Способ изготовления изделий из композиционных материалов



Способ изготовления изделий из композиционных материалов
Способ изготовления изделий из композиционных материалов
Способ изготовления изделий из композиционных материалов
Способ изготовления изделий из композиционных материалов

Владельцы патента RU 2707361:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ) (RU)

Изобретение относится к способу изготовления изделий из композиционных материалов с наполнителями и может быть использовано при производстве и изготовлении изделий из композиционных материалов посредством прессования. Прессование проводится в закрытой пресс-форме при непрерывном воздействии на прессующий пуансон энергии ультразвуковых колебаний. Характеристики ультразвукового воздействия: частота от 17 до 40 кГц, амплитуда от 8 до 30 мкм. Дополнительно вместе с частотой накладывается амплитудная модуляция в пределах от 50 до 500 Гц. После этого с изделием проводят нагрев, выдержку и ступенчатое охлаждение до комнатной температуры. При изготовлении образцов способом по изобретению предел прочности в среднем повышается на 6%, модуль упругости - на 13%. При этом относительное удлинение снижается на 12%, а скорость изнашивания снижается на 14%. Технический результат, достигаемый при использовании способа по изобретению, заключается в существенном увеличении ресурса работы и надежности узлов трения. 1 ил., 4 табл.

 

Изобретение относится к области материаловедения, в частности к антифрикционным композиционным материалам (КМ), и может быть использовано при изготовлении деталей из композиционных материалов в различных отраслях промышленности.

Известен способ изготовления изделий из политетрафторэтилена (ПТФЭ) и КМ на его основе (см. Д.Д. Чегодаев, З.К. Наумова, И.С. Дунаевская. Фторопласты. Л.: Изд-во Химической литературы. 1960), при котором порошок ПТФЭ засыпают в пресс-форму и равномерно распределяют по всему объему, прессуют при комнатной температуре под давлением 35 МПа, спекают в свободном состоянии при температуре 360-380°С и охлаждают вместе с печью. Этот способ имеет недостатки, поскольку изделия и заготовки имеют недостаточный уровень механической прочности, высокий и нестабильный уровень усадки.

Известен другой способ изготовления изделий из КМ на основе ПТФЭ (АС №1812190, МПК C08J 5/15), при котором порошки ПТФЭ, бронзы, дисульфида молибдена и измельченных углеродных волокон смешивают в смесителе с частотой вращения ножей 2800 мин-1, прессуют заготовки при давлении 100-110 МПа и спекают при температуре 360±5°С, охлаждают от температуры спекания до 327°С со скоростью 0,3-0,4 град/мин, от 327 до 20°С - свободно вместе с печью. При этом измельченное углеродное волокно получают из углеволокнистого материала, выдержанного в жидком фреоне не менее 48 часов. После сушки материал разрезают на кусочки и измельчают в мельнице в присутствии порошка ПТФЭ при частоте вращения ножей 7000 мин-1 в течение 3-9 мин.

Основной недостаток способа заключается в том, что при холодном прессовании невозможно достичь достаточно плотной упаковки частиц матрицы и наполнителей. Обработка углеродного волокна в жидком фреоне в течение 48 часов также не обеспечивает решение этой задачи, а двух-, трехкратное увеличение давления прессования до 100-110 МПа лишь частично способствует повышению плотности упаковки частиц. В результате предел прочности композиционного материала снижается, увеличиваются затраты на производство (расходуется фреон, увеличиваются энергетические затраты и износ прессового оборудования) и снижается производительность.

Известен также другой способ изготовления изделий из КМ на основе ПТФЭ (патент RU 2324708 С2, МПК C08J 5/14, C08J 5/16), взятый в качестве прототипа, как наиболее близкий по технической сущности и предлагаемому, при котором результат достигается за счет использования энергии ультразвуковых колебаний частотой 20±3 кГц и амплитудой колебаний в пределах 8÷12 мкм при прессовании композиционной смеси. При этом колебания непрерывно воздействуют на прессующий пуансон в течение 2÷3 минут. Предварительно проводят смешивание порошков смеси в смесителе с частотой вращения ножей не менее 2800 мин-1. Холодное прессование композиции производят в закрытой пресс-форме под давлением 50±5 МПа. Отпрессованную заготовку нагревают в печи до температуры 360±5°С со скоростью 1,5-2,0°С/мин. Затем выдерживают при этой температуре 8÷9 мин на 1 мм толщины стенки изделия и охлаждают до температуры 327°С со скоростью 0,3-0,4°С/мин и от 327°С до комнатной температуры вместе с печью.

