Способ аддитивного формирования поликристаллических алмазных изделий


C04B35/62839 - Формованные керамические изделия, характеризуемые их составом (пористые изделия C04B 38/00; изделия, характеризуемые особой формой, см. в соответствующих классах, например облицовка для разливочных и плавильных ковшей, чаш и т.п. B22D 41/02); керамические составы (содержащие свободный металл, связанный с карбидами, алмазом, оксидами, боридами, нитридами, силицидами, например керметы или другие соединения металлов, например оксинитриды или сульфиды, кроме макроскопических армирующих агентов C22C); обработка порошков неорганических соединений перед производством керамических изделий (химические способы производства порошков неорганических соединений C01)
B33Y80/00 -
B33Y80/00 -
B33Y10/00 -
B33Y10/00 -
B33Y10/00 -
B33Y10/00 -

Владельцы патента RU 2707609:

Общество с ограниченной ответственностью "ТВИНН" (RU)

Изобретение относится к производству изделий из алмазных материалов, по технологии аддитивного формирования изделий из алмазных порошков различной дисперсности, и может быть использовано в горнорудной и электронной промышленности при производстве алмазных вставок для буровых головок, а также при получении элементов пассивной электроники (варисторов, термисторов и др.). Способ аддитивного формирования изделий из поликристаллического алмаза включает последовательное нанесение слоев порошка природного алмаза с размером фракций от 1-20 мкм, при этом каждый слой порошка наносят в соответствии с конфигурацией изделия. После каждого нанесения слоя порошка проводят процесс химического осаждения алмаза из газовой фазы из смеси водорода и углеводородов на поверхность алмазного порошка, нанесенного в соответствии с конфигурацией изделия. Осаждение алмаза проводят в СВЧ разряде. Техническим результатом предложенного технического решения является повышение качества изделий из поликристаллического алмаза и упрощение технологии. 2 з.п. ф-лы, 1 пр., 1 табл.

 

Изобретение относится к производству изделий из алмазных материалов, а именно к технологии аддитивного формирования изделий из алмазных порошков различной дисперсности, и может быть использовано в горнорудной и электронной промышленности при производстве алмазных вставок для буровых головок, а также при получении элементов пассивной электроники (варисторов, термисторов и др).

Известен способ получения изделий из поликристаллических алмазных материалов, включающий химическую очистку алмазного порошка, его окислительную обработку диоксидом углерода в течение 25-35 мин при температуре 600-900°С в присутствии соединений калия или натрия, выбранных из группы: гидроксид, карбонат, бикарбонат, и взятых в соотношении 1:(6-20) к алмазному порошку, охлаждение порошка до комнатной температуры, его обработку соляной кислотой с последующей промывкой дистиллированной водой до нейтральной реакции, обработку в течение 1 - 2 ч метаном при 500-600°С, прессовку порошка и его нагрев до высоких температур /Патент SU №914939997 МПК С01В 31/06, 1991 г./.

Недостатками этого способа являются длительность процесса подготовки исходных порошков перед компактированием вследствие многостадийности, использование сложного специализированного оборудования для обеспечения высоких давлений и температур и простота форм получаемых изделий.

Наиболее близким техническим решением является способ аддитивного формирования изделий из поликристаллического алмаза, включающий последовательное осаждение в форме изделия чередующихся слоев керамического порошка и керамического полимера, растворенного в растворителе, нагрев осажденного слоя до температуры разложения керамического полимера, но меньшей температуры спекания керамического порошка /Патент US №9302945/.

Недостатками этого технического решения являются отсутствие технологии, позволяющей получать керамический полимер в больших объемах, необходимых для формирования полноценной алмазной детали, и получаемое изделие не является алмазным, а алмазоподобным.

Задачей изобретения является устранение указанных выше недостатков.

Техническим результатом предложенного технического решения является повышение качества изделий из поликристаллического алмаза и упрощение технологии.

Поставленная задача решается, а технический результат достигается за счет того, что в способе аддитивного формирования изделий из поликристаллического алмаза, включающем последовательное нанесение слоев порошка, используют алмазный порошок, каждый слой порошка наносят в соответствии с конфигурацией изделия, после каждого нанесения слоя порошка проводят процесс химического осаждения алмаза из газовой фазы из смеси водорода и углеводородов на поверхность алмазного порошка, нанесенного в соответствии с конфигурацией изделия.

Химическое осаждение алмаза проводят в СВЧ разряде.

Алмазный порошок имеет размеры от 1-20 мкм.

Углеводородными газами являются: метан, ацетилен, бутан, пропан и др.

Алмазный порошок представляет собой природный алмазный порошок и/или порошок.

Предложенный способ аддитивного формирования поликристаллических алмазных изделий из алмазного порошка состоит из следующих операций.

