидкостей ультрафиолетовым излучением имеет герметичный цилиндрический корпус-реактор, внутри которого вдоль его оси расположена выполненная в виде прямой трубки УФ-лампа, помещенная в герметичный защитный кварцевый чехол, имеющий хотя бы с одной стороны открытый выход через торец корпуса-реактора для подключения электропитания лампы. Корпус-реактор имеет входной и выходной патрубки, расположенные у его торцов. Внутри корпуса-реактора между входным и выходным патрубками установлены один или несколько рассекателей потока. Поток обрабатываемой жидкости входит через входной патрубок в корпус-реактор и движется вдоль его оси к выходному патрубку, при этом рассекатели создают и поддерживают распределение скорости потока такое, что она максимальна у поверхности защитного кожуха и постепенно убывает при удалении от оси лампы. Зависимость продольной скорости потока от расстояния от оси лампы будет оптимальной, если ее вид будет приближен к виду зависимости от этого расстояния средней по длине лампы интенсивности УФ-облучения.

Из существующего уровня техники известно устройство для обеззараживания жидкостей, в частности воды, воздействием УФ-излучения, состоящее из одной или нескольких ультрафиолетовых ламп, выполненных в виде длинных трубок с электродами на концах и помещенных в защитные кварцевые чехлы, которые находится внутри герметичного корпуса-реактора, имеющего патрубки для входа и выхода потока жидкости. Корпус-реактор выполнен, как правило, в виде цилиндра, лампы в защитных чехлах располагаются параллельно его оси так, что имеется доступ к электродам ламп через отверстия в торцах корпуса для подачи электропитания, а патрубки входа и выхода расположены у торцов цилиндра. Обрабатываемая жидкость поступает через входной патрубок внутрь корпуса-реактора и протекает вдоль его к выходному патрубку, подвергаясь бактерицидному воздействию УФ-излучения.

Недостатком описанного устройства является невысокая эффективность обеззараживания, вызванная неравномерностью облучения объема обрабатываемой жидкости. В каждой точке объема корпуса-реактора даже при условии полной прозрачности жидкости для УФ-лучей интенсивность излучения, поступающего от каждой лампы, зависит от расстояния до этой лампы. При протекании вдоль корпуса-реактора те части потока, которые находятся вдали от ламп, могут получать дозы излучения в разы меньшие, чем части потока вблизи защитных чехлов ламп. Неравномерность распределения интенсивности излучения внутри корпуса-реактора становится еще больше, если имеет место поглощение УФ-излучения в обрабатываемой жидкости, например, из-за наличия растворенных веществ или взвешенных твердых примесей.

Указанный недостаток можно устранить, если обеспечить перемешивание потока так, чтобы каждый микрообъем жидкости подвергался одинаковому воздействию излучения. Для этих целей в патентах US 5352359, US 2007/0012883 A1, US 2009/0084734 A1, RU 2027678 C1, 1992, например, предлагались устройства с различными перегородками и лопастями внутри корпуса-реактора или же спиральные канавки на внутренней поверхности корпуса-реактора, как в RU 88345 U1, 2009. Однако спиральные канавки не дают должного перемешивания. С другой стороны, для перемешивания жидкости с помощью перегородок и/или лопастей, обеспечивающего эффективное усреднение получаемой жидкостью дозы облучения, они должны быть установлены перпендикулярно или под углом к оси корпуса-реактора и достаточно близко друг от друга, что создает значительные препятствия для излучения, распространяющегося под углом к оси ламп и снижает интенсивность облучения. Изготовление перегородок и лопастей из материалов, либо пропускающих УФ-излучение (кварц), либо эффективно отражающих его (анодированный алюминий), технологически сложно, поэтому не находит практического применения.

Наиболее близким к заявляемому техническому решению является устройство (патент US 2009/00884734 A1, опубл. 2.04.06.2009 г.), содержащее закрытый цилиндрический корпус-реактор с входным и выходным патрубками у его торцов, внутри которого имеется ультрафиолетовая лампа в виде прямой трубки, установленной параллельно оси корпуса-реактора, и ряд поперечных перегородок с отверстиями. Отверстия служат для создания турбулентности в потоке жидкости, обеспечивающей его перемешивание.

Увеличение равномерности облучения УФ-излучением всего объема обрабатываемой жидкости и, как следствие, увеличение степени обеззараживания и/или производительности в предлагаемом устройстве может быть достигнуто за счет действия рассекателей потока, при котором части потока, движущиеся вблизи лампы и подвергающиеся более интенсивному УФ-облучению, проходят обработку менее длительное время, чем части потока, движущиеся на расстоянии от лампы в областях меньших интенсивностей облучения.

