Способ формирования покрытия из кубического карбида вольфрама

Изобретение относится к области металлургии, а именно к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении. Способ формирования покрытия из кубического карбида вольфрама на металлической подложке включает вакуумирование камеры, наполнение её газообразным аргоном, генерирование вольфрам- и углеродсодержащей плазмы и осаждение кубического карбида вольфрама на металлическую подложку. Вольфрам- и углеродсодержащую плазму генерируют с использованием коаксиального магнитоплазменного ускорителя, содержащего конденсаторную батарею, между электродами которого помещают электрически плавкую перемычку из спрессованной смеси порошков вольфрама и сажи при атомном соотношении C:W от 0,30:0,70 до 0,65:0,35. Упомянутое покрытие осаждают при комнатной температуре, давлении аргона в камере 105 Па и зарядном напряжении 3 кВ конденсаторной батареи емкостью 6 мФ. Обеспечивается получение покрытий из кубического карбида вольфрама разной толщины с характеристиками, значительно превышающими характеристики подложки по прочностным свойствам. 3 ил., 1 табл.

 

Изобретение относится к области металлургии, а именно к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении.

Известен способ формирования покрытий из монокарбида вольфрама [RU 2280098 С1, МПК C23C16/32 (2006.01), опубл. 20.07.2006] на порошкообразных материалах и компактных изделиях, включающий насыщение вольфрамовой составляющей предварительно наносимого покрытия углеродом из углеродсодержащей газовой фазы. Формирование карбидного покрытия проводят в два этапа: на первом формируют покрытие из кубического карбида вольфрама с минимальным содержанием углерода при 450-600°С, а на втором этапе данное покрытие обрабатывают в углеродсодержащей атмосфере при температуре 1000°С.

Для осуществления этого способа необходимы постоянные нагрев и охлаждение подложки в режиме термоциклирования.

Известен способ получения покрытий с включениями кубического карбида вольфрама методом химического осаждения из газовой фазы [Dushik V. V. et al. The formation of tungsten and tungsten carbides by CVD synthesis and the proposed mechanism of chemical transformations and crystallization processes //Materials Letters. - 2018. - Т. 228. - С. 164-167]. В ходе газовых реакций в среде газов WF6, C3H8, H2 при температуре 650°C и давлении 1 кПа на подложке из вольфрама образуются пленки с размерами частиц кубического карбида вольфрама до 5-10 нм.

Данный способ является многоступенчатым и включает в себя сложные химические реакции, происходящие в смеси взрывоопасных газов при их нагреве.

Известен способ получения покрытия из кубического карбида вольфрама [Voevodin A. A. et al. Nanocrystalline WC and WC/a-C composite coatings produced from intersected plasma fluxes at low deposition temperatures //Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. - 1999. - Т. 17. - №. 3. - С. 986-992] на подложке, принятый за прототип. Используют подложку в виде диска из нержавеющей стали марки 440C, которую располагают на расстоянии 5 см от графитовой мишени. Покрытие осаждают путем пересечения потоков плазмы от магнетронного распыления вольфрама и лазерной абляции графита при давлении аргона в камере до 0,2 Па и температуре 45 и 300°C.

Этот способ позволяет получать пленки толщиной до 0,5 мкм с нанокристаллическим кубическим карбидом вольфрама с размером частиц 5-10 нм в матрице из аморфного углерода, однако является технически сложным, включающим одновременное использование двух трудоемких и высокоэнергетических процессов при сверхглубоком вакууме и повышенной температуре.

Техническим результатом предложенного изобретения является разработка способа формирования покрытия из кубического карбида вольфрама.

Предложенный способ формирования покрытия из кубического карбида вольфрама, также как в прототипе, включает вакуумирование камеры, наполнение её газообразным аргоном и осаждение вольфрамсодержащей плазмы на металлическую подложку.

Согласно изобретению для генерирования вольфрам- и углерод содержащей плазмы используют коаксиальный магнитоплазменный ускоритель, между электродами которого помещают электрически плавкую перемычку из спрессованной смеси порошков вольфрама и сажи в атомном соотношении C:W от 0,30:0,70 до 0,65:0,35 и осаждают покрытие при давлении аргона в камере 105 Па и комнатной температуре и при зарядном напряжении 3 кВ конденсаторной батареи емкостью 6 мФ.

Вследствие воздействия сверхзвуковой струи вольфрамсодержащей электроразрядной плазмы с указанным диапазоном атомного соотношения C:W расплавляется незначительный объем материала металлической подложки и происходит перемешивание материалов в приграничном слое с последующей кристаллизацией, что обеспечивает высокую прочность сцепления покрытия с подложкой. Преимуществом такой структуры является формирование покрытия с характеристиками, значительно превышающими характеристики подложки по прочностным свойствам.

Увеличение зарядного напряжения конденсаторной батареи более 3 кВ приводит к разрушению электродной системы коаксиального магнитоплазменного ускорителя, а зарядное напряжение менее 3 кВ не обеспечивает прочности сцепления покрытия с подложкой.

Предложенный способ позволил получить покрытия из кубического карбида вольфрама толщиной 30-50 мкм и твердостью от 30,8±0,5 до 32,5±0,7 ГПа на металлической подложке.

На фиг. 1 показана установка для формирования покрытия из кубического карбида вольфрама.

На фиг. 2 представлена рентгеновская дифрактограмма сформированного в результате осаждения покрытия.

На фиг. 3 приведен сканирующий микроснимок поперечного среза покрытия.

В таблице 1 представлены условия проведения формирования покрытия из кубического карбида вольфрама и результаты измерения механических свойств полученных покрытий.

Способ формирования покрытия из кубического карбида вольфрама был реализован с использованием установки (фиг. 1), содержащей коаксиальный магнитоплазменный ускоритель, в котором цилиндрический электропроводящий ствол выполнен из двух электропроводящих цилиндров: внутреннего цилиндра 1 из графита и внешнего цилиндра 2 из прочного немагнитного материала (из нержавеющей стали), центрального электрода, состоящего из графитового наконечника 3 и хвостовика 4 из стали. Ствол и центральный электрод соединены электрически плавкой перемычкой 5, выполненной из спрессованной смеси порошков вольфрама и сажи в атомном соотношении C:W от 0,30:0,70 до 0,65:0,35 со средним размером частиц не более 1 мкм, помещенной поверх токопроводящего углеродного слоя, нанесенного на поверхность изолятора 6, отделяющего электропроводящий ствол от центрального электрода. Корпус 7 выполнен из магнитного материала и сопряжен с внешним металлическим цилиндром 2, и перекрывает зону размещения плавкой перемычки 5. Длина части, перекрывающей зону размещения плавкой перемычки 5, составляет 40-50 мм, а ее внешняя поверхность выполнена конусообразной. Соленоид 8 выполнен за одно целое с фланцем 9 и цилиндрической частью 10, в которой размещен корпус 7 и укреплен резьбовой заглушкой 11. Соленоид 8 укреплен прочным стеклопластиковым корпусом 12 и стянут мощными токопроводящими шпильками 13 между фланцем 9 и стеклопластиковым упорным кольцом 14. Токопроводящие шпильки 13 электрически соединены токопроводящим кольцом 15, а к токопроводящим шпилькам 13 присоединен шинопровод 16 внешней схемы электропитания. Второй шинопровод 17 схемы электропитания присоединен к хвостовику 4. Ко второму шинопроводу 17 последовательно присоединены ключ 18 и конденсаторная батарея 19, связанная с шинопроводом 16.

Свободный конец ствола ускорителя вставлен в камеру 20 через осевое отверстие в первой металлической боковой крышке 21 и герметично зафиксирован с помощью уплотнительных колец 22, расположенных между фланцем 9 и боковой крышкой 21, и шпилек 23, соединяющих кольцо 24, упирающееся во фланец 9, и первую боковую крышку 21. Внутри камеры 20, параллельно первой боковой крышке 21, на расстоянии 65 мм от торца свободного конца ствола ускорителя при помощи двух стяжных шпилек 25, закреплена подложка 26 в виде металлической пластины. Камера 20 через первый вентиль 27 соединена с форвакуумным насосом. Камера 20 через второй вентиль 28 соединена с баллоном, наполненным аргоном, и манометром (на фиг. 1 не показаны). Объем камеры 20 ограничен двумя боковыми крышками 21 и 29, которые прикреплены к ней болтовыми соединениями.

