Термоэмиссионный преобразователь, встраиваемый в конструкцию высокоскоростных летательных аппаратов

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе систем тепловой защиты и бортовых источников электрической энергии гиперзвуковых летательных аппаратов (ГЛА). Назначением этого ТЭП является получение электроэнергии в сочетании с эффективным охлаждением элементов конструкции ГЛА, таких как передние кромки крыльев, рулевых поверхностей и т.д. Термоэмиссионный преобразователь, встраиваемый в конструкцию высокоскоростного летательного аппарата, включает выполненные в виде труб и герметизированные с двух сторон эмиттер и размещенный внутри него коллектор при их взаимной электрической и тепловой развязке. Наружная поверхность эмиттерной трубы имеет жаростойкое покрытие, например, дисилицид молибдена. Коллекторная труба снабжена одним или более токовыводами и одним или более входными/выходными патрубками контура охлаждения коллектора. Токовыводы и патрубки подсоединены к боковой поверхности коллекторной трубы, расположены в пределах одной полуокружности и снабжены соответственно расположенными им гермовводами. При этом в состав каждого гермоввода входят металлокерамический и сильфонный узлы. В качестве теплоносителя в контуре охлаждения коллектора может использоваться топливо двигателя летательного аппарата, при этом для согласования допустимой температуры этого топлива с температурой коллектора внутренняя поверхность коллектора снабжена теплоизоляционным материалом. Контур охлаждения коллектора может быть выполнен в виде испарительного участка Т-образной тепловой трубы. Технический результат - повышение надежности тепловой защиты и бортовых источников электрической энергии ГЛА. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе систем тепловой защиты и бортовых источников электрической энергии гиперзвуковых летательных аппаратов (ГЛА). Назначением этого ТЭП является получение электроэнергии в сочетании с эффективным охлаждением элементов конструкции ГЛА, таких как передние кромки крыльев, рулевых поверхностей и т.д.

Известна схема термоэмиссионного преобразователя с полуцилиндрическими коаксиальными электродами, встроенного в переднюю кромку крыла ГЛА таким образом, что наружная поверхность эмиттера подвергается аэродинамическому нагреву (А.В. Колычев. «Активная тепловая защита элементов конструкции гиперзвукового летательного аппарата на новых физических принципах при аэродинамическом нагреве». Электронный журнал «Труды МАИ», выпуск №51, УДК 629.782, www.mai.ru/science/trudy). Изменение тока в электрической цепи ТЭП позволяет управлять интенсивностью электронного охлаждения кромки крыла, а вырабатываемая при этом электроэнергия используется для бортовых нужд ГЛА.

Известная схема не нашла технической реализации, поскольку невозможно обеспечить герметизацию межэлектродного зазора по периметру электродов полуцилиндрической формы при их тепловой и электрической развязке.

На сегодняшний день в технически реализованных и перспективных конструкциях ТЭП используются только цилиндрические коаксиальные, либо плоско-параллельные электроды.

Наиболее близким по технической сущности к заявляемому изобретению является термоэмиссионный преобразователь с коаксиальными цилиндрическими электродами, с внешним расположением эмиттера, нагреваемого пламенем (Ушаков В.А., Никитин В.Д., Емельянов И.Я. Основы термоэмиссионного преобразования энергии. М, Атомиздат, 1974, стр. 131-132). Коаксиальные цилиндрические электроды этого ТЭП выполнены в виде стаканов с полусферическим днищем, вставленных один в другой при их взаимной электрической и тепловой развязке с помощью гермоввода, содержащего металлокерамический узел. Нагрев эмиттера, изготовленного из вольфрама, осуществляется со стороны его днища, а коллектор охлаждается с противоположной стороны тепловой трубой.

Однако это устройство, взятое в качестве прототипа, не может быть использовано в составе систем тепловой защиты и бортовых источников электрической энергии ГЛА по следующим причинам:

- геометрия внешней поверхности эмиттера и взаимное расположение составных частей ТЭП не соответствует форме элементов конструкции ГЛА, подвергающихся наиболее интенсивному аэродинамическому нагреву, таких как передние кромки крыльев, рулевых поверхностей и т.д.;

- вольфрамовый эмиттер в условиях гиперзвукового полета (нагрев в атмосфере до температур более 1300°C) будет разрушаться интенсивной газовой коррозией;

Задачей изобретения является разработка конструкции ТЭП, пригодной к использованию в составе систем тепловой защиты и бортовых источников электрической энергии ГЛА.

Поставленная задача решается за счет того, что в термоэмиссионном преобразователе с выполненными в виде труб эмиттером и размещенным внутри него охлаждаемым коллектором при их взаимной электрической и тепловой развязке с помощью, по крайней мере, одного гермоввода, содержащего металлокерамический узел, согласно изобретению эмиттерная и коллекторная трубы герметизированы с двух сторон, на наружной поверхности эмиттерной трубы создано жаростойкое покрытие, коллекторная труба снабжена одним или более токовыводами и одним или более входными/выходными патрубками контура охлаждения коллектора, при этом токовыводы и патрубки расположены на боковой поверхности коллекторной трубы в пределах одной полуокружности и снабжены соответственно им расположенными гермовводами, содержащими в своем составе сильфонные узлы.

В частных случаях осуществления изобретения:

- эмиттер выполнен с переменной по его окружности толщиной стенки, которая выбирается из условия равномерности величины плотности азимутального теплового потока по этой окружности;

- в качестве теплоносителя в контуре охлаждения коллектора используется топливо двигателя летательного аппарата, а для согласования допустимой температуры топлива с температурой коллектора внутренняя поверхность коллектора и входных/выходных патрубков контура охлаждения покрыта теплоизоляционным материалом;

- контур охлаждения коллектора выполнен в виде испарительного участка Т-образной тепловой трубы;

- в качестве материала эмиттера выбран молибден;

- в качестве материала жаростойкого покрытия выбран дисилицид молибдена.

Сущность изобретения поясняется с помощью фигур графических изображений.

На фиг. 1 представлена схема встраиваемого в переднюю (по направлению полета) кромку крыла ГЛА ТЭП, в котором для охлаждения коллектора в качестве теплоносителя может использоваться топливо для двигателя ГЛА. Коллектор 1 выполнен в виде герметизированной с обеих сторон круглой трубы и размещен внутри эмиттера 2. Эмиттер 2 выполнен в виде герметизированной с обеих сторон трубы со смещенным продольным отверстием и снабжен снаружи жаростойким покрытием 4. Межэлектродный зазор (МЭЗ) между коллектором 1 и эмиттером 2 обеспечен дистанционаторами 3. В пределах одной полуокружности коллектора 1 перпендикулярно продольной оси коллектора 1 размещены его токовыводы 5 и присоединены входные/выходные патрубки 6 контура охлаждения коллектора для охлаждающего топлива, направление прокачки которого показано стрелками. Тепловая и электрическая развязка электродов ТЭП в районе указанных токовыводов 5 и патрубков 6 реализована с помощью гермовводов, состоящих из сильфонных узлов 7 и металлокерамических узлов 8. Шины для токосъема с обоих электродов условно показаны знаками «+» и «-».

С целью обеспечения возможности непосредственного охлаждения коллектора топливом для двигателя ГЛА на внутреннюю поверхность коллектора 1 и входных/выходных патрубков 6 нанесено покрытие 9 из материала с низкой теплопроводностью для согласования допустимой температуры топлива с температурой коллектора. Тепло, поступающее на коллектор 1, поглощается за счет теплоемкости этого топлива, прокачиваемого внутри коллектора и поступающего затем в двигатель ГЛА. В результате происходит охлаждение коллектора до его оптимальной температуры 600-700°C. Такая температура может оказаться недопустимой для топлива (например, при температуре выше -400°C происходит коксование авиационного керосина). Поэтому ограничение роста температуры охлаждающего топлива в допустимых пределах обеспечивается покрытием 9, которое наносят на внутреннюю поверхность коллектора и входных/выходных патрубков контура охлаждения. В качестве материалов для покрытия 9 используют материал с низкой теплопроводностью, предотвращающий непосредственный тепловой контакт топлива с поверхностью коллектора 1 и входных/выходных патрубков 6 контура охлаждения.

