Нагружающая установка ствольного типа для исследования динамических свойств материалов

Изобретение относится к испытательной технике, к исследованию высокоскоростных ударных явлений, в частности к метательным установкам ствольного типа для проведения экспериментов по ударно-волновому нагружению исследуемых образцов при исследовании их динамических прочностных свойств. Установка включает ударник, размещенный в ее разгонном стволе, переходник ствола, вакуумную камеру, присоединенную со стороны среза разгонного ствола, систему вакуумирования, приемное основание для установки исследуемого образца, являющееся элементом вакуумной камеры, в которой также размещены средства регистрации, необходимые для проведения исследования в соответствии с требуемой методикой. Вакуумная камера выполнена из легкоразрушаемого под действием ударных нагрузок материала, переходник ствола соединяет ствол с вакуумной камерой. Приемное основание и корпус вакуумной камеры выполнены в виде единого конструктивного элемента. Свободный торец камеры закрыт съемной крышкой, а приемное основание делит общий объем камеры на две части. Патрубок для соединения с системой вакуумирования выполнен в переходнике, а в приемном основании выполнены каналы для соединения двух объемов камеры. Технический результат: расширение эксплуатационных возможностей установки, упрощение обслуживания и проведения эксперимента. 1 ил.

 

Изобретение относится к испытательной технике, к исследованию высокоскоростных ударных явлений, в частности к метательным установкам ствольного типа для проведения экспериментов по ударно-волновому нагружению исследуемых образцов при исследовании их динамических прочностных свойств.

При проведении исследований в экспериментальной механике и физике быстропротекающих процессов широкое распространение получили метательные установки ствольного типа.

Известен стенд с нагружающей установкой ствольного типа для проведения ударных испытаний (патент RU 2402004, публик. 02.09.2009, «Стенд для ударных испытаний»). Стенд представляет собой ствольную метательную установку с размещенными в ее разгонном стволе ударником и присоединенное со стороны среза разгонного ствола на некотором расстоянии под заданным углом приемное основание. Стенд снабжен датчиками регистрации момента прохода лобовой поверхностью ударника дульного среза ствола и момента соударения ударника с приемным основанием. На выходе из ствола размещены платформа и пленочная диафрагма, при этом ствол выполнен с возможностью вакуумирования участка между ударником и пленочной диафрагмой. Ударник снабжен расположенным сзади обтюратором, причем суммарная длина обтюратора и ударника больше расстояния от дульного среза ствола до мишени, закрепленной на платформе легко разрушаемыми и регулируемыми по длине связями.

Недостатком известного стенда является то, что при пробитии диафрагмы ударник испытывает возмущения, приводящие к изменению его исходного состояния. Кроме того, воздушная пробка, находящаяся между диафрагмой и приемным основанием, преднагружает исследуемый образец, расположенный на приемном основании. Помимо того, датчики, которые устанавливают на приемном основании, могут срабатывать не от воздействия ударника, а от воздушной пробки.

Известна другая установка ствольного типа для исследования динамических свойств материалов (A.M. Братов, А.К. Ломунов, А.Р. Филиппов «Универсальная установка для высокоскоростных исследований», Вестник Нижегородского университета им. Н.И. Лобачевского, 2010, №4 (1), с. 115-120), которая выбрана в качестве ближайшего аналога. Установка выполнена на базе газовой пушки калибра 85 мм, предназначенной для проведения широкого спектра исследований динамических свойств материалов при скоростях нагружения от 10 м/с до 500 м/с. Установка позволяет проводить эксперименты по различным методикам (метод прямого и обратного удара при нагружении, эксперименты на динамическое внедрение и т.д.). Установка включает ударник, размещенный в ее разгонном стволе и присоединенную со стороны среза разгонного ствола вакуумную камеру. Вакуумная камера служит для защиты помещения от осколков, а также для размещения приемного основания с исследуемым образцом, различными средствами регистрации и приспособлениями, необходимыми для проведения исследования в соответствии с требуемой методикой. Кроме того, вакуумирование ствола пушки и камеры позволяет исключить давление на исследуемый образец истекающего из ствола газа. Камера представляет собой стальной сосуд диаметром 600 мм и длиной 1800 мм. В ней предусмотрены монтажные и смотровые окна, патрубки для создания вакуума и отсоса пыли, образующейся при испытаниях образцов. Объем камеры составляет около 0,5 м3. Для создания вакуума используется пластинчато-роторный вакуумный насос 2НВР-5ДМ, позволяющий создавать гарантируемый вакуум 5×10-3мм. рт. ст. Приемное основание в виде диска крепится к переходнику ствола, который размещен в вакуумной камере. Переходник наворачивается на дульный срез ствола до упора. При соударении ударника с образцом ударная нагрузка через образец передается на приемное основание, а затем через шпильки крепления на вакуумную камеру. Ударного воздействия на крепежные элементы приемного основания при этом не происходит, и тем самым сохраняется параллельность опорной поверхности приемного основания и торцевой поверхности ударника.