Способ заключается в следующем. Между внутренним цилиндром 1 ствола ускорителя и наконечником центрального электрода 3 помещают электрически плавкую перемычку 5, выполненную из прессованной смеси порошкообразного вольфрама и сажи в атомном соотношении C:W от 0,30:0,70 до 0,65:0,35 с размерами частиц не более 1 мкм, закладываемой поверх токопроводящего углеродного слоя предварительно нанесенного на поверхность изолятора 6 путем распыления углеродного спрея марки Graphit 33. Ускоритель плотно состыковывают с внешней стороной первой крышкой 21 с помощью кольца 24 и уплотнительных колец 22. С внутренней стороны первой крышки 21 на расстоянии 65 мм от торца свободного конца ствола параллельно фланцу 9 располагают металлическую подложку 26 и жестко фиксируют при помощи двух стяжных шпилек 25. Первую крышку 21 с зафиксированными на ней ускорителем и подложкой 26 плотно состыковывают с помощью болтовых соединений с камерой 20. Противоположную сторону камеры 20 закрывают второй крышкой 29. После этого камеру 20 вакуумируют через первый вентиль 27, после чего через второй вентиль 28 заполняют аргоном при давлении 105 Па при комнатной температуре.

Конденсаторную батарею 19 емкостью 6 мФ заряжают до напряжения 3 кВ. Ключ 18 замыкают, после чего в контуре электропитания ускорителя начинает протекать ток от конденсаторной батареи 19 по шинопроводу 16, токопроводящему кольцу 15, шпилькам 13, фланцу 9, виткам соленоида 8, корпусу 7, внешнему металлическому цилиндру 2, внутреннему цилиндру 1, плавкой перемычки 5, наконечнику 3, хвостовику 4, второму шинопроводу 17. При этом плавкая перемычка 5 разогревается, плавится, и ее материал переходит в плазменное состояние с образованием дугового разряда. Конфигурация плазменной структуры типа Z-пинч с круговой плазменной перемычкой задается формой плавкой перемычки 5 и наличием цилиндрического канала в изоляторе 6. Далее плазма разряда сжимается магнитным полем собственного тока и аксиальным полем соленоида 8 и существует в ускорительном канале в виде удлиняющегося Z-пинча с круговой плазменной перемычкой на конце, через которую ток переходит на цилиндрическую поверхность ускорительного канала внутреннего цилиндра, в процессе ускорения плазменной перемычки под действием силы Лоренца. Плазменная струя истекает из ускорительного канала внутреннего цилиндра 1 в камеру 20, заполненную аргоном, и воздействует на поверхность подложки 26, образуя покрытие из кубического карбида вольфрама. После осаждения покрытия открывают вторую крышку 29 и снимают металлическую подложку 26 с осажденным покрытием со стяжных шпилек 27.

При зарядном напряжении 3 кВ конденсаторной батареи емкостью 6 мФ и использовании электрически плавкой перемычки 5, выполненной из спрессованной смеси порошков вольфрама и сажи в атомном соотношении C:W 0,30:0,70, был реализован импульсный режим осаждения покрытия на подложку 26 в виде медной пластины толщиной 2 мм с линейными размерами 100×100 мм, обеспечивший следующие параметры дугового разряда: амплитуда тока дугового разряда 130 кА, мощность дугового разряда 120 МВт, длительность импульса 300 мкс.

Образовавшееся покрытие исследовали с помощью методов рентгеновской дифрактометрии и сканирующей электронной микроскопии.

Рентгеновская дифрактограмма сформированного в результате осаждения покрытия (фиг. 2) и результаты количественного рентгеноструктурного анализа (таблица 1) показали преимущественное содержание фазы кубического карбида вольфрама в структуре полученного покрытия.

Сканирующий микроснимок (фиг. 3) демонстрирует поперечный срез покрытия толщиной ~50 мкм.

Твердость полученного покрытия, определенная методом Берковича, составила 32,5±0,7 ГПа, модуль Юнга 310±5 ГПа.