На фиг. 2 представлена схема встраиваемого в кромку крыла ГЛА ТЭП, в котором контур охлаждения коллектора 1 выполнен в виде испарительного участка Т-образной тепловой трубы 10 с фитилем. Позиции с 1 по 8 на фиг. 2 обозначают те же конструктивные элементы, соответственно представленные на фиг. 1. Направление движения пара рабочего тела в тепловой трубе 10 показано стрелкой. Тепло, поступающее на коллектор 1, который по существу совмещен с испарительным участком тепловой трубы, отводится трубой 10 к менее нагретым аэродинамическим потоком элементам конструкции ГЛА (например, к аэродинамическим поверхностям вблизи их задних кромок) и затем излучается ими в окружающее пространство.

Термоэмиссионный преобразователь, встраиваемый в конструкцию высокоскоростных летательных аппаратов, работает следующим образом.

Во время полета эмиттер 2 ТЭП, установленный в ГЛА со стороны кромки крыла, нагревается торможением гиперзвукового аэродинамического потока до ~1500°C. Полученная эмиттером 2 тепловая энергия частично преобразуется в электрическую с к.п.д. ≤20%, а оставшаяся часть путем электронного охлаждения, теплового излучения и за счет теплопроводности межэлектродной среды поступает на коллектор 1, а также за счет теплопроводности материала растекается по окружности эмиттера 2 на его не обогреваемую сторону. Размещение гермовводов для коллекторных токовыводов и входных/выходных патрубков в пределах одной полуокружности эмиттера, расположенной с обратной по отношению к направлению полета ГЛА стороны ТЭП, исключает воздействия гиперзвукового потока на указанные элементы конструкции. Сильфонные узлы 7, входящие в состав гермовводов, устраняют механические напряжения, возникающие при температурных деформациях.

Выполнение эмиттера с переменной по его окружности толщиной стенки, которая выбирается из условия равномерности величины плотности азимутального теплового потока по этой окружности, способствует выравниванию температуры эмиссионной поверхности, благодаря чему уменьшается негативное влияние неравномерного нагрева эмиттера на эффективность ТЭП. Изменение толщины стенки можно получить путем смещения продольного отверстия в эмиттерной трубе относительно ее центра в направлении необогреваемой стороны окружности эмиттерной трубы.

Таким образом, решение поставленной задачи обеспечивается выбранной формой электродов ТЭП, взаимным расположением элементов его конструкции, наличием жаростойкого покрытия на наружной поверхности эмиттера.

Осуществление изобретения.

В термоэмиссионном преобразователе трубчатый эмиттер с внутренним диаметром ~15 мм выполнен из тугоплавкого материала, например, молибдена, защищенного снаружи от высокотемпературной газовой коррозии силицидным покрытием толщиной 0,1-0,15 мм, и имеет изнутри вольфрамовое эмиссионное покрытие. Коллектор выполнен в виде герметизированной с обеих сторон круглой трубы из ниобия, никеля или нержавеющей стали диаметром ~13 мм и длиной ~500 мм, и размещен внутри эмиттера. Межэлектродный зазор между эмиттером и коллектором (МЭЗ) обеспечен при помощи пояса из шести дистанционаторов на каждые ~100 мм длины электродов. В пределах одной полуокружности коллекторной трубы перпендикулярно продольной оси коллектора размещены токовыводы (по одному на каждые ~100 мм длины трубы) и присоединены два патрубка контура охлаждения коллектора для охлаждающего топлива, направление прокачки которого показано стрелками на фиг. 1. Тепловая и электрическая развязка электродов ТЭП в районе указанных токовыводов и патрубков реализована с помощью гермовводов, состоящих из сильфонных узлов 7 и металлокерамических узлов 8. Шины для токосъема с электродов условно показаны знаками «+» и «-». Охлаждение коллектора осуществляется топливом двигателя ГЛА. Для согласования допустимой температуры этого топлива с температурой коллектора на его внутреннюю поверхность нанесено покрытие из диоксида циркония, обладающего низкой теплопроводностью, толщиной 1-2 мм.