Конструкция устройства поясняется на фиг. 1, 2 и 3.

Устройство для обеззараживания жидкостей ультрафиолетовым излучением имеет герметичный цилиндрический корпус-реактор 1, внутри которого вдоль его оси расположена выполненная в виде прямой трубки УФ-лампа 2, помещенная в герметичный защитный кварцевый чехол 3, имеющий хотя бы с одной стороны открытый выход через торец корпуса реактора 1 для подключения электропитания лампы 2. Корпус-реактор имеет входной 4 и выходной 5 патрубки, расположенные у его торцов. Внутри корпуса-реактора 1 между входным 4 и выходным 5 патрубками установлены один или несколько рассекателей потока 6, которые создают и поддерживают распределение скорости потока такое, что она максимальна у поверхности защитного кожуха и постепенно убывает при удалении от оси лампы. Зависимость продольной скорости потока от расстояния от оси лампы будет оптимальной, если ее вид будет приближен к виду зависимости от этого расстояния средней по длине лампы интенсивности УФ-облучения. Технический результат заключается в увеличении равномерности облучения всего объема обрабатываемой жидкости и, как следствие, увеличение степени обеззараживания и/или производительности устройства.

Работает устройство следующим образом. Поток обрабатываемой жидкости попадает внутрь корпуса-реактора 1 через входной патрубок 4 и проходит через ближний к этому патрубку рассекатель потока 6. После этого распределение скорости потока по сечению корпуса-реактора становится таким, что она максимальна у поверхности защитного чехла лампы 3 и убывает по мере удаления от него. Если зависимость продольной скорости потока от расстояния до оси лампы пропорциональна средней по длине лампы 2 интенсивности УФ-облучения для этого расстояния, то время прохождения через устройство части потока, движущейся на любом расстоянии от лампы, будет обратно пропорционально средней интенсивности облучения, которое на него воздействует. А это значит, что получаемая доза облучения, которая равна произведению интенсивности облучения на время облучения, для всех частей потока будет примерно одинаковой. Распределение скорости потока по сечению корпуса-реактора, полученное после прохождения жидкости через рассекатель, меняется по мере его дальнейшего продвижения. Поэтому для поддержания нужного распределения скорости потока могут быть установлены дополнительные рассекатели 6, количество которых будет зависеть от вязкости жидкости, размеров корпуса-реактора 1 и требуемой для обеззараживания дозы облучения.

Если расстояние от лампы значительно меньше ее длиныи расстояния до ее концов, то интенсивность УФ-облучения максимальна у поверхности защитного кожуха лампы и убывает приблизительно обратно пропорционально расстоянию от оси лампы, При увеличении расстояния от кожуха до значений, сравнимых с длиной лампы и/или расстоянием до ее концов, и при наличии поглощения УФ-излучения в обрабатываемой жидкости скорость убывания интенсивности облучения с расстоянием увеличивается. Поэтому для получения максимального эффекта рассекатели потока должны формировать и поддерживать зависимость продольной скорости потока обрабатываемой жидкости близкое к обратно пропорциональной от расстояния от оси лампы или с более быстрым убыванием от этого расстояния. Конкретный вид оптимального распределения скорости потока будет зависеть от геометрических размеров корпуса-реактора и коэффициента поглощения УФ-излучения в обрабатываемой жидкости.

Рассекатели потока могут быть выполнены в виде поперечных перегородок с отверстиями для прохода обрабатываемой жидкости, как это показано на фиг. 3. Перегородки разделены на концентрические кольцевые зоны равной ширины с общим центром на оси лампы. При этом первая зона, которая образована поверхностью защитного кожуха лампы 3 и краем перегородки-рассекателя 6, является полностью открытой для прохода жидкости, а остальные зоны имеют равномерно распределенные по ним проходные отверстия 7. Часть потока жидкости, проходящая через отверстия каждой из зон 7, образует после перегородки цилиндрический слой, движущийся со скоростью, пропорциональной отношению суммарной площади проходных отверстий этой зоны к площади зоны. Площадь каждой зоны пропорциональна ее среднему радиусу. Если при этом суммарная площадь проходных отверстий для всех зон одинаковая, то скорость потока в цилиндрических слоях потока после перегородки будет обратно пропорциональной средним радиусам соответствующих зон. Если средняя по длине лампы интенсивность облучения убывает с расстоянием от оси лампы быстрее, чем по обратно пропорциональной зависимости, то суммарная площадь проходных отверстий в каждой зоне должна быть меньше, чем этот параметр для зоны, ближней к ней со стороны лампы. Конкретная оптимальная зависимость суммарной площади проходных отверстий от среднего радиуса зоны будет определяться длиной лампы, поперечным размером корпуса-реактора и коэффициентом поглощения УФ-излучения в обрабатываемой жидкости.

На фиг. 4 показан пример сравнения зависимости продольной скорости V для потока воды Q=1,8 л/сек от рас 3Б, и расчетной оптимальной зависимости этой скорости ТЕОРЕТ., пропорционального средней по длине лампы интенсивности УФ-облучения, от того же расстояния R. Расчеты выполнены для следующих параметров: общий поток воды - 1,8 л/сек.; температура воды - 20°С; внешний диаметр защитного чехла лампы 3-4 см; внутренний диаметр корпуса-реактора 1-18 см; количество зон расположения проходных отверстий рассекателя - 7; суммарные площади проходных отверстий всех зон равны между собой; расстояние, проходимое водой после рассекателя - 40 см.

Устройство для обеззараживания жидкостей ультрафиолетовым излучением, имеющее герметичный цилиндрический корпус-реактор, расположенную внутри вдоль его оси, выполненную в виде прямой трубки УФ-лампу, помещенную в герметичный защитный кварцевый чехол, имеющий хотя бы с одной стороны открытый выход через торец корпуса-реактора для подключения электропитания лампы, входной и выходной патрубки, расположенные у его торцов, расположенные внутри корпуса-реактора между входным и выходным патрубками один или несколько рассекателей потока, отличающееся тем, что рассекатели потока выполнены в виде поперечных оси лампы перегородок, имеющих несколько кольцевых зон равной ширины с общим центром на оси лампы и равномерно расположенными по этим зонам отверстиями для прохода жидкости, причем ближайшая к общему центру зона образована промежутком между защитным кожухом лампы и краем перегородки и полностью открыта для прохода жидкости, а суммарная площадь проходных отверстий каждой зоны не превышает этого показателя для зоны, ближайшей к ней со стороны общего центра, с возможностью создания и поддержания рассекателями распределения скорости потока жидкости таким образом, чтобы она была максимальна у поверхности защитного кожуха лампы и постепенно убывала при удалении от него.



 

Похожие патенты:
Изобретение относится к области техники, связанной с физико-химическими методами обработки водных растворов. Преимущественная область использования - очистка производственных и хозяйственно-бытовых стоков, хозяйственно-питьевой и сетевой воды для теплоснабжения.
Изобретение может быть использовано в области опреснения морской воды. Способ осуществляют в опреснительной установке с полупроводниковым термоэлектрическим охлаждающим устройством, при этом способ включает доведение морской воды до кипения с последующей конденсацией водяного пара на поверхности охлаждающего устройства и отводом пресной воды.
Изобретение может быть использовано в водоочистке. Способ регулирования устройства для очистки сточной воды содержит этапы, на которых в контрольном блоке (8) сохраняют предварительно заданное соотношение между рабочей скоростью N устройства (6) генерации потока и рабочим параметром Р устройства (6) генерации потока.
Изобретения могут быть использованы в области водно-химического управления на атомных электростанциях (АЭС). Система для удаления растворенного кремния в борсодержащей воде атомной электростанции содержит резервуар для хранения борной кислоты 1 для атомной электростанции, буферный резервуар для диализата 2, резервуар для первичной воды 3, систему первичной нанофильтрации 4 и 5, буферный резервуар вторичной воды 6 и систему вторичной нанофильтрации 7.

Изобретение относится к обработке пластовой воды, возникающей вследствие процесса извлечения нефти, и ее использованию для производства пара для извлечения нефти.

Изобретение может быть использовано в водоочистке. Устройство для очистки и приготовления питьевой воды состоит из струйного насоса - гидродинамического кавитатора 1, цилиндрического корпуса, озонирующего элемента.

Изобретение относится к обеспечению охраны водной среды и может быть использовано при аэрации водоемов. Устройство для аэрации воды включает в себя понтон, снабженный водоподъемной трубой, опущенной в придонные слои водоема, и сбросной трубой.

Изобретение относится к обеспечению охраны водной среды и может быть использовано при аэрации водоемов. Устройство для аэрации воды включает в себя понтон, снабженный водоподъемной трубой, опущенной в придонные слои водоема, и сбросной трубой.

Изобретение относится к пищевой промышленности, к безалкогольным напиткам, а именно к воде питьевой газироаванной. Вода изготовлена на основе артезианской воды из природного источника «Эмили» с уровнем минерализации 0,3 г/л с добавлением на 100 дал готового продукта: 42-45 л хвойной флорентинной кедровой воды, 1,5-2 кг лимонной кислоты и 3,5-4,0 кг двуокиси углерода.

Изобретение относится к порошкообразной растворимой в воде катионогенной полимерной композиции, используемой для промотирования флокуляции при разделении твердой и жидкой фаз.