Результаты формирования покрытия из кубического карбида вольфрама на подложках из меди и титана приведены в таблице 1.

Таким образом, предложенный способ может быть использован для получения покрытий из кубического карбида вольфрама разной толщины с характеристиками, значительно превышающими характеристики подложки по прочностным свойствам.

СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ ИЗ КУБИЧЕСКОГО КАРБИДА ВОЛЬФРАМА

Таблица 1

№ примера п/п Атомное соотношение C:W Материал подложки Толщина покрытия, мкм Амплитуда тока дугового разряда, кА Мощность дугового разряда, МВт Длительность импульса, мкс Содержание WC1-x, % Содержание WC, % Твердость, ГПа Модуль Юнга,
1 0,30:0,70 Медь 50 130 120 300 99,5 0,5 32,5±0,7 310±5
2 0,65:0,35 Медь 30 120 110 310 95,0 5,0 31,7±0,6 302±4
3 0,50:0,50 Титан 40 125 115 305 92,0 8,0 30,8±0,5 295±4

Способ формирования покрытия из кубического карбида вольфрама на металлической подложке, включающий вакуумирование камеры, наполнение её газообразным аргоном, генерирование вольфрам- и углеродсодержащей плазмы и осаждение кубического карбида вольфрама на металлическую подложку, отличающийся тем, что вольфрам- и углеродсодержащую плазму генерируют с использованием коаксиального магнитоплазменного ускорителя, содержащего конденсаторную батарею, между электродами которого помещают электрически плавкую перемычку из  спрессованной смеси порошков вольфрама и сажи при атомном соотношении C:W от 0,30:0,70 до 0,65:0,35, при этом упомянутое покрытие осаждают при комнатной температуре, давлении аргона в камере 105 Па и зарядном напряжении 3 кВ конденсаторной батареи емкостью 6 мФ.



 

Похожие патенты:

Изобретение относится к текстурированной электротехнической листовой стали и способу ее производства. Указанная сталь содержит листовую сталь, керамическое покрытие, расположенное на листовой стали, и изоляционное придающее натяжение оксидное покрытие, расположенное на керамическом покрытии.

Изобретение относится к устройству для непрерывного вакуумного нанесения покрытий на движущуюся подложку, причем покрытия образованы из металлических сплавов, содержащих основной элемент и по меньшей мере один дополнительный элемент, и к способам нанесения этого покрытия.

Изобретение может быть использовано для нанесения функциональных и защитных металлических покрытий, а именно Cu, Ti, Zn, Nb, Mo, W, Sn, Cr, V, Cd, Zr, и может быть использовано в машиностроительной промышленности.

Изобретение относится к покрытому режущему инструменту для обработки металлов с образованием стружки. Инструмент включает основу, имеющую поверхность, снабженную покрытием, образованным методом химического осаждения из газовой фазы (ХОГФ).

Изобретение относится к устройству для формирования покрытий на поверхностях элемента, ленточного материала или инструмента. В устройстве используется по меньшей мере один проволочный или ленточный материал (2.1 и/или 2.2), который соединен с источником постоянного электрического тока.
Изобретение относится к способу формирования нанокристаллического поверхностного слоя на детали из сплава на никелевой основе(варианты) и может быть использовано для обработки лопаток газотурбинных двигателей и установок для улучшения их эксплуатационных характеристик.
Изобретение относится к способу упрочняющей обработки детали из сплава на основе никеля. Технический результат состоит в повышении выносливости и циклической долговечности детали.
Изобретение относится к способу упрочнения режущего инструмента осаждением мультислойных покрытий системы Ti - Al и может быть использовано в инструментальном производстве.

Изобретение относится к области получения износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента.

Изобретение относится к области машиностроения, а именно к способам нанесения наноструктурированных и износостойких покрытий методом ионно-плазменного напыления на поверхность режущих инструментов.

Изобретение относится к способу формирования на поверхности изделия из алюминиевого сплава износостойкого слоя и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин из алюминиевых сплавов.
Изобретение относится к способу формирования нанокристаллического поверхностного слоя на детали из сплава на никелевой основе(варианты) и может быть использовано для обработки лопаток газотурбинных двигателей и установок для улучшения их эксплуатационных характеристик.
Изобретение относится к способу упрочняющей обработки детали из сплава на основе никеля. Технический результат состоит в повышении выносливости и циклической долговечности детали.