На подложку наносят слой алмазного порошка, по форме будущего изделия.

Подложку со слоем алмазного порошка помещают в установку для химического осаждения алмаза из газовой фазы.

Установку заполняют газовой смесью, содержащей водород и углеводород. В установке зажигают СВЧ плазменный разряд и проводят осаждение алмаза на поверхности алмазных порошков /Ссылка/.

Последовательность операции повторяют до получения изделия требуемой формы.

Пример исполнения

Для проведения процесса аддитивного формирования поликристаллических изделий из алмаза, были взяты различные фракции природного алмазного порошка: (1/0 мкм, 3/2 мкм, 5/7 мкм, 7/10 мкм, 14/20 мкм (ГОСТ Р 52370-2005)), водород ОСЧ марки (ГОСТ 3022-80), метан газообразный ОСЧ (ТУ 51-841-87).

Алмазный порошок наносили на подложку тонким слоем, форма нанесенного слоя - окружность диаметром 5 мм. Подложку с нанесенным алмазным порошком вносили в установку. С помощью вакуумного насоса в установке создавали вакуум, затем подавали смесь метана и водорода, после чего в реактор подавалась СВЧ энергия для генерации плазменного разряда, после того как возник плазменный разряд, проводили процесс осаждения алмаза из газовой фазы в течение 2-х часов, этого времени достаточно, чтобы срастить между собой слои алмазного порошка. После завершения процесс осаждения необходимо отключить подачу СВЧ энергии, отключить подачу метана и водорода, подать в установку атмосферное давление, затем извлечь подложку со скрепленным алмазным порошком, затем нанести следующий слой алмазного порошка и вновь внести подложку с изделием в установку. Повторять процесс необходимо до получения изделий нужной формы и размеров.

В таблице представлены технологические режимы аддитивного формирования изделий из алмазных порошков с использованием метода химического осаждения из газовой фазы

Как видно из таблицы для более мелких порошков количество сращиваемых слоев алмазного порошка меньше, чем для крупных, очевидно это связано с высокой удельной поверхностью более мелких порошков, пористое пространство насыпки, более мелких порошков зарастает быстрее, тем самым дальше реакции происходит лишь на верхнем слое алмазных порошков, а на глубине насыпки алмазного порошка идти не может.

Таким образом, предлагаемое техническое решение производит аддитивное формирование изделий сложной формы из алмазных порошков различной дисперсности в широком интервале концентраций углеводорода.

Для обеспечения химической чистоты изделия осаждение проводят в СВЧ разряде вследствие малой эрозии электродов, материалах которых присутствует в плазме разряда.

Для обеспечения сложной формы изделия используют порошок в диапазоне 1-20 мкм. При меньших размерах происходит слипание частиц порошка, а при больших - снижается скорость осаждения алмаза из газовой фазы вследствие уменьшения удельной площади поверхности порошка.

Для упрощения технологии осаждения используют наиболее распространенные газы углеводородов: метан, пропан, бутан и т.п.

Для увеличения скорости осаждения алмаза из газовой фазы берут природный или синтетический алмазный порошок.

1. Способ аддитивного формирования изделий из поликристаллического алмаза, включающий последовательное нанесение слоев порошка, отличающийся тем, что используется природный алмазный порошок с размером фракций от 1-20 мкм, каждый слой порошка наносят в соответствии с конфигурацией изделия, после каждого нанесения слоя порошка проводят процесс химического осаждения алмаза из газовой фазы из смеси водорода и углеводородов на поверхность алмазного порошка, нанесенного в соответствии с конфигурацией изделия.

2. Способ аддитивного формирования изделий из поликристаллического алмаза по п. 1, отличающийся тем, что осаждение алмаза проводят в СВЧ разряде.

3. Способ аддитивного формирования изделий из поликристаллического алмаза по п. 1, отличающийся тем, что в качестве углеводородов используют: метан, ацетилен, бутан, пропан и т.д.



 

Похожие патенты:

Изобретение относится к получению материалов с использованием самораспространяющегося высокотемпературного синтеза, которые могут быть использованы для защиты от ионизирующего излучения.
Группа изобретений относится к связующему, которое содержит жидкое стекло и дополнительно фосфат или борат или оба, к способу послойного формирования форм и стержней (варианты).

Изобретение относится к области технологии получения керамики для изготовления диэлектриков конденсаторов, в т.ч. многослойных.

Изобретение относится к способу производства компонента из керамических материалов. Способ включает нанесение множества слоев на основной корпус с помощью трафаретной печати или шаблонной печати, причем слои сформированы из керамического материала, в каждом случае в определенном расположении один над другим, в виде пасты или суспензии, в которую включены порошкообразный керамический материал и связующее, при этом осуществляется формирование области внутри слоя, имеющего определенную толщину и геометрическую форму, из дополнительного материала, который может быть удален при термической обработке и который также наносят в виде пасты или суспензии с помощью трафаретной печати или шаблонной печати, нанесение на и/или формирование на керамическом слое перед нанесением дополнительного керамического слоя электрически функционирующих структур, состоящих из электропроводящего или полупроводящего материала, и спекание слоистой структуры при термической обработке, при этом происходит удаление дополнительного материала и образуется полость, имеющая определенные размеры по ширине, длине и высоте.

Изобретение относится к получению керамических сотовых структур для извлечения диоксида углерода или других газообразных химических соединений из газовых потоков или в качестве каталитических преобразователей.

Изобретение относится к области получения керамики на основе иттрий-алюминиевого граната (ИАГ), активированного редкоземельными элементами: эрбием или иттербием, используемой в качестве подложек для микросхем, оболочек натриевых ламп высокого давления, для изоляторов в термоэмиссионных преобразователях и в оптоэлектронике.

Изобретение относится к получению основных огнеупоров на углеродистой связке, которые могут быть использованы для футеровки кислородных конвертеров, дуговых электропечей и сталеразливочных ковшей.

Изобретение относится к производству проппанта - расклинивающих гранул, применяемых при добыче нефти и газа методом гидравлического разрыва пласта. Технический результат - вовлечение в производство проппанта различных видов исходных сырьевых материалов, в том числе техногенных отходов, и получение проппанта с кажущейся плотностью 2,2-3,0 г/см3.

Изобретение может быть использовано при изготовлении конструкций из композиционных материалов. Соединительный элемент полого герметичного изделия интегральной конструкции выполнен из УУКМ на основе низкомодульных углеродных волокон и содержит присоединительный концевой участок 1 и металлическую законцовку, снабженную сильфоном.
Изобретение относится к технологии керамических пьезоэлектрических, диэлектрических, ферромагнитных и смешанных материалов на основе фаз кислородно-октаэдрического типа (например, со структурой типа перовскита), применяемых в полупроводниковой, пьезоэлектрической и радиоэлектронной технике, в частности, для изготовления гидроакустических устройств, приборов СВЧ, УЗ диапазонов, а также приборов точного позиционирования объектов (литография, туннельные растровые микроскопы) и т.д.

Группа изобретений относится к области термозащитных и антиокислительных покрытий и может быть использована для повышения химической инертности и температуры эксплуатации изделий, используемых в авиакосмической промышленности, топливо-энергетическом комплексе, в химической промышленности и др.

Изобретение относится к формованному огнеупорному керамическому изделию, содержащему природный графит. Формованное огнестойкое изделие на основе гранулята огнестойкого материала содержит гранулы, скреплены с помощью известного связующего и/или керамической связки, а также гомогенную смесь из по меньшей мере двух видов графита с разными коэффициентами теплового расширения, при этом один вид графита преобладает количественно, а другой вид графита выполняет функцию дополнительного вида графита.

Изобретение относится к области углеродных композиционных материалов и может быть использовано в ракетно-космической технике. Углерод-углеродный композиционный материал содержит пироуглеродную или коксопироуглеродную матрицу и углеродный наполнитель слоистой или слоисто-прошивной структуры на основе ткани, получаемой ткачеством высокомодульных углеродных волокон при их однослойном переплетении, и прошивной нити или без таковой.
Огнеупорный материал для футеровки доменной печи получают способом, включающим следующие стадии: a) изготовление смеси, содержащей кокс, кремний и связующий материал, b) формование необожженного блока из смеси, изготовленной на стадии (a), c) обжиг необожженного блока, изготовленного на стадии (b) и d) частичная графитизация обожженного блока, изготовленного на стадии (с), при температуре от 1600 до 2000°C.
Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов.
Изобретение относится к алмазосодержащим композиционным материалам, широко используемым для изготовления алмазного инструмента: резцов, выглаживателей, опор, фильер и т.д.

Изобретение относится к металлургии, а именно к производству углеродсодержащих огнеупоров, используемых в производстве литейных тиглей и огнеупорных покрытий для литья.

Изобретение относится к алмазосодержащим композиционным материалам, используемым в различных областях электроники в качестве теплоотводов. Технический результат - повышение эффективности работы изделий в качестве теплоотводов при упрощении технологии их изготовления.

Изобретение относится к области получения поликристаллических материалов, которые могут быть использованы, преимущественно, для изготовления бурового и правящего инструмента.
Изобретение относится к способу получения формованного изделия из углеродного материала и может быть использовано в качестве графитовых электродов и соединительных элементов для электротермических процессов.

Керамическая масса относится к производству изделий строительного назначения и может быть использована при изготовлении облицовочных и лицевых кирпичей, плиток, плит и камней для отделки фасадов зданий.
Наверх