Недостатком ближайшего аналога является большой объем вакуумной камеры, что приводит к усложнению обслуживания, проведения экспериментов, увеличению стоимости. Кроме того, установка соответствует конкретным задачам исследований и ограничивает возможность ее применения при более высоких скоростях нагружения и давлениях рабочего газа.

Техническим результатом заявляемого изобретения является расширение эксплуатационных возможностей установки, упрощение обслуживания и проведения эксперимента.

Указанный технический результат достигается за счет того, что в нагружающей установке ствольного типа для исследования динамических свойств материалов, включающей ударник, размещенный в ее разгонном стволе, переходник ствола, вакуумную камеру, присоединенную со стороны среза разгонного ствола, систему вакуумирования, приемное основание для установки исследуемого образца, являющееся элементом вакуумной камеры, в которой также размещены средства регистрации, необходимые для проведения исследования в соответствии с требуемой методикой, новым является то, что вакуумная камера выполнена из легкоразрушаемого под действием ударных нагрузок материала, переходник ствола соединяет ствол с вакуумной камерой, приемное основание и корпус вакуумной камеры выполнены в виде единого конструктивного элемента, свободный торец камеры закрыт съемной крышкой, а приемное основание делит общий объем камеры на две части, при этом патрубок для соединения с системой вакуумирования выполнен в переходнике, а в приемном основании выполнены каналы для соединения двух объемов камеры.

Выполнение вакуумной камеры из легкоразрушаемого под действием ударных нагрузок материала ведет к возможности использования в конструкции стенда недорогих узлов однократного применения, уменьшению объема вакуумной камеры, обеспечению широкого спектра вариантов нагружения и соответственно изменению (в сторону увеличения) скорости ударника и калибра установки.

Соединение камеры со стволом с помощью переходника позволяет оптимизировать компоновочное решение по размещению системы вакуумирования и ее соединения с камерой, что позволяет расширить эксплуатационные возможности установки за счет размещения патрубка для соединения с вакуумной системой вне камеры и увеличить скорость нагружения при сохранении системы вакуумирования при проведении эксперимента.

Выполнение приемного основания и корпуса вакуумной камеры в виде единого конструктивного элемента позволяет обеспечить идеальное плоскопараллельное взаимодействие ударника и образца при упрощении конструкции, исключении крепежных элементов, снятии требований по центровке приемного основания в вакуумной камере.

Разделение приемным основанием объема вакуумной камеры на две части позволяет простым способом сформировать дополнительную полость за приемным основанием, тем самым обеспечить вакуум, как перед приемным основанием, так и за ним, что приводит к требуемому, без перекоса, взаимодействию ударника с образцом Применение съемной крышки на торце камеры позволяет перенести действие избыточного давления (за пределами вакуумной камеры - атмосферное давление) на крышку, и как следствие исключить деформацию приемного основания, повысить достоверность получаемой в эксперименте информации, исключить требования герметизации при установке средств регистрации на приемном основании, объединить выводы средств регистрации и использовать различные гермопроходники, что существенно облегчает подготовку и проведение эксперимента.