Изобретение относится к области получения износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента.

Изобретение относится к способу изготовления антифрикционных материалов, которые могут быть использованы в любых отраслях промышленности для изготовления антифрикционных деталей, таких как подшипники скольжения, подпятники и т.п.

Изобретение относится к области нанотехнологий, а именно к способам ионно-лучевого синтеза нановключений нитрида галлия в кремнии, и может быть использовано при изготовлении устройств опто- и микроэлектроники нового поколения.

Изобретение относится к области медицины, а именно к способу нанесения антиадгезивного, биосовместимого бактерицидного покрытия на устройства и инструменты для остеосинтеза, ортопедические имплантаты из металла, в том числе из титана и нержавеющей стали, включающему осаждение в герметичной предварительно вакуумированной камере на предварительно очищенное покрываемое устройство углеродного материала и серебра, входящих в материал покрытия, отличающийся тем, что осуществляют испарение осаждаемого материала импульсным дуговым разрядом, сформированным между катодом из графита, в качестве которого используют катод из графита с установленными в нем серебряными вставками, образующими на рабочей поверхности графитового катода серебряные включения, и анодом, причем импульсный дуговой разряд формируют с частотой следования импульсов 1-5 Гц и с длительностью импульса 200-600 мкс с образованием потока кластеров углеродной плазмы в виде компенсированных бестоковых форсгустков плазмы плотностью 5·1012-1·1013 см-3 и включенных в этот поток атомов серебра, при этом проводят стимуляцию углеродной плазмы инертным газом в виде потока ионов с энергией 150-2000 эВ, который направляют перпендикулярно образованному потоку кластеров углеродной плазмы и атомов серебра в вакууме при давлении 1·10-2-1·10-4 Па, осаждая на покрываемые устройства биосовместимое бактерицидное покрытие в виде атомов серебра в углеродном материале, представляющем собой двумерно-упорядоченный линейно-цепочечный углерод Sp1.

Изобретение относится к способу нанесения жаростойких покрытий из плазмы вакуумно-дугового разряда и может быть использовано для повышения надежности и долговечности широкого ряда деталей машин и инструмента.

Изобретение относится к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента.

Изобретение относится к получению износостойкого покрытия для режущего инструмента. Способ включает вакуумно-плазменное нанесение покрытия из нитрида или карбонитрида титана, алюминия, кремния, циркония и молибдена при соотношении, мас.

Изобретение относится к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении. Устройство для формирования покрытия из кубического карбида вольфрама на металлической подложке содержит источник вольфрам- и углеродсодержащей плазмы, камеру, объем которой ограничен двумя металлическими крышками, которые прикреплены к ней болтовыми соединениями. В качестве источника вольфрам- и углеродсодержащей плазмы использован коаксиальный магнитоплазменный ускоритель, в котором цилиндрический электропроводящий ствол выполнен из двух электропроводящих цилиндров внутреннего цилиндра из графита и внешнего цилиндра из прочного немагнитного материала, центрального электрода, состоящего из графитового наконечника и хвостовика из стали. Ствол и центральный электрод соединены электрически плавкой перемычкой, выполненной из спрессованной смеси порошков вольфрама и сажи в атомном соотношении C:W от 0,30:0,70 до 0,65:0,35. Корпус упомянутого ускорителя выполнен из магнитного материала, сопряжен с внешним металлическим цилиндром и перекрывает зону размещения плавкой перемычки. К второму шинопроводу, присоединенному к хвостовику центрального электрода, последовательно присоединены ключ и конденсаторная батарея, связанная с первым шинопроводом. Свободный конец ствола ускорителя вставлен в камеру-реактор через осевое отверстие в её первой металлической боковой крышке. Обеспечивается получение покрытия из кубического карбида вольфрама толщиной 30-50 мкм и твердостью от 30,8±0,5 до 32,5±0,7 ГПа на металлической подложке. 3 ил., 1 табл.
Наверх