В случае охлаждения коллектора с помощью среднетемпературной (например, натриевой) тепловой трубы в пределах одной полуокружности коллекторной трубы перпендикулярно продольной оси коллектора размещены токовыводы (по одному на каждые ~100 мм длины трубы) и присоединен патрубок контура охлаждения коллектора. Капиллярная структура тепловой трубы сформирована на внутренней поверхности коллекторной трубы и патрубка контура охлаждения в виде множества продольных канавок с характерным размером ~0,5 мм. Гермовводы коллекторных токовыводов и охлаждающих патрубков состоят из стальных сильфонов и металлокерамических узлов с изоляторами из окиси алюминия (в т.ч. монокристаллической) и манжетами из никелевых сплавов.

1. Термоэмиссионный преобразователь, встраиваемый в конструкцию высокоскоростного летательного аппарата, с выполненными в виде труб эмиттером и размещенным внутри него охлаждаемым коллектором при их взаимной электрической и тепловой развязке с помощью, по крайней мере, одного гермоввода, содержащего металлокерамический узел, отличающийся тем, что эмиттерная и коллекторная трубы герметизированы с двух сторон, на наружной поверхности эмиттерной трубы создано жаростойкое покрытие, коллекторная труба снабжена одним или более токовыводами и одним или более входными/выходными патрубками контура охлаждения коллектора, при этом токовыводы и патрубки расположены на боковой поверхности коллекторной трубы в пределах одной полуокружности и снабжены соответственно расположенными им гермовводами, содержащими в своем составе сильфонные узлы.

2. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что эмиттер выполнен с переменной по его окружности толщиной стенки, которая выбирается из условия равномерности величины плотности азимутального теплового потока по этой окружности эмиттера.

3. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что внутренняя поверхность коллектора и входных/выходных патрубков покрыта теплоизоляционным материалом, а в качестве теплоносителя в контуре охлаждения коллектора используется топливо двигателя летательного аппарата.

4. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что контур охлаждения коллектора выполнен в виде испарительного участка Т-образной тепловой трубы.

5. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что в качестве материала эмиттера выбран молибден.

6. Термоэмиссионный преобразователь по п. 1, отличающийся тем, что в качестве материала жаростойкого покрытия выбран дисилицид молибдена.



 

Похожие патенты:

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям, и может быть использовано в составе бортовых источников электрической энергии для летательных аппаратов с прямоточными воздушно-реактивными двигателями.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА).

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе бортовых источников электрической энергии для высокоскоростных летательных аппаратов (ВЛА) с прямоточными воздушно-реактивными двигателями (ПВРД).

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ.

Изобретение относится к космической атомной энергетике, к разработке способов прогнозирования работоспособности термоэмиссионных электрогенерирующих элементов при их создании и наземной отработке.

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК).

Изобретение относится к области электронной техники для изготовления аксиальных цилиндрических изделий различных элементов силовых электрических приборов, в частности катодов термоэмиссионных преобразователей.

Изобретение относится к способу круглогодичной и круглосуточной термоэлектрической генерации, а именно к способу прямого преобразования солнечной радиации в электрическую энергию сочетанием фотоэлектрических и термоэлектрических преобразователей для обеспечения экологически чистым энергопитанием автономных датчиков и приборов.