Рассмотренному способу также присущи недостатки, снижающие характеристики механических и триботехнических свойств композиционного материала, поскольку данный способ не в полной мере использует возможности ультразвукового воздействия, которые учитывали бы, как массу прессуемого изделия, так и его конкретные конструктивные особенности, в частности, пространственную сложность и толщину стенок.

Задача изобретения - повышение характеристик механических и триботехнических свойств композиционного материала и экономичности технологического процесса получения изделий из КМ с учетом их физико-химических свойств и структурных особенностей.

Указанный технический результат достигается тем, что в известном способе изготовления изделий из композиционных материалов, при котором производят их смешивание, холодное прессование в закрытой пресс-форме при непрерывном воздействии на прессующий пуансон энергии ультразвуковых колебаний, нагревание, выдержку и ступенчатое охлаждение до комнатной температуры, осуществляют ультразвуковое воздействие на частотах от 17 до 40 кГц при максимальной амплитуде от 8 до 30 мкм с наложением амплитудной модуляции с частотой от 50 до 500 Гц.

Для реализации предлагаемого способа был применен специально разработанный ультразвуковой высокоамплитудный аппарат с пьезокерамическим излучателем и специально изготовленным волноводом-инструментом из высокопрочного титанового сплава.

На фиг. представлена упрощенная схема аппарата, который состоит из ультразвукового генератора 1 с режимом регулируемой амплитудной модуляции выходного сигнала, выход которого подключен к излучателю 2 с подсоединенным к нему ультразвуковым волноводом-инструментом 3 в виде специального волновода-пуансона, представляющего собой полуволновой стержень с экспоненциальным законом изменения площади поперечного сечения и совершающий под рабочей нагрузкой продольные колебания с заданной частотой и амплитудой.

Отработка заявляемого способа производилась на композиции с составом: ПТФЭ 95% + нитрид бора 5%, по следующей технологии.

Композицию из порошков смешивают в смесителе с частотой вращения ножей 2800 мин-1, прессуют заготовки под давлением 50-55 МПа с одновременным воздействием на прессуемую смесь энергии ультразвукового воздействия на частотах от 17,5 до 40 кГц и максимальной амплитудой от 8 до 30 мкм осуществляют с наложением амплитудной модуляции глубиной от 30% до 80% с частотой от 50 до 500 Гц в зависимости от массы прессуемого изделия и спекают при температуре 360±5°С в течение 8-9 мин на 1 мм толщины стенки изделия, охлаждают от температуры спекания до 327°С со скоростью 0,3-0,4°С/мин, а далее до 20°С - свободное охлаждение с печью

При введении ультразвуковых колебаний различных частот, отличающихся друг от друга на несколько порядков, создаются благоприятные условия для взаимного действия интенсивных акустических потоков.

При ультразвуковом воздействии на КМ, ПТФЭ начинает терять механические свойства и переходит в пластичную массу, которая обволакивает частицы наполнителя. Распространение ультразвуковых волн в прессуемом материале последовательное («сверху» в «низ»), что создает неравномерное распределение акустических волн при воздействии на материал, а также влияет на увеличение времени прессования. В поверхностном слое изменяется структура материала, которая влияет на скорость звука в образцах.

В условиях ультразвуковых колебаний существенно снижается сила сцепления (взаимодействия) частиц композиционной смеси, они легко смещаются относительно друг друга и под давлением прессования достигается значительное сближение и плотная упаковка частиц смеси. Но обычное использование ультразвуковых колебаний не обеспечивает требуемые для качественного прессования уровни сближения и упаковки частиц смеси, особенно при их значительной разнице в размерах и физических свойствах. Наличие пустот, каверн, либо крупных, слабо контактирующих друг с другом комков существенно снижает возможности ультразвукового воздействия. Кроме того, специфика акустических колебаний, распространяющихся в мелкодисперсных средах, определяет связь наиболее эффективной частоты воздействия с уровнем дисперсности и величиной давления при прессовании.

Чем более высоким является уровень дисперсности среды, тем эффективнее использование более высокочастотных колебаний, поскольку снижается амплитуда колебаний (которая должна быть сопоставима с размерами прессуемых частиц) при сохранении энергетического уровня воздействия. С другой стороны, для эффективного воздействия на крупные объединения частиц и внутренние пустоты, необходимо использование низкочастотных колебаний, причем требуемый уровень снижения может превышать один-два порядка. Для достижения необходимой эффективности ультразвукового воздействия предлагается:

- изменять прямо пропорционально частоту ультразвукового воздействия от 17 кГц до 40 кГц и обратно пропорционально амплитуду от 30 мкм до 8 мкм, соответственно в зависимости от среднего уровня дисперсности используемых композиционных материалов;

- изменять прямо пропорционально частоту и обратно пропорционально амплитуду ультразвукового воздействия в зависимости от толщины стенок и конструктивной сложности прессуемых изделий из полимерных композиционных материалов;

- изменять частоту модуляции от 50 Гц до 500 Гц обратно пропорционально массе прессуемого изделия и зернистости материала. Для обеспечения большего эффекта прессования при наложении низкочастотной амплитудной модуляции совместно с высокочастотной, которая обеспечивает последовательное термическое воздействие и ультразвуковое уплотнение, происходит дополнительная равномерная вибрация («сжатие» «разжатие») прессуемого изделия. Из вышеописанного можно прийти к выводу, что для больших масс изделия целесообразно использовать меньшую амплитудную модуляцию (50 Гц), для меньших масс большую (500 Гц).

Сближение частиц до уровня межмолекулярного взаимодействия способствует значительному усилению связей между частицами, которые окончательно стабилизируются в процессе последующей термообработки (спекании), благодаря чему достигается значительное повышение механической прочности композиционного материала.

Кроме того, использование энергии ультразвуковых колебаний позволяет исключить малоэффективную операцию обработки углеродных волокон в жидком фреоне в течение 48 часов с последующей сушкой и в 2 раза со 110 до 65 МПа снизить давление прессования.

После получения изделий по предлагаемому способу, определение предела прочности при растяжении σв и относительного удлинения при растяжении производилось по методикам ГОСТ 11262-80, модуля упругости - по методике ГОСТ 9550-81.

Износостойкость КМ определяют по скорости изнашивания на машине трения, работающей по схеме трения «палец - диск». Пальцы диаметром 5 мм изготавливают из испытуемого материала, диск (контртело) - из закаленной углеродистой или легированной стали. Испытание ведут при скорости скольжения 1 м/с и контактном давлении 3 МПа.

Необходимое давление прессования и продолжительность воздействия ультразвука определяются из условия получения максимальной прочности композиционного материала. Согласно исследованиям описанным в статье (Negrov, D.A. Mechanical and operational properties of boron nitride-modified polytetrafluoroethylene / Negrov, D.A., Eremin, E.N., Filippov, Y.O. // AIP Conference Proceedings 2007,040012 DOI: 10.1063/1.5051939), для получения наилучшего значения показателей механических свойств (предел прочности, модуль упругости), оптимальное время прессования с наложением ультразвуковых волн на материал ПТФЭ модифицированным нитридом бора составляет 90 секунд, при давлении прессования 65 МПа с момента начала прессования, т.е. с момента контакта волновода-пуансона с прессуемой смесью.

Для оценки эффективности заявляемого способа проведены испытания пальцев, изготовленных по известному и заявляемому способам. В таблицах 1-4 приведены сравнительные данные об относительном изменении показателей механических и триботехнических свойств.