Выполнение в приемном основании каналов для соединения двух частей камеры позволяет расширить эксплуатационные возможности установки при простоте процесса герметизации вакуумной камеры, снижении временных затрат на подготовку и проведение эксперимента.

На фиг. 1 приведена схема заявляемой установки, где: 1 - разгонный ствол; 2 - переходник между разгонным стволом и вакуумной камерой; 3 - поддон; 4 - ударник; 5 - поджимное кольцо; 6 - корпус вакуумной камеры; 7 - приемное основание; 8 -съемная крышка; 9 - зона размещения образца и средств регистрации; 10 - зона выводов средств регистрации; 11 - вакуумные каналы; 12 - патрубок для соединения с вакуумной системой.

Примером конкретного выполнения заявляемого устройства может служить установка для проведения экспериментов по ударно-волновому нагружению образцов материалов с целью исследования их динамических прочностных свойств. Пороховая нагружающая установка ствольного типа выполнена калибром 100 мм и включает пороховой метательный заряд, размещенный в камере сгорания, соединенной с разгонным стволом, переходник ствола, ударник, размещенный в разгонном стволе и присоединенную со стороны дульного среза разгонного ствола к переходнику вакуумную камеру с приемным основанием для размещения исследуемого образца. Камера выполнена из оргстекла. Корпус камеры и приемное основание выполнены в виде единого конструктивного элемента. Камера через поджимное кольцо соединена с переходником ствола. Приемное основание делит объем камеры на две части, при этом в приемном основании выполнены четыре канала для соединения этих частей. На приемном основании установлены средства регистрации - электроконтактные датчики, манганиновые датчики давления, оптические датчики PDV и VISAR. Свободный торец камеры закрыт съемной крышкой.

Перед проведением эксперимента ударник 4 размещают на поддоне 3 в разгонном стволе 1 установки, образец устанавливают на приемном основании 7 в вакуумной камеры 6, на котором также размещают средства регистрации. Свободный торец камеры 6 закрывают крышкой 8. После соединения камеры 6 через переходник 2 со стволом 1 ее и ствол вакуумируют через патрубок 12 до остаточного давления 10-6…10-4атм, при этом за счет выполнения каналов 11 в приемном основании 7 полость, расположенная между крышкой 8 и приемным основанием 7 вакуумируется одновременно с другой частью объема камеры 6 и стволом 1. Наружное давление составляет 1 атм. Для нагружения ударника 4 и придания ему требуемой скорости газы, образующиеся при сгорании порохового заряда, поступают в разгонный ствол 1. Ударник 4 разгоняется в стволе 1 до скорости 2000 м/с и плоскопараллельно соударяется с приемным основанием 7. При этом исключается преднагружение исследуемого образца, размещенного на приемном основании 7, воздушной пробкой, что обеспечивает точность измерений отклика исследуемого образца на ударно-волновое нагружение. Плоскопараллельное соударение достигается за счет точного изготовления поддона, ударника, вакуумной камеры, а также отсутствия деформации приемного основания под действием внешнего атмосферного давления, которое принимает на себя крышка 8 камеры 6. Данная установка проверена экспериментально в 10 опытах и планируется к широкому использованию при проведении аналогичных экспериментов на различных нагружающих установках ствольного типа.

Т.о. заявляемая установка позволяет обеспечить проведение экспериментальных исследований динамических прочностных свойств материалов при ударно-волновом нагружении при скоростях соударения до 2000-4000 м/с при снижении трудоемкости и стоимости проведения эксперимента.

Нагружающая установка ствольного типа для исследования динамических свойств материалов, включающая ударник, размещенный в ее разгонном стволе, переходник ствола, вакуумную камеру, присоединенную со стороны среза разгонного ствола, систему вакуумирования, приемное основание для установки исследуемого образца, являющееся элементом вакуумной камеры, в которой также размещены средства регистрации, необходимые для проведения исследования в соответствии с требуемой методикой, отличающаяся тем, что вакуумная камера выполнена из легкоразрушаемого под действием ударных нагрузок материала, переходник ствола соединяет ствол с вакуумной камерой, приемное основание и корпус вакуумной камеры выполнены в виде единого конструктивного элемента, свободный торец камеры закрыт съемной крышкой, а приемное основание делит общий объем камеры на две части, при этом патрубок для соединения с системой вакуумирования выполнен в переходнике, а в приемном основании выполнены каналы для соединения двух объемов камеры.