Термоэмиссионный преобразователь относится к энергетике. Термоэмиссионный преобразователь содержит узел катода, включающий катод (6) и корпус со средствами нагрева (10), и узел анода, включающий перфорированный анод (1), корпус со средствами охлаждения (5) и каналами для пропуска пара цезия (4) к перфорированному аноду, размещенные на корпусе герметичной камеры, заполненной паром цезия.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую и может быть использовано при создании многоэлементных электрогенерирующих каналов (ЭГК), встроенных в активную зону термоэмиссионного реактора-преобразователя (ТРП) космического назначения.

Изобретение относится к авиационной технике. Крыло летательного аппарата состоит из центроплана, консоли, выполнено с удлинением λ = 7-11, сужением η = 3-4.5 и со сверхкритическими профилями.

Изобретение относится к конструкции многовинтовых беспилотных летательных аппаратов вертикального взлета и посадки и способам управления ими. Модульный многовинтовой беспилотный летательный аппарат вертикального взлета и посадки содержит корпус, установленные на нем на легкоразъемных соединениях консоли с двигателями и воздушными винтами, полетный контроллер, датчики, определяющие положение аппарата в воздухе и его динамику, датчик для определения местоположения осей вращения винтов каждой консоли, по крайней мере три датчика веса, грузовой контейнер.

Изобретение относится к области полевого растениеводства и может быть использовано при производстве сельхозпродукции. Устройство беспилотной авиатехнологии управления агрообъектами в экосистемах (1) включает лабораторно-управляющий комплекс (2), модуль визуального контроля состояния агрообъекта в экосистеме (4), блок передачи информации (3), беспилотный летающий аппарат (5), наземные технологические рабочие агрегаты (7).

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА).

Беспилотный самолет содержит несущий корпус, крыло с аэродинамическими органами управления, силовую установку, включающую двигатель, воздухозаборник и сопло, шасси и бортовую радиолокационную станцию.

Изобретение может быть использовано при создании поверхностей управления летательных аппаратов в виде элеронов, рулей высоты и направления, а также в области кораблестроения.

Изобретение относится к области авиации. Лопасть воздушного винта с управляемой геометрией профиля содержит аэродинамический профиль, имеющий переднюю часть и подвижный закрылок, соединенные между собой крепежным устройством.

Изобретение относится к способу функционального подавления беспилотного летательного аппарата (БПЛА). Для реализации способа определяют координаты местоположения БПЛА, доставляют при помощи пускового устройство в область расположения БПЛА контейнер с элементами функционального подавления, осуществляют генерацию серии сверхкоротких СВЧ радиоимпульсов для нарушения работоспособности радиоэлектронных элементов БПЛА, после полного разряда источника электропитания осуществляют подрыв заряда самоликвидации контейнера для образования облака красителя в целях образования непрозрачной пленки на поверхности элементов БПЛА и в целях образования поля поражающих элементов, которые приводят к физическому повреждению БПЛА.

Изобретение относится к способу функционального подавления беспилотных летательных аппаратов. Для реализации способа обнаруживают беспилотный летательный аппарат, в область на расстоянии 50-100 метров от него при помощи пускового устройства доставляют патрон, выполненный с возможностью генерации серии сверхкоротких сверхвысокочастотных радиоимпульсов в определенном диапазоне частот, производят генерацию этих импульсов в сторону беспилотного летательного аппарата до полного разряда источника электропитания, после этого выполняют самоуничтожение патрона путем его подрыва для создания поля поражающих элементов для физического повреждения беспилотного летательного аппарата и его уничтожения.

Беспилотный летательный аппарат содержит несимметричный корпус, носовой радиопрозрачный обтекатель, двигательную установку и систему управления полетом с плоской активной фазированной антенной решеткой, максимальная апертура которой обеспечивается благодаря углу наклона излучающей поверхности к продольной оси корпуса, обеспечивающему ее направление в сторону верхней части поверхности носового радиопрозрачного обтекателя.
Наверх