Из приведенных данных следует, что при изготовлении образцов по заявляемому способу предел прочности в среднем повышается на 6%, модуль упругости - на 13%. При этом относительное удлинение и скорость изнашивания снижаются в среднем на 12 и 14%. Комплексное улучшение механических и триботехнических свойств композиционного материала, изготовленного по предлагаемому способу, выражающееся в повышении модуля упругости и износостойкости, а так же снижение, позволяет существенно увеличить ресурс работы и надежность узлов трения (подшипников скольжения, направляющих, герметизирующих устройств) и машин в целом.

Способ изготовления изделий из композиционных материалов, при котором осуществляют смешивание наполнителей, холодное прессование в закрытой пресс-форме при воздействии на прессующий пуансон энергии ультразвуковых колебаний, нагревание, выдержку и ступенчатое охлаждение до комнатной температуры, отличающийся тем, что ультразвуковое воздействие на частотах от 17 до 40 кГц и амплитудой от 8 до 30 мкм осуществляют с наложением амплитудной модуляции с частотой от 50 до 500 Гц.



 

Похожие патенты:

Изобретение относится к химической промышленности, в частности к производству уплотнительных прокладочных материалов - паронитов, и может быть использовано в химической, нефтехимической, автомобильной, судостроительной и др.
Изобретение относится к способу обработки мелкодисперсных порошковых наполнителей композиционных материалов и может быть использовано при производстве композиционных материалов фрикционного назначения.

Настоящее изобретение относится к суспензии, содержащей совокупность абразивных зерен и связующее вещество. Суспензия, содержащая совокупность абразивных зерен и связующее вещество, отличается тем, что гранулометрическая фракция D40-D60 указанной совокупности абразивных зерен содержит более 15 об.% и менее 80 об.% зерен, имеющих округлость менее 0,85, при этом процентили D40 и D60 представляют собой процентили интегральной кривой гранулометрического состава размеров зерен, соответствующие размерам зерен, которые позволяют отделять фракции, которые составляют 40 об.% и 60 об.%, соответственно, зерен, имеющих наибольшие размеры; и указанные абразивные зерна представляют собой более 25% и менее 46% от массы указанной суспензии.

Изобретение относится к абразивным частицам и материалам, которые могут быть применены для пескоструйной очистки поверхности, полировки или шлифовки широкого спектра материалов и поверхностей.

Изобретение относится композиционным абразивам и может использоваться для полировки или финишной обработки металлических поверхностей в широком диапазоне. Изделие для обработки поверхности содержит органическую матрицу и связующее.
Изобретения относятся к области машиностроения. Способ заключается в добавлении к имеющему открытую пористость несущему материалу с высокой удельной поверхностью связующего средства.
Изобретение относится к композиционным фрикционным неметаллическим материалам на основе полимеров, а именно к материалам на основе фенолформальдегидной смолы, и может быть использовано при изготовлении амортизаторов, муфт сцепления, тормозных узлов и т.п.
Изобретение относится к области машиностроения, а именно к тормозным фрикционным накладкам, эксплуатирующимся в тормозных и фрикционных узлах автотракторной техники, различных машин и оборудования, где фрикционный контакт происходит в среде масла.
Изобретение относится к получению фрикционных пресс-материалов, которые могут использоваться при изготовлении тормозных накладок, дисков сцепления, а также при изготовлении высокопрочных конструкционных материалов для машиностроения, электротехники и других целей.
Изобретение относится к области железнодорожного транспорта, в частности к способу изготовления тормозных колодок подвижного железнодорожного состава. .

Изобретение относится к композиционным вибропоглощающим полимерным материалам, предназначенным для эксплуатации при температурах от минус 60°С до плюс 80°С в гражданском строительстве, вагоно-, автомобиле-, судостроении, авиации и других областях техники, где требуется защита от вибрации.

Изобретение относится к области композитных материалов. Описана термопластичная композиция с высокой текучестью в расплавленном состоянии, содержащая: от 80 до 99,8 вес.% термопластичной полимерной матрицы, от 0,1 до 10 вес.% олигомера циклического сложного эфира, причем указанный олигомер имеет степень полимеризации от 2 до 25 и от 0,1 до 12 вес.% фенольного полимера.

Изобретение относится к технологиям получения изделий из композиционных материалов на основе полиамида. Техническим результатом является расширение пределов регулирования вязкости мономеров при получении деталей из полиамидов.

Изобретение относится к химической промышленности, в частности к производству уплотнительных прокладочных материалов - паронитов, и может быть использовано в химической, нефтехимической, автомобильной, судостроительной и др.

Изобретение относится к изготовлению методом формования вулканизированных полимерных заготовок и последующим изготовлением из них твердых изделий сложной формы с гибридной композитной матрицей, которые могут найти применение в различных областях техники.

Настоящее изобретение относится к армированному композиционному материалу на основе органических волокон природного происхождения, применяемому в качестве тепловой или аккустической изоляции, а также к способу его получения.

Изобретение относится к термоформованным изделиям, в частности к термоформованным стаканам, включающим боковую стенку, состоящую из полимера на основе пропилена, содержащего ароматический сложный диэфир замещенного фенилена, выбранный из группы 3-метил-5-трет-бутил-1,2-фенилендибензоата и 3,5-диизопропил-1,2-фенилендибензоата и характеризующуюся значением мутности от 1 до 10% при измерении в соответствии с ASTM D 1003.

Изобретение относится к способу получения композиционного материала для микроэлектроники. Способ включает приготовление жидкой полимерной основы растворением полимера в органическом растворителе, введение в полученный раствор металлофталоцианина, перемешивание до образования однородной жидкой смеси, введение в нее микро- и наноразмерных частиц неорганического вещества из полупроводниковых, металлических и магнитных веществ, перемешивание до получения однородной массы и сушку при 26-40°C для удаления растворителя.

Изобретение относится к теплозащитным покрытиям, предназначенным для защиты внутренних поверхностей прямоточных воздушно-реактивных двигателей от воздействия высокоэнтальпийных потоков продуктов сгорания топлива с высокими скоростями обтекания (200-300 м/с), температурой горения ~2000°С в окислительной среде.

Изобретение относится к технологии изготовления углепластиков. В способе изготовления конструкционного термопластичного углепластика формируют препрег посредством сушки наполнителя, нанесения на него полифениленсульфидного связующего и пропитки его указанным связующим, формируют слои препрега и собирают из них пакет, размещают его между плитами пресс-формы, предварительно нагретыми выше температуры плавления связующего, прессуют указанный пакет при температуре, превышающей температуру плавления связующего, и охлаждают полученный углепластик под давлением.

Изобретение относится к полке лонжерона для роторной лопасти ветроэнергетической установки и способу изготовления полки лонжерона. Полка (200) лонжерона для роторной лопасти (108) ветроэнергетической установки (100) имеет продольную протяженность (L) от первого конца (210) до второго конца (220), поперечную протяженность (Q), проходящую под прямым углом к продольной протяженности L, и толщину D, проходящую под прямым углом к продольной протяженности (L) и к поперечной протяженности (Q), по меньшей мере два пласта первого композитного материала (300), и по меньшей мере один пласт второго композитного материала (400).

Изобретение относится к способу изготовления изделий из композиционных материалов с наполнителями и может быть использовано при производстве и изготовлении изделий из композиционных материалов посредством прессования. Прессование проводится в закрытой пресс-форме при непрерывном воздействии на прессующий пуансон энергии ультразвуковых колебаний. Характеристики ультразвукового воздействия: частота от 17 до 40 кГц, амплитуда от 8 до 30 мкм. Дополнительно вместе с частотой накладывается амплитудная модуляция в пределах от 50 до 500 Гц. После этого с изделием проводят нагрев, выдержку и ступенчатое охлаждение до комнатной температуры. При изготовлении образцов способом по изобретению предел прочности в среднем повышается на 6, модуль упругости - на 13. При этом относительное удлинение снижается на 12, а скорость изнашивания снижается на 14. Технический результат, достигаемый при использовании способа по изобретению, заключается в существенном увеличении ресурса работы и надежности узлов трения. 1 ил., 4 табл.

Наверх