 

Похожие патенты:

Изобретение относится к методам контроля физико-химических процессов, вызывающих разрушение рабочей поверхности в парах трения при предельных нагрузках. Подготавливается образец, состоящий из двух пластин или из двух коаксиальных отрезков трубы, материалы которых соответствуют материалам испытываемого контакта, на одну из сторон образца наносят слой взрывчатого вещества, с обратной стороны обеспечивают контакт образца с твердой или демпфирующей средой, нагружение осуществляют путем подрыва взрывчатого вещества, образец пилят так, чтобы зона контакта была доступна для исследования, и проводят необходимую пробоподготовку для удаления остатков абразивного материала от инструмента, исследуют зону контакта на предмет появления продуктов механо-химических процессов, прошедших в нагруженной зоне, судят о физико-химических процессах на границе по составу, количеству и морфологии продуктов, фиксированных в зоне контакта.

Изобретение относится к технике получения кратковременных интенсивных импульсных давлений и может быть использовано для испытаний образцов ракетной техники на прочность к механическому (термомеханическому) действию рентгеновского излучения (РИ) ядерного взрыва (ЯВ).

Изобретение относится к области прикладной газовой динамики, а именно к устройствам для регулирования параметров избыточного давления воздушной ударной волны в канале ударной трубы, и предназначено для нагружения объектов воздушной ударной волной с заданным избыточным давлением.

Изобретение относится к испытательной технике. Установка содержит пороховое разгонное устройство, включающее камору и ствол с поршнем, контейнер для размещения объекта испытаний, включающий переходник в виде трубы, установленной соосно со стволом.

Изобретение относится к испытательному оборудованию. Способ заключается в том, что на основании располагают дополнительные плиты с закрепленными на них виброизолируемыми объектами и настраивают регистрирующую аппаратуру, а на основании устанавливают два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата.

Изобретение относится к испытательному оборудованию. Устройство содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами и регистрирующая аппаратура, на основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата.

Изобретение относится к устройствам для исследования ударно-волновых явлений в конденсированных средах и может быть использовано для получения нестационарных затухающих ударных волн (волн Тейлора) в конденсированной среде (в частности, в воде).

Изобретение относится к испытательному оборудованию. Способ заключается в том, что на основании, на котором установлена аппаратура летательных аппаратов в виде двух одинаковых бортовых компрессоров для получения сжатого воздуха на борту летательного аппарата, один компрессор устанавливают на штатных резиновых виброизоляторах, а другой компрессор устанавливают на исследуемой двухмассовой системе виброизоляции, включающей в себя резиновые виброизоляторы и упругодемпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана, которые также, как и штатные резиновые виброизоляторы компрессора, устанавливают на жесткой переборке, которую через вибродемпфирующую прокладку устанавливают на основании.

Изобретение относится к химическому и общему машиностроению, в частности к системам безопасности, предотвращающим развитие чрезвычайной ситуации. Технически достижимый результат - повышение эффективности защиты технологического оборудования и людских ресурсов от аварийных ситуаций путем возможности прогнозирования развития чрезвычайной ситуации при аварии на взрывоопасном объекте.

Изобретение относится к испытательному оборудованию. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующая аппаратура, на основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата.

Изобретение относится к испытательной технике и может быть использовано для испытания объектов на комплексное воздействие механических нагрузок. Способ включает размещение ОИ в контейнере, хвостовая часть которого расположена в стволе разгонного устройства, нагружение ОИ механическим импульсом с пиковым ускорением не менее 100000 м/с2 в процессе разгона контейнера под действием высокого давления в стволе разгонного устройства, измерение характеристик ОИ, перемещение контейнера с ОИ в процессе и после разгона, по крайней мере, по одной направляющей, торможение ОИ.

