Способ продольного управления самолётом комбинированной схемы

Изобретение относится к способу управления самолетом комбинированной схемы. Для управления самолетом в систему управления передают сигнал от отклонения рычага управления по тангажу и сигналы по параметрам движения, в системе управления формируют определенным образом управляющие сигналы на переднее и заднее горизонтальное оперение. Обеспечивается повышение несущих свойств статически устойчивого самолета комбинированной схемы, сохранение установленного диапазона эксплуатационных углов атаки. 2 ил.

 

Предлагаемое изобретение относится к способам продольного управления самолетами комбинированной схемы, имеющими как заднее, так и переднее горизонтальное оперение.

Известен способ непосредственного управления подъемной силой, при котором в дополнение к заднему горизонтальному оперению используют переднее; он реализован на самолетах F-4CCV и YF-16CCV (см.: Цихош Э. Сверхзвуковые самолеты. - М.: Мир, 1983. - Стр. 72-75).

Указанный способ позволяет осуществлять нетрадиционные формы продольного движения самолета - изолированный тангаж, изолированное вертикальное перемещение и поворот фюзеляжа относительно вектора скорости (см.: Гуськов Ю.П., Загайнов Г.И. Управление полетом самолетов. - М: Машиностроение, 1980. - Стр. 141-144), - однако вопросы, связанные с повышением несущих свойств самолета за счет балансировки, при этом не рассматриваются.

Известны также способы управления самолетами схемы «бесхвостка с передним горизонтальным оперением», при которых переднее горизонтальное оперение используют в качестве вспомогательного органа управления продольным движением, а основным органом управления являются элевоны, представляющие собой функциональный аналог заднего горизонтального оперения с меньшим плечом, и способы управления самолетами схемы «утка», на которых переднее горизонтальное оперение является основным органом управления продольным движением (см.: Бауэрc П. Летательные аппараты нетрадиционных схем. - М.: Мир, 1991. - Стр. 8-10).

Недостатком указанных способов является то, что для самолетов схем «утка» и «бесхвостка с передним горизонтальным оперением» характерна тенденция к так называемому «клевку на нос», связанная с возможностью более раннего срыва потока на переднем горизонтальном оперении, чем на крыле; это не позволяет полностью реализовать установленный для самолета диапазон углов атаки.

Наиболее близким аналогом - прототипом является способ продольного управления самолетом Су-27М (обозначаемом также как Су-35) комбинированной схемы, созданным на базе самолета Су-27 нормальной схемы (см.: Современные боевые самолеты: Справочное пособие // Автор-составитель Н.И. Рябинкин. - Минск: «Элайда», 1997. - Стр. 53-56), при котором в систему управления передают сигнал от отклонения рычага управления по тангажу и сигналы по параметрам движения, а в системе управления формируют управляющие сигналы на переднее горизонтальное оперение и на заднее горизонтальное оперение, при этом в качестве основного органа управления продольным движением используют заднее горизонтальное оперение, угол отклонения которого формируют при суммировании входного сигнала от летчика и сигналов по параметрам движения, как на базовом самолете Су-27 (см.: Шенфинкель Ю.И. Система управления самолета Су-27. - Техника воздушного флота. - 1990. №2. - Стр. 49-54), а переднее горизонтальное оперение отклоняют на отрицательный угол с увеличением угла атаки самолета в целом (см.: Чернов Л.Г., Милованов А.Г. Основы методологии аэродинамического проектирования маневренного многорежимного самолета-истребителя. - М.: МАИ, 2004. - Стр. 130-132).

Недостатком указанного способа является то, что при его реализации повышение несущих свойств самолета за счет балансировки возможно при наличии статической неустойчивости, достижимой только на дозвуковых скоростях. Со смещением аэродинамического фокуса назад, наблюдаемым при сверхзвуковых скоростях, самолет становится статически устойчивым, что снижает его несущие свойства по сравнению со случаем нейтральной центровки.

Техническим результатом предлагаемого изобретения является повышение несущих свойств статически устойчивого самолета комбинированной схемы за счет балансировки при возможности избежать срыва потока на переднем горизонтальном оперении, являющемся основным органом управления продольным движением, и сохранить установленный диапазон эксплуатационных углов атаки.

Поставленный технический результат достигается тем, что в способе продольного управления самолетом комбинированной схемы, при котором в систему управления передают сигнал от отклонения рычага управления по тангажу и сигналы по параметрам движения, а в системе управления формируют управляющие сигналы на переднее горизонтальное оперение и на заднее горизонтальное оперение, формирование управляющего сигнала на переднее горизонтальное оперение осуществляют суммированием сигнала от отклонения рычага управления по тангажу с соответствующими сигналами по параметрам движения и ограничивают суммарный управляющий сигнал установленным допустимым значением угла атаки на переднем горизонтальном оперении, а формирование управляющего сигнала на заднее горизонтальное оперение осуществляют суммированием соответствующих сигналов по параметрам движения с остаточным сигналом, определяемым из соотношения:ϕост=Kго/пгопгопго упр), где Kго/пго - отношение абсолютных величин производных момента тангажа по углам отклонения переднего горизонтального оперения и заднего горизонтального оперения ϕпго - сигнал, соответствующий фактическому углу отклонения переднего горизонтального оперения при наличии ограничения по углу атаки на нем, ϕпго упр - управляющий сигнал на переднее горизонтальное оперение, получаемый суммированием сигнала от отклонения рычага управления по тангажу с сигналами по параметрам движения.

Перечень фигур:

фиг.1 - блок-схема, реализующая предлагаемый способ продольного управления самолетом комбинированной схемы;

фиг.2 - графики зависимостей несущих свойств самолета, а также углов отклонения органов продольного управления и угла атаки на переднем горизонтальном оперении от угла атаки самолета.

На фиг. 1 показана блок-схема, реализующая предлагаемый способ продольного управления самолетом комбинированной схемы, при котором переднее горизонтальное оперение используется в качестве основного органа управления продольным движением.

На блок-схеме обозначено:

1 - блок суммирования сигнала от отклонения рычага управления по тангажу, задаваемого летчиком, с сигналами по параметрам движения, поступающими на переднее горизонтальное оперение;

2 - блок суммирования управляющего сигнала на переднее горизонтальное оперение, получаемого в блоке 1, с сигналом, соответствующим текущему значению угла атаки;

3 - блок ограничения угла атаки на переднем горизонтальном оперении;

4 - блок формирования сигнала, соответствующего фактическому углу отклонения переднего горизонтального оперения;

5 - блок рассогласования между сигналом, соответствующим фактическому углу отклонения переднего горизонтального оперения, и управляющим сигналом на него;

6 - блок формирования остаточного сигнала;

7 - блок суммирования остаточного сигнала с сигналами по параметрам движения, поступающими на заднее горизонтальное оперение.

Предлагаемый способ продольного управления самолетом комбинированной схемы осуществляют следующим образом. В блоке 1 суммируют сигнал ϕпго л от отклонения рычага управления по тангажу, задаваемого летчиком, с результирующим сигналом по параметрам движения(т.е. суммой различных сигналов), поступающим на переднее горизонтальное оперение, от автоматизации управления самолетом Δϕпго авт, и тем самым получают управляющий сигнал на переднее горизонтальное оперение ϕпго упр. Этот сигнал, имеющий размерность угла, в блоке 2 суммируют с сигналом, соответствующим текущему значению угла атаки α и измеряемым в полете, в результате чего получают расчетный угол атаки на переднем горизонтальном оперении αпго расч. Поскольку величина угла атаки на переднем горизонтальном оперении αпго должна быть ограничена в пределах |αпго|≤|αпго доп| из условия недопущения срыва потока, то полученное значение αпго расч пропускают через блок 3, предусматривающий указанное ограничение как при положительных, так и при отрицательных углах атаки. Далее в блоке 4 путем вычитания α из ограниченного значения αпго формируют сигнал ϕпго, соответствующий фактическому углу отклонения переднего горизонтального оперения, который поступает на соответствующий привод. Этот сигнал в блоке 5 сравнивают со значением ϕпго упр и тем самым получают рассогласование Δϕпгопгопго упр. Если такое рассогласование не равно нулю, то это означает, что часть момента тангажа, связанная с отклонением переднего горизонтального оперения, недостаточна для достижения заданного значения α, а кроме того, для указанного случая всегда выполняется условие: sign(Δϕпго)=-sign(α). Поэтому рассогласование Δϕпго поступает в блок 6, где путем его умножения на передаточный коэффициент Kго/пго формируют остаточный сигнал ϕост, величина которого должна быть потