Способ получения гербицида имазамокса

Изобретение относится к области получения пестицидов, в частности к технологии производства послевсходового гербицида имазамокса, имеющего химическую структуру (±)-2-[4,5-дигидро-4-метил-4-(1-метилэтил)-5-оксо-1H-имидазол-2-ил]-5-(метоксиметил)-3-пиридинкарбоновой кислоты. Способ получения (±)-2-[4,5-дигидро-4-метил-4-(1-метилэтил)-5-оксо-1H-имидазол-2-ил]-5-(метоксиметил)-3-пиридинкарбоновой кислоты (имазамокса) включает синтез соли имазамокса из диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты и (±)-2-амино-2,3-диметилбутирамида в присутствии трет-бутилата натрия или калия в толуоле или ксилоле при нагревании, растворение полученной соли в воде и отделение толуола или ксилола, последующий перевод полученной соли имазамокса в целевой продукт под действием соляной или серной кислоты и выделение целевого продукта. При этом предварительно удаляют влагу из раствора диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты и (±)-2-амино-2,3-диметилбутирамида в толуоле или ксилоле азеотропной отгонкой, а процесс получения соли имазамокса ведут в атмосфере инертного газа. Полученный раствор соли имазамокса очищают при перемешивании с 6-12 мас.% активированного угля в расчете на исходный диметиловый эфир 5-метоксиметил-2,3-пиридиндикарбоновой кислоты в течение 1-2 ч и отработанный активированный уголь отфильтровывают. Полученный раствор соли имазамокса подкисляют до кислых значений рН, выделяют выпавший осадок целевого продукта фильтрованием, промывкой водой и высушиванием. Предлагаемый способ получения (±)-2-[4,5-дигидро-4-метил-4-(1-метилэтил)-5-оксо-1H-имидазол-2-ил]-5-(метоксиметил)-3-пиридинкарбоновой кислоты (имазамокс) обеспечивает упрощение технологического процесса производства имазамокса, которое выражается в том, что исключено использование безводного растворителя, исключены стадии экстракции высококоррозионными растворителями, осушки и очистки органического экстракта, упаривание хлорорганических соединений, а также обеспечивает выход целевого продукта до 83,6%.

 

Изобретение относится к области получения пестицидов. Более конкретно, изобретение относится к технологии производства послевсходового гербицида имазамокса, имеющего химическую структуру (±)-2-[4,5-дигидро-4-метил-4-(1-метилэтил)-5-оксо-1H-имидазол-2-ил]-5-(метоксиметил)-3-пиридинкарбоновой кислоты (I). Его регистрационный номер в Реестре химической реферативной службы Американского химического общества CAS [114311-32-9]. Далее по тексту именуется «имазамокс».

В результате патентного поиска были отобраны следующие патенты.

В международных заявках WO №2010055042 и WO №2010066669 раскрыт способ получения (±)-2-[4,5-дигидро-4-метил-4-(1-метилэтил)-5-оксо-1H-имидазол-2-ил]-5-(метоксиметил)-3-пиридинкарбоновой кислоты из 5-метоксиметил-2,3-пиридиндикарбоновой кислоты. Способ многостадийный, включает получение ангидрида 5-метоксиметил-2,3-пиридиндикарбоновой кислоты из 5-метоксиметил-2,3-пиридиндикарбоновой кислоты ее взаимодействием с уксусным ангидридом, ацилирование полученным ангидридом 5-метоксиметил-2,3-пиридиндикарбоновой кислоты 2-амино-2,3-диметилбутиронитрила, гидролиз полученной 2-[[(1-циано-1,2-диметилпропил)амино]карбонил]-5-(метоксиметил)-пиридин-3-карбоновой кислоты в кислых условиях, внутримолекулярную циклизацию полученной 2-[[[1-(аминокарбонил)-1,2-диметилпропил]амино]карбонил]-5-(метоксиметил)-пиридин-3-карбоновой кислоты в щелочных условиях и выделение имазамокса из полученной соли в кислых условиях. Недостатком описанного способа является высокая стадийность, большое число технологических операций, необходимость применения контролируемого уксусного ангидрида (Постановление Правительства РФ от 30 июня 1998 г. №681 «Об утверждении перечня наркотических средств, психотропных веществ и их прекурсоров, подлежащих контролю в Российской Федерации») и сложность технологической реализации.

Известен способ получения оптически активной формы имазамокса. В патенте США №5973154 приведен пример получения 2-[(4R)-4,5-дигидро-4-метил-4-(1-метилэтил)-5-оксо-1H-имидазол-2-ил]-5-(метоксиметил)-3-пиридинкарбоновой кислоты CAS [221298-64-2]. Он заключается во взаимодействии диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты с (R)-2-амино-2,3-диметилбутирамидом в безводном толуоле в присутствии трет-бутилата калия и последующем разложении полученной калиевой соли (R)-имазамокса концентрированной соляной кислотой. Выделение целевого продукта осуществляют путем экстракции массы после подкисления хлористым метиленом, осушки экстракта над сульфатом магния, очистки экстракта с использованием диоксида кремния, фильтрования и удаления растворителя при пониженном давлении. Основными недостатками описанного способа являются использование безводных растворителей при синтезе соли имазамокса и технологическая сложность выделения целевого продукта с большим количеством технологических операций. Осажденный после подкисления продукт экстрагируют исключительно хлористым метиленом. Использование этого легкокипящего (Ткип = 40°С) легковоспламеняющегося (Твсп = -14°С) органического растворителя приводит к большим потерям при его отгонке и регенерации. Также известно, что этот растворитель высококоррозионный, что налагает повышенные требования к материалам аппаратуры. Выход имазамокса составляет 73,5%, что близко к умеренному.

Задачей предлагаемого технического решения является улучшение технико-экономических показателей и упрощение технологического процесса получения имазамокса (I).

Техническим результатом является упрощение технологического процесса производства имазамокса, которое выражается в том, что исключено использование безводных растворителей, исключены стадии экстракции хлористым метиленом, осушки и очистки органического экстракта, упаривания хлористого метилена. В результате выход целевого продукта повышен до 83,6%.

Технический результат достигается путем использования способа получения (±)-2-[4,5-дигидро-4-метил-4-(1-метилэтил)-5-оксо-1H-имидазол-2-ил]-5-(метоксиметил)-3-пиридинкарбоновой кислоты (имазамокса) (I), включающего синтез соли имазамокса (IV) из диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты (II) и (±)-2-амино-2,3-диметилбутирамида (III) в присутствии трет-бутилата натрия или калия в толуоле или ксилоле при нагревании, растворение полученной соли в воде и отделение толуола или ксилола, последующий перевод полученной соли имазамокса в целевой продукт под действием соляной или серной кислоты и выделение целевого продукта. Предварительно удаляют влагу из раствора диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты и (±)-2-амино-2,3-диметилбутирамида в толуоле или ксилоле азеотропной отгонкой, процесс получения соли имазамокса ведут в атмосфере инертного газа, полученный раствор соли имазамокса очищают при перемешивании с 6-12 масс. % активированного угля (в расчете на исходный диметиловый эфир 5-метоксиметил-2,3-пиридиндикарбоновой кислоты) в течение 1-2 часов, отработанный активированный уголь отфильтровывают, полученный раствор соли имазамокса подкисляют до кислых значений рН, выделяют выпавший осадок целевого продукта фильтрованием, промывкой водой и высушиванием.

М=Na, K; растворитель = толуол, ксилол; Н+=HCl, H2SO4.

Изобретение иллюстрируется следующими примерами.

Пример 1 (сравнительный по прототипу).

Смесь 21,54 г (0,09 моль) диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты II и 12,09 г (0,093 моль) (±)-2-амино-2,3-диметилбутирамида III в безводном толуоле перемешивают при комнатной температуре на протяжении 15 минут, прибавляют 9,12 г (0,095 моль) трет-бутилата натрия, выдерживают при перемешивании 5 минут и прибавляют еще 9,12 г (0,095 моль) трет-бутилата натрия. Реакционную массу нагревают при перемешивании до полного срабатывания соединения II (контроль ТСХ). По окончании реакции реакционную массу охлаждают до комнатной температуры и при перемешивании прибавляют воду для растворения натриевой соли имазамокса. Перемешивают до полного растворения твердой фазы в воде, перемешивание останавливают и полученной двухфазной системе дают разделиться. Представляющую собой раствор натриевой соли имазамокса водную фазу отделяют, при перемешивании прибавляют к ней концентрированную серную кислоту до значения рН ~ 3 и дважды экстрагируют хлористым метиленом. Экстракты объединяют, объединенный экстракт высушивают над сульфатом магния, прибавляют к нему диоксид кремния, перемешивают и отфильтровывают. Фильтрат упаривают при пониженном давлении досуха. Получают 19,8 г порошка имазамокса. Выход 72,1%.

Пример 2 (заявляемый способ).

В реактор синтеза соли имазамокса загружают 450 г (1,88 моль) диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты II, толуол, и при перемешивании прибавляют 252,3 г (1,94 моль) 2-амино-2,3-диметилбутирамида III. Для удаления из полученного раствора влаги, привнесенной с сырьем и растворителем, реактор вакуумируют, нагревают и отгоняют влагу в азеотропной смеси с растворителем. После этого вакуумирование прекращают и в реактор подают азот. К раствору комнатной температуры при перемешивании прибавляют 191,4 г (1,99 моль) трет-бутилата натрия, выдерживают при перемешивании 5 минут и прибавляют еще 191,4 г (1,99 моль) трет-бутилата натрия. Реакционную массу нагревают при перемешивании с непрерывной подачей азота до полного срабатывания соединения II (контроль ТСХ). По окончании реакции содержимое реактора синтеза перекачивают в реактор выделения, охлаждают до комнатной температуры и при перемешивании прибавляют воду для растворения натриевой соли имазамокса. Перемешивают до полного растворения твердой фазы в воде, перемешивание останавливают и полученной двухфазной системе дают разделиться. Представляющую собой раствор натриевой соли имазамокса водную фазу отделяют в реактор очистки. К щелочной водной фазе в реакторе очистки прибавляют 6-12 масс. % активированного угля (в расчете на соединение II), перемешивают 1-2 часа и отфильтровывают от отработанного угля в реактор подкисления. К очищенному раствору натриевой соли имазамокса в реакторе подкисления при перемешивании прибавляют концентрированную серную кислоту до значения рН ~ 3. Полученную суспензию фильтруют, осадок на фильтре трижды промывают водой и высушивают на воздухе. Получают 480,2 г порошка имазамокса. Выход 83,6%.

Пример 3.

Способ получения имазамокса осуществлялся аналогично примеру 2. Отличие состояло в использовании трет-бутилата калия в качестве основания и ксилола в качестве растворителя. Получают 460,1 г порошка имазамокса с выходом 80,1%.

В результате использования предложенного способа значительно упрощается технологический процесс в целом. Сокращается число технологических операций, исключается сложно реализуемая стадия отгонки растворителя до сухого остатка. Исключается использование безводного растворителя для синтеза соли имазамокса, исключается использование легкокипящего легковоспламеняющегося органического растворителя (хлористого метилена). Улучшаются показатели процесса. Выход целевого продукта имазамокса повышается на 11,5% и составляет 83,6%. Растворитель может быть регенерирован с возвращением обратно в процесс до 85% от использованного количества.

Способ получения (±)-2-[4,5-дигидро-4-метил-4-(1-метилэтил)-5-оксо-1Н-имидазол-2-ил]-5-(метоксиметил)-3-пиридинкарбоновой кислоты (имазамокса), включающий синтез соли имазамокса из диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты и (±)-2-амино-2,3-диметилбутирамида в присутствии трет-бутилата натрия или калия в толуоле или ксилоле при нагревании, растворение полученной соли в воде и отделение толуола или ксилола, последующий перевод полученной соли имазамокса в целевой продукт под действием соляной или серной кислоты и выделение целевого продукта, отличающийся тем, что предварительно удаляют влагу из раствора диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты и (±)-2-амино-2,3-диметилбутирамида в толуоле или ксилоле азеотропной отгонкой, процесс получения соли имазамокса ведут в атмосфере инертного газа, полученный раствор соли имазамокса очищают при перемешивании с 6-12 мас.% активированного угля в расчете на исходный диметиловый эфир 5-метоксиметил-2,3-пиридиндикарбоновой кислоты в течение 1-2 ч, отработанный активированный уголь отфильтровывают, полученный раствор соли имазамокса подкисляют до кислых значений рН, выделяют выпавший осадок целевого продукта фильтрованием, промывкой водой и высушиванием.



 

Похожие патенты:

Изобретение относится к соединению, представленному формулой (Е) где X, Y и L независимо ненаправленно выбраны из -C(R1)(R2)-, -C(R3)=, -N(R4)-, -N= и -O-; M и Z независимо ненаправленно выбраны из ; ---- означает необязательную двойную связь; R1, R2, R3, R4 и R6 независимо выбраны из водорода; C1-4 алкила; группы -C1-4 алкилен-галоген; группы -C1-4 алкилен-OH; Hal выбран из F, Cl, Br и I; RE1 и RE2 присоединены к соседним атомам углерода, и RE1 и RE2 вместе ненаправленно образуют структуру -T-(CRE7RE8)n-V-, где T выбран из CRE9RE10 и O или NH и V выбран из CRE9RE10 и O или NH, а также соответствующие структуры, в которых присутствует двойная связь, причем по меньшей мере один из T или V представляет собой O или N; RE7 и RE8 представляют собой H или F; RE9 и RE10 представляют собой H; n принимает значения от 1 до 2; RE3 представляет собой C1-6 алкильную группу; m принимает значения 0 или 1; RE4 представляет собой атом галогена; p принимает значения 0 или 1; а также к фармацевтическим и диагностическим композициям указанного соединения.

Изобретение относится к соединению общей формулы (I) или к его фармацевтически приемлемым солям, где Alk представляет собой C1-C6алкильную группу; G представляет собой C=O и Q представляет собой CR51R52 или NR51, где R51 и R52, будучи одинаковыми или разными, независимо один от другого, представляют собой H, C1-C6алкил, необязательно замещенный заместителем, выбранным из группы, включающей карбокси, фенокси, бензилокси, C1-С6алкокси и гидрокси; C3-C6циклоалкилС1-С6алкил; фенилС1-С6алкил, необязательно замещенный галогеном; фениламидоС1-С6алкил; фенилС1-С6алкиламидоС1-С6алкил, необязательно замещенный С1-С6алкоксигруппой; или R51 и R52, совместно с углеродным атомом, к которому они присоединены, образуют группу C=O или С2-С6алкенильную группу, необязательно замещенную фенилом; M1 представляет собой CR49, где R49 представляет собой H; M2 представляет собой CR50, где R50 представляет собой H; R38 представляет собой Н, C1-C6алкил, замещенный феноксигруппой; С3-С6циклоалкилС1-С6алкил; арилС1-С6алкил, необязательно замещенный 1 или 2 заместителями, выбранными из группы, включающей С1-С6алкил, С1-С6алкокси, С1-С6алкоксикарбонил, карбоксил, N-метиламидо, гидрокси, С1-С6алкоксиС1-С6алкокси, С1-С6алкилтио, С1-С6алкилсульфинил, циано, галоген, перфторС1-С6алкил, нитро, формил, гидроксиС1-С6алкил и амино, причем арильный фрагмент представляет собой фенил или нафтил; и гетероарилС1-С6алкил, где гетероарильный фрагмент представляет собой пиридинил, необязательно замещенный 1 или 2 группами, выбранными из С1-С6алкокси или гидроксиС1-С6алкила, пиразолил или изоксазолил, замещенные 1 или 2 С1-С6алкильными группами; R47 и R48 представляют собой С1-С6алкил.

Изобретение относится к новым соединениям общей формулы (I) [I], где R1 обозначает водород или линейный разветвленный насыщенный или ненасыщенный углеводородный радикал; D обозначает атом азота или C-R2; Е обозначает атом азота или C-R3 ; F обозначает атом азота или C-R4; G обозначает атом азота или C-R5; R2, R3, R 4 и R5 являются одинаковыми или разными и индивидуально представляют водород, галоген, алкокси или линейный или разветвленный, насыщенный или ненасыщенный углеводородный радикал; W обозначает атом кислорода; X обозначает радикал формулы -(CH2 )k-C(O)-(CH2)m-, -(CH2 )n или -(CH2)r-O-(CH2 )s-, в котором k, m, г и s равны целым числам от 0 до 6 и n равно целому числу от 1 до 6, причем указанные радикалы необязательно являются замещенными одним или несколькими заместителями, независимо выбранными из группы, состоящей из R7; Y обозначает радикал формулы -(CH2)i-NH-C(O)-(CH 2)j-, -(СН2)n-, -(СН 2)r-O-(СН2)s-, -(СН 2)t-NH-(СН2)u-, в котором i, j, n, r, s, t и u равны целым числам от 0 до 6, причем указанные радикалы необязательно замещены С1-3 алкилом, -ОН или С1-3алкил-С1-3алкилсульфониламино; значения радикалов R7, В, R8, A, R 9 такие, как представлено в формуле изобретения.

Изобретение относится к новому, по меньшей мере, одному соединению, выбранному из соединений формулы I где X1 и Х2 каждый независимо представляет собой -OR3, R1 выбирают из группы, включающей С1-С8алкил, С1-С4алкил, присоединенный к (С4 -С8)циклоалкилу, и C4-С8циклоалкил, R2 означает водород или -C=OR9, R3 выбирают из группы, включающей (низш.)алкил и (низш.)алкил, замещенный группой R8, R8 представляет собой галоген, R9 представляет собой насыщенный 6-членный цикл, содержащий по меньшей мере один гетероатом N и необязательно замещенный группой, выбранной из (низш.)алкила, -С=O-R11 , (низш.)алкила, замещенного гидроксигруппой, =O, и 5- и 6-членных насыщенных циклов, содержащих по меньшей мере один гетероатом N, R11 представляет собой (низш.)алкил, или к его фармацевтически приемлемой соли, или к его сложному эфиру.

Изобретение относится к новым соединениям формулы I и формулы II и его фармацевтически приемлемые соли и сложные эфиры, где Z1, Z2 и Z3 каждый независимо выбирают из ряда C1-С6алкокси, -СН 2OCH3 и -CH 2OCH2CH3, или один из Z1, Z2 или Z3, означает водород, а два других каждый независимо выбирают из ряда C1-С 6алкил, C1-С6 алкокси, -Cl, -Br, -F, -CF3, -СН 2ОСН3, -СН2 ОСН2СН3, -OCH 2CH2R1, -CH 2-морфолино, -OR2, -ОСН 2CF3, -ОСН(СН3 )СН2OH и -COOQ, где Q выбирают из ряда водород и C1-С6алкил, или один из Z1, Z2 или Z3 означает водород, а два других вместе с двумя атомами углерода, включая связи между ними и бензольным циклом, к которому они присоединены, образуют цикл, выбранный из 5- и 6-членных ненасыщенных циклов, и 5- и 6-членных насыщенных циклов, которые содержат по меньшей мере один атом кислорода в качестве гетероатома, где R1 выбирают из ряда -F, -ОСН3, -N(СН 3)2 и ненасыщенные 5-членные циклы, содержащие по меньшей мере один атом азота или кислорода в качестве гетероатома, и где R2 означает 3-6-членный насыщенный цикл, a Y1 и Y 2 каждый независимо выбирают из ряда -Cl, -Br, -NO 2, -C N и С СН.

Изобретение относится к новым соединениям формулы I, где R означает -C(O)R1, где R1 выбирают из ряда C1 -С6алкил, -C=CHCOOH,-NHCH 2CH2R2, -N(CH 2CH2OH)CH2CH 2OH, -N(CH3)CH2 CH2NHCH3, -N(СН 3)СН2СН2N(СН 3)СН3, насыщенные 4-, 5- и 6-членные циклы и насыщенные и ненасыщенные 5- и 6-членные циклы, содержащие по меньшей мере один гетероатом, выбранный из ряда S, N и О, и необязательно замещенные группой, выбранной из ряда C 1-С6алкил, -C=O-R 5, -ОН, C1-С6 алкил, необязательно замещенный гидроксигруппой, C 1-С6алкил, необязательно замещенный группой ряда -NH2, -N-(C 1-С6)алкил, -SO2 СН3, =O, и 5- и 6-членные насыщенные циклы, содержащие по меньшей мере один гетероатом, выбранный из ряда N и О, где R5 выбирают из ряда Н, C 1-С6алкил, C1 -С6алкил, необязательно замещенный гидроксигруппой, и C1-С6алкил, необязательно замещенный группой -NH2, R 2 выбирают из ряда -N(СН3)СН 3, -NH2, морфолинил и пиперазинил, X1, Х2 и Х 3 независимо выбирают из ряда -ОН, С1 -С2алкил, C1-С 6алкокси, -Cl, -Br, -F, -СН2OCH 3 и -СН2OCH2 СН3, или один из X1 , Х2 или Х3 означает водород, а два других независимо выбирают из ряда гидрокси, С 1-С6алкил, C1 -С6алкокси, и морфолилметил, -N(СН3)СН 3, -СН2OH, -СООН или один из X 1, X2 или Х3 означает водород, а два других вместе с двумя атомами углерода, включая связи между ними в составе бензольного цикла, к которому они необязательно присоединены, образуют 5- или 6-членный насыщенный цикл, содержащий по меньшей мере один гетероатом, выбранный из ряда S, N и О, где R3 выбирают из ряда -F, -ОСН3, -N(СН3 )СН3, ненасыщенные 5-членный цикл, содержащий по меньшей мере один гетероатом N, R4 означает 3-5-членный насыщенный цикл, a Y1 и Y 2 каждый независимо выбирают из ряда -Cl, -Br, -NO 2, -C N и С СН, а также соединения формулы II.

Изобретение относится к способу получения соединения формулы III где R1 означает С 1-С4алкил, карбамоилированием соединения формулы II где R1 имеет значения, указанные выше, цианатом металла, причем реакцию проводят с использованием уксусной кислоты в присутствии большого избытка цианата металла и в отсутствие дополнительного растворителя.

Изобретение относится к новым производным фенил- и аминофенилалкилсульфонамида формулы где А обозначает (R1SO2NR2-), (R3R60NSO2NR2-); X обозначает -NH-, -СН2- или -OCH2-; Y обозначает 2-имидазолин, 2-оксазолин или 4-имидазол; R1 обозначает (низш.

Изобретение относится к новым 2-арилзамещенным N-арилимидазолинам формулы 1 или их фармацевтически приемлемым солям, возможно в форме кристаллов. Соединения обладают свойствами селективных ингибиторов циклооксигеназы-2 и могут найти применение для лечения воспалительных заболеваний.

Изобретение относится к новым соединениям формулы I и формулы II и его фармацевтически приемлемые соли и сложные эфиры, где Z1, Z2 и Z3 каждый независимо выбирают из ряда C1-С6алкокси, -СН 2OCH3 и -CH 2OCH2CH3, или один из Z1, Z2 или Z3, означает водород, а два других каждый независимо выбирают из ряда C1-С 6алкил, C1-С6 алкокси, -Cl, -Br, -F, -CF3, -СН 2ОСН3, -СН2 ОСН2СН3, -OCH 2CH2R1, -CH 2-морфолино, -OR2, -ОСН 2CF3, -ОСН(СН3 )СН2OH и -COOQ, где Q выбирают из ряда водород и C1-С6алкил, или один из Z1, Z2 или Z3 означает водород, а два других вместе с двумя атомами углерода, включая связи между ними и бензольным циклом, к которому они присоединены, образуют цикл, выбранный из 5- и 6-членных ненасыщенных циклов, и 5- и 6-членных насыщенных циклов, которые содержат по меньшей мере один атом кислорода в качестве гетероатома, где R1 выбирают из ряда -F, -ОСН3, -N(СН 3)2 и ненасыщенные 5-членные циклы, содержащие по меньшей мере один атом азота или кислорода в качестве гетероатома, и где R2 означает 3-6-членный насыщенный цикл, a Y1 и Y 2 каждый независимо выбирают из ряда -Cl, -Br, -NO 2, -C N и С СН.

Изобретение относится к новым производным фенил- и аминофенилалкилсульфонамида формулы где А обозначает (R1SO2NR2-), (R3R60NSO2NR2-); X обозначает -NH-, -СН2- или -OCH2-; Y обозначает 2-имидазолин, 2-оксазолин или 4-имидазол; R1 обозначает (низш.

Изобретение относится к сульфониламинокарбоновым кислотам формулы и/или их стереоизомерным формам, и/или физиологически приемлемым солям, где R1 означает фенил, фенил, одно- или двукратно замещенный группой С1-С6-алкил-О, галогеном, трифторметилом, группой С1-С6-алкил-О-С(О)-, метилендиокси-, R4-(R5)N-; триазол, тиофен, пиридин; R2 означает Н, С1-С6 алкил; R4 и R5 являются одниковыми или разными и означают Н, С1-С6-алкил; R3 означает Н, С1-С10-алкил, где алкил незамещен и/или один атом водорода алкильного остатка заменен гидроксилом, С2-С10-алкенил, R2-S(O)n-C1-C6-алкил, где n означает 0, 1, 2; R2-S(O)(=NH)-(С1-С6)-алкил и другие или R2 и R3 вместе образуют цикл с карбоксильной группой в качестве заместителя цикла частичной формулы II: где r означает 0, 1, 2, 3 и/или один из атомов углерода в цикле заменен -O-, и/или атом углерода в цикле частично формулы II однократно замещен фенилом; А означает ковалентную связь, -O-; В означает (СН2)m, где m означает нуль; Х означает -СН=СН- или S.

Изобретение относится к гетероциклическим соединениям, в частности . .

Ан ссср // 408948

Изобретение относится к фармации, в частности к химико-фармацевтической отрасли, и касается способа получения новых полусинтетических производных лютеина и астаксантина и может использоваться для получения лекарственных препаратов на основе этих соединений.

Изобретение относится к области получения пестицидов, в частности к технологии производства послевсходового гербицида имазамокса, имеющего химическую структуру -2-[4,5-дигидро-4-метил-4--5-оксо-1H-имидазол-2-ил]-5--3-пиридинкарбоновой кислоты. Способ получения -2-[4,5-дигидро-4-метил-4--5-оксо-1H-имидазол-2-ил]-5--3-пиридинкарбоновой кислоты включает синтез соли имазамокса из диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты и -2-амино-2,3-диметилбутирамида в присутствии трет-бутилата натрия или калия в толуоле или ксилоле при нагревании, растворение полученной соли в воде и отделение толуола или ксилола, последующий перевод полученной соли имазамокса в целевой продукт под действием соляной или серной кислоты и выделение целевого продукта. При этом предварительно удаляют влагу из раствора диметилового эфира 5-метоксиметил-2,3-пиридиндикарбоновой кислоты и -2-амино-2,3-диметилбутирамида в толуоле или ксилоле азеотропной отгонкой, а процесс получения соли имазамокса ведут в атмосфере инертного газа. Полученный раствор соли имазамокса очищают при перемешивании с 6-12 мас. активированного угля в расчете на исходный диметиловый эфир 5-метоксиметил-2,3-пиридиндикарбоновой кислоты в течение 1-2 ч и отработанный активированный уголь отфильтровывают. Полученный раствор соли имазамокса подкисляют до кислых значений рН, выделяют выпавший осадок целевого продукта фильтрованием, промывкой водой и высушиванием. Предлагаемый способ получения -2-[4,5-дигидро-4-метил-4--5-оксо-1H-имидазол-2-ил]-5--3-пиридинкарбоновой кислоты обеспечивает упрощение технологического процесса производства имазамокса, которое выражается в том, что исключено использование безводного растворителя, исключены стадии экстракции высококоррозионными растворителями, осушки и очистки органического экстракта, упаривание хлорорганических соединений, а также обеспечивает выход целевого продукта до 83,6.

Наверх