Способ определения направления на космический объект

Изобретение относится к области управления движением космических аппаратов (КА) и может быть использовано для навигации КА в дальнем космосе. Способ включает сканирование лазерным лучом заданной области пространства путём отражения луча от зеркала на поворотной платформе, установленной в электромеханическом подвесе. Движение платформы по азимуту и углу места задают системой электромагнитов, питаемых током в виде пилообразной последовательности импульсов. Направление на космический объект (КО) определяют по параметрам импульсов развертки, при которых зарегистрирован сигнал отраженного от КО лазерного излучения. Интенсивность лазерного излучения в источнике модулируют гармоническим колебанием, отраженное от космического объекта лазерное излучение регистрируют фотоумножителем, а зарегистрированные сигналы усиливают радиотехническим устройством, настроенным на частоту гармонических колебаний излучения в источнике. Повышается дальность контролируемых КО.

 

Изобретение относится к области управления движением космических аппаратов (КА) и может быть использовано для навигации космических аппаратов в дальнем космосе.

Известно защищенное патентом изобретение-аналог: патент №2506547, заявка 2012140350/28 МПК G01J 1/44, 2012 год, «Приемник импульсных оптических сигналов» (Вильнер В.Г., Волобуев В.Г., Почтарев В.Л., Рябокуль Б.К.). Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсных оптических сигналов, содержащий фотоприемник с источником смещения и нагрузкой, подключенной к усилителю, усилитель выполнен в виде двух транзисторных повторителей с общей нагрузкой, вход одного из повторителей подключен к нагрузке фотоприемника, а вход второго повторителя имеет возможность подключения к внешнему источнику сигнала, причем параллельно входам транзисторных повторителей введены ключи, связанные с коммутатором, управляющим их замыканием и размыканием в противофазе. Технический результат заключается в повышении точности временной привязки принятого сигнала и, соответственно, высокой точности измерений с помощью приборов, в которых используется такой приемник. Недостатком изобретения является невозможность его использования при больших расстояниях между космическими аппаратами, поскольку регистрируются отраженные сигналы лазерного излучения.

Известно заявленное изобретение-аналог: патент №2619168, от 12.05.2017, заявка №2015152105, МПК B64G 3/00, 2015 год, «Способ определения направления на активный объект, преднамеренно сближающийся с космическим аппаратом» (Яковлев М.В., Яковлева Т.М., Яковлев Д.М.), согласно которому принимают сигналы, излучаемые приближающимся активным объектом, измеряют амплитуду и выполняют обработку принимаемых сигналов. Для приема сигналов применяют детекторы плоской формы. Детекторы располагают на поверхности сферической оболочки ортогонально радиус-вектору из центра сферической оболочки к точке касания с детектором. Внутри сферической оболочки помещают материал - поглотитель излучения. Направление на активный приближающийся объект определяют по радиус-вектору, направленному на детектор с максимальной амплитудой регистрируемого сигнала. Недостатком способа является отсутствие излучающих элементов, что не обеспечивает возможность его использования в качестве космического маяка.

Известно защищенное патентом изобретение-аналог: патент №2639609, МПК G02B 26/10,G05D 1/00, 2017 год, «Способ управления лазерным лучом» (Яковлев М.В., Яковлева Т.М., Яковлев Д.М.), согласно которому в магнитное поле помещают платформу с зеркалом на одной стороне, проводником электрического тока и поворотным механизмом на противоположной стороне, причем проводник электрического тока выполняют в виде кольцевых витков, расположенных по периметру платформы, поворотный механизм устанавливают в центре тяжести платформы, магнитное поле формируют системой электромагнитов, ток кольцевых витков и электромагнитов регулируют из условия отражения лазерного луча от зеркала в заданном направлении. Недостаток изобретения заключается в том, что оно не позволяет осуществлять регистрацию сигналов лазерного излучения, отраженных от контролируемых космических объектов.

Известно защищенное патентом изобретение-аналог: патент №2462731, МПК G01S 1/70, B64G 1/36, 2011 год, «Сканирующий лазерный маяк космических аппаратов» (Старовойтов Е.И.), согласно которому предложен сканирующий лазерный маяк, содержащий корпус и источник лазерного излучения, установленный в сканирующем блоке в карданном подвесе. В устройство введена оптическая анаморфотная система, установленная в сканирующем блоке на одной оптической оси с источником лазерного излучения. При этом ось карданного подвеса перпендикулярна упомянутой оптической оси, а оптическая анаморфотная система представляет собой в сечении, перпендикулярном направлению сканирования, широкоугольный объектив типа «рыбий глаз». Качающийся привод, находящийся в механической связи со сканирующим блоком, выполнен качающимся в плоскости сканирования. Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов. Технический результат заключается в обеспечении возможности обнаружения пассивного космического аппарата в половине телесного угла на дистанциях до 160 км при наведении на него активного космического аппарата. Недостаток изобретения заключается в недостаточно высокой оперативности определения направления на космический объект, что связано с необходимостью применения механических устройств.