Изобретение относится к очистке и утилизации сточных вод, в частности к способу подготовки сточных вод животноводческих комплексов для сельскохозяйственного использования. Способ обеспечивает последовательный ввод в сточные воды свинокомплексов и свиноферм для сельскохозяйственного использования щелочного коагулянта - известкового молока, или суспензии шлама карбида кальция, или смеси известкового молока и шлама карбида кальция до рН=10-12, а затем последовательно вводятся подкисляющие реагенты, в качестве которых используют суспензии аммофоса и нитрофоски при непрерывном перемешивании в течение 2-3 мин до рН=6,5-8,0 с выделением образующегося осадка. Изобретение обеспечивает получение органоминерального удобрения с высокими концентрациями биогенных компонентов при одновременном значительном упрощении процесса приготовления реагента и снижении стоимости реагентной подготовки сточных вод к сельскохозяйственному использованию, повышение эффективности разделения на жидкую и твердую фракции и их агромелиоративную ценность при сокращении времени отстаивания, помогает улучшить физические свойства получаемой твердой фракции и уменьшить в ней содержание тяжелых металлов, причем сочетанное действие двух подкисляющих реагентов вызывает синергический эффект. 1 табл.
Изобретение относится к способу реагентной обработки отходов от промывки технологического оборудования производства технических тканей с пропиткой из синтетических волокон, загрязненных пропиточным раствором, содержащим вредные органические вещества, подлежащие утилизации. Способ реагентной обработки отходов промывки технологического оборудования производства технических тканей с пропиткой из синтетических волокон включает введение водорастворимых реагентов коагулянта - гидроксохлорида алюминия и флокулянта - полиакриламида, перемешивание, выдержку (коагулирование), отделение образующегося коагулюма отстаиванием и фильтрацией с последующей его утилизацией, при этом вначале предварительно готовят раствор коагулянта в виде 54% водного раствора гидроксохлорида алюминия и раствор флокулянта в виде 0,1% водного раствора полиакриламида, после чего их смешивают в соотношении 0,7:2,5 и затем полученный раствор вводят в отходы при соотношении раствор:отходы - 1:10 соответственно, при температуре отходов 25 – 35°С и рН 5,11 - 5,31, при этом при фильтрации в качестве фильтрующего материала используют однородный мономинеральный мелкозернистый кварцевый песок, а отфильтрованный коагулюм подвергают отжиму и последующей утилизации. Техническим результатом изобретения является упрощение процесса обработки и уменьшение времени обработки. 3 табл.
Изобретение может быть использовано в водоподготовке. Система подготовки подпиточной воды для теплогенерирующих установок содержит установку предварительной очистки 10 с механическим фильтром 13 с фильтрующим слоем 131 и установку обратноосмотического обессоливания 70 с баком сбора концентрата 72. Линия 200 отвода концентрата из бака сбора концентрата 72 подключена к нижней части механического фильтра 13 для использования концентрата установки обратноосмотического обессоливания 70 в качестве промывочной среды для взрыхляющей регенерации фильтрующего слоя 131. К нижней части механического фильтра 13 дополнительно подключена линия 300 сброса в бак сбора концентрата 72 избыточного объема чистой промывочной среды после завершения процесса регенерации фильтрующего слоя 131. Отношение объема бака сбора концентрата 72 к объему фильтрующего слоя 131 составляет 15-20. При наличии в составе установки предварительной очистки 10 по меньшей мере двух параллельно включенных механических фильтров 13 с фильтрующим слоем 131 их взрыхляющая регенерация производится поочередно. Предложенное изобретение обеспечивает возможность использования отходов процесса подготовки подпиточной воды в качестве промывочной среды для регенерации фильтрующего слоя. 1 з.п. ф-лы, 1 ил., 2 табл.
Изобретение относится к способам обработки воды электрохимическими методами, а именно к способу контроля содержания пероксида водорода в активированной воде в процессе ее получения воздействием плазмы водяного пара на водный раствор электролита. Изобретение может быть использовано в сельском хозяйстве для обработки семян и полива растений. Предложен способ получения раствора пероксида водорода с требуемой концентрацией для стимулирования роста семян растений, включающий контроль содержания пероксида водорода в активированной воде в процессе ее получения воздействием плазмы водяного пара на водный раствор электролита с одновременным определением количества выделившегося водорода посредством установленного датчика с калибровочным графиком, связывающим количество выделившегося водорода с концентрацией пероксида водорода в активированной воде, и добавление воды до содержания пероксида водорода в растворе от 5⋅10-7 М до 5⋅10-5 М. Предложенный способ позволяет увеличить рост семян растений. 1 ил., 4 табл.
Наверх