Изобретение относится к испытательной технике и может быть использовано для испытания объектов на воздействие интенсивных механических нагрузок. Устройство содержит металлическое основание, имеющее заходящую в ствол разгонного устройства стенда динамических испытаний цилиндрическую хвостовую часть и надкалиберную часть, выполненную с возможностью установки объекта испытаний (ОИ) и соединенную с опорой скольжения, выполненной в виде башмака, охватывающего рельсовую направляющую.

Изобретение относится к области строительства и может быть использовано при испытании элементов или конструкций зданий и сооружений для оценки напряженно-деформированного состояния при воздействии сверхнормативных кратковременных динамических нагрузок.

Изобретение относится к области строительства и может быть использовано при испытании элементов или конструкций зданий и сооружений с численной оценкой напряженно-деформированного состояния конструкции при воздействии сверхнормативных кратковременных динамических нагрузок.

Изобретение относится к испытательной технике. Установка содержит устройство формирования внешнего ударного воздействия и контейнер, снабженный держателем объекта исследования, позволяющим изменять положение объекта исследования для регулирования характеристик ударной нагрузки, при этом держатель жестко скреплен с контейнером и в нем выполнено, по крайней мере, одно посадочное место под размещение объекта исследования, держатель выполнен сменным, с возможностью замены на другой держатель, различающийся углом наклона посадочного места к оси контейнера, причем угол наклона выбирают из условия обеспечения требуемых величин продольной и поперечной нагрузок, моделируемых при ударном воздействии на объект исследования.

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие ударных перегрузок в двух направлениях одновременно.

Изобретение относится к области прикладной газовой динамики, а именно к устройствам для регулирования параметров избыточного давления воздушной ударной волны в канале ударной трубы, и предназначено для нагружения объектов воздушной ударной волной с заданным избыточным давлением.

Изобретение относится к испытательной технике. Установка содержит пороховое разгонное устройство, включающее камору и ствол с поршнем, контейнер для размещения объекта испытаний, включающий переходник в виде трубы, установленной соосно со стволом.

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие динамических нагрузок. Нагружающая установка содержит зарядную камеру с затвором.

Изобретение относится к устройствам, имитирующим метательные снаряды. Метательный снаряд для имитации столкновения с птицей содержит объемное тело с контуром столбчатой формы, имеющее передний конец и задний конец, отверстие, открытое на переднем конце, и полость, удлиненную от отверстия к заднему концу, при этом объемное тело выполнено из гелеобразного или желеобразного материала, причем отверстие закрыто опорным элементом, выполненным из материала, имеющего более низкую плотность по сравнению с гелеобразным или желеобразным материалом.

Изобретение относится к испытательной технике, к исследованию высокоскоростных ударных явлений, в частности к метательным установкам ствольного типа для проведения экспериментов по ударно-волновому нагружению исследуемых образцов при исследовании их динамических прочностных свойств. Установка включает ударник, размещенный в ее разгонном стволе, переходник ствола, вакуумную камеру, присоединенную со стороны среза разгонного ствола, систему вакуумирования, приемное основание для установки исследуемого образца, являющееся элементом вакуумной камеры, в которой также размещены средства регистрации, необходимые для проведения исследования в соответствии с требуемой методикой. Вакуумная камера выполнена из легкоразрушаемого под действием ударных нагрузок материала, переходник ствола соединяет ствол с вакуумной камерой. Приемное основание и корпус вакуумной камеры выполнены в виде единого конструктивного элемента. Свободный торец камеры закрыт съемной крышкой, а приемное основание делит общий объем камеры на две части. Патрубок для соединения с системой вакуумирования выполнен в переходнике, а в приемном основании выполнены каналы для соединения двух объемов камеры. Технический результат: расширение эксплуатационных возможностей установки, упрощение обслуживания и проведения эксперимента. 1 ил.

Наверх