Известно защищенное патентом изобретение-прототип: патент №2676999, МПК B64G 1/64, 2018 год, «Способ определения направления на космический объект» (Яковлев М.В.), согласно которому управляют направлением лазерного луча за счет поворота, расположенной в магнитном поле, платформы с зеркалом на одной стороне, проводником электрического тока и поворотным механизмом на противоположной стороне, причем проводник электрического тока выполняют в виде кольцевых витков, расположенных по периметру платформы, поворотный механизм устанавливают в центре тяжести платформы, магнитное поле формируют системой электромагнитов, ток кольцевых витков и электромагнитов регулируют из условия сканирования лазерным лучом заданной области космического пространства, а направление на космический объект определяют по отраженному от него сигналу лазерного излучения, причем ток кольцевых витков поддерживают постоянным, ток электромагнитов задают в виде последовательности импульсов, обеспечивающих развертку лазерного луча по азимутальному углу и углу места, а направление на космический объект определяют по параметрам импульсов развертки, при которых зарегистрирован сигнал отраженного лазерного излучения. Недостатком способа-прототипа является ограниченная дальность приема отраженного сигнала лазерного излучения при определении направления на космический объект.

Целью предлагаемого изобретения является повышение дальности контролируемых космических объектов.

Указанная цель достигается в заявляемом способе определения направления на космический объект, согласно которому управляют направлением лазерного луча за счет поворота расположенной в магнитном поле платформы с зеркалом на одной стороне, проводником электрического тока и поворотным механизмом на противоположной стороне, проводник электрического тока выполняют в виде кольцевых витков, расположенных по периметру платформы, поворотный механизм устанавливают в центре тяжести платформы, магнитное поле формируют системой электромагнитов, ток кольцевых витков и электромагнитов регулируют из условия сканирования лазерным лучом заданной области космического пространства, направление на космический объект определяют по отраженному от него сигналу лазерного излучения, причем ток кольцевых витков поддерживают постоянным, ток электромагнитов задают в виде последовательности импульсов, обеспечивающих развертку лазерного луча по азимутальному углу и углу места, а направление на космический объект определяют по параметрам импульсов развертки, при которых зарегистрирован сигнал отраженного лазерного излучения. Интенсивность лазерного излучения в источнике модулируют гармоническим колебанием, отраженное от космического объекта лазерное излучение регистрируют фотоумножителем, зарегистрированные сигналы усиливают радиотехническим устройством, настроенным на частоту гармонических колебаний излучения в источнике.

Обоснование реализуемости заявляемого способа заключается в следующем. Длительность и период следования импульсов тока электромагнитов, обеспечивающих развертку лазерного луча по азимутальному углу и углу места, определяют по известным значениям угла расходимости лазерного излучения, ожидаемой дальности приема сигналов отраженного лазерного излучения и из условия сплошного покрытия лазерным излучением контролируемой области космического пространства. Сигнал лазерного излучения, отраженный от космического аппарата, регистрируют в реальном масштабе времени с задержкой относительно излучения в источнике, равной удвоенному времени распространения лазерного луча от источника до искомого космического объекта. Регистрацию отраженного лазерного излучения выполняют с помощью фотоумножителя, который обладает значительно большей чувствительностью в сравнении с полупроводниковыми детекторами. Зарегистрированные фотоумножителем сигналы дополнительно усиливают радиотехническим устройством (резонансный усилитель), настроенным на частоту гармонических колебаний интенсивности лазерного излучения в источнике. Выделение полезного сигнала по резонансной частоте позволяет исключить помеховые сигналы различной природы. Порядковые номера импульсов тока электромагнитов, обеспечивающих развертку лазерного луча по азимутальному углу и углу места и соответствующих направлению лазерного луча на искомый космический объект, определяют по моменту прихода отраженного сигнала с учетом его задержки относительно импульсов излучения в источнике. Величина задержки оценивается для ожидаемой дальности обнаружения искомого космического объекта.

Таким образом, практическая значимость и техническая возможность реализации заявляемого способа определения направления на космический объект не вызывает сомнений.

Способ определения направления на космический объект, согласно которому управляют направлением лазерного луча за счет поворота расположенной в магнитном поле платформы с зеркалом на одной стороне, проводником электрического тока и поворотным механизмом на противоположной стороне, проводник электрического тока выполняют в виде кольцевых витков, расположенных по периметру платформы, поворотный механизм устанавливают в центре тяжести платформы, магнитное поле формируют системой электромагнитов, ток кольцевых витков и электромагнитов регулируют из условия сканирования лазерным лучом заданной области космического пространства, направление на космический объект определяют по отраженному от него сигналу лазерного излучения, причем ток кольцевых витков поддерживают постоянным, ток электромагнитов задают в виде последовательности импульсов, обеспечивающих развертку лазерного луча по азимутальному углу и углу места, а направление на космический объект определяют по параметрам импульсов развертки, при которых зарегистрирован сигнал отраженного лазерного излучения, причем интенсивность лазерного излучения в источнике модулируют гармоническим колебанием, отраженное от космического объекта лазерное излучение регистрируют фотоумножителем, зарегистрированные сигналы усиливают радиотехническим устройством, настроенным на частоту гармонических колебаний излучения в источнике.



 

Похожие патенты:
Изобретение относится к космической технике, а более конкретно к стыковочным узлам. Устройство стягивания периферийного стыковочного механизма содержит барабан намотки тросов и электропривод, имеющий редуктор.
Изобретение относится к космической технике, в частности к стыковочным устройствам. Устройство стягивания стыковочных агрегатов космических аппаратов содержит механизмы защелок, штанги, а также привод.
Изобретение относится к космической технике, в частности к стыковочным устройствам космических аппаратов. Стыковочный механизм космического аппарата содержит подвижный корпус, связанный с основанием стыковочного механизма двухстепенным вращательным шарниром и боковым амортизатором с поступательными пружинными механизмами, тягами и электромагнитными тормозами и штангу с головкой, имеющей защелки.

Изобретение относится к космической технике, а более конкретно к системе и способу стыковки космических кораблей. Система стыковки космических кораблей содержит активное стыковочное устройство и пассивное стыковочное устройство.

Изобретение относится к области космической техники, а именно к болтам разрывным. Болт разрывной для соединения и последующего быстрого разъединения элементов конструкции по команде содержит силовой корпус, заряд и электродетонатор.

Изобретение относится к головному обтекателю (ГО) ракеты-носителя (РН), сжигаемому после отделения от РН на атмосферном участке траектории спуска ГО. ГО представляет собой трехслойную конструкцию из полимерных композиционных материалов в виде двухстворчатой оболочки переменной кривизны, содержащую внешний и внутренний несущие слои из материала, состоящего из связующего и углеродной ленты (МНС).

Группа изобретений относится к ракетно-космической технике и может быть использована для сокращения районов падения отделяющихся частей ступеней ракет-носителей.

Изобретение относится к космической технике, а более конкретно к переходным отсекам ракет-носителей и их ферм. Переходной отсек ракеты-носителя содержит корпус и помещенную внутри него проставку, снабженную средством крепления полезной нагрузки.

Изобретение относится к области оптико-электронного приборостроения и предназначено для применения в системах управления движением космического аппарата. Заявленное устройство контроля взаимного положения сближающихся космических аппаратов содержит мишень, установленную на пассивном космическом аппарате и излучатели.
Изобретение относится к управлению сближением и соединением космического аппарата (КА) с космическим мусором (КМ). Устройство содержит систему фиксации КМ на КА, снабженную постоянным магнитом, притягивающимся к магнитному веществу (например, на поверхности КА), и электромагнитом, отталкивающим (с регулируемым усилием) постоянный магнит в направлении КМ.

Изобретение относится к области управления движением космических аппаратов и может быть использовано для навигации КА в дальнем космосе. Способ включает сканирование лазерным лучом заданной области пространства путём отражения луча от зеркала на поворотной платформе, установленной в электромеханическом подвесе. Движение платформы по азимуту и углу места задают системой электромагнитов, питаемых током в виде пилообразной последовательности импульсов. Направление на космический объект определяют по параметрам импульсов развертки, при которых зарегистрирован сигнал отраженного от КО лазерного излучения. Интенсивность лазерного излучения в источнике модулируют гармоническим колебанием, отраженное от космического объекта лазерное излучение регистрируют фотоумножителем, а зарегистрированные сигналы усиливают радиотехническим устройством, настроенным на частоту гармонических колебаний излучения в источнике. Повышается дальность контролируемых КО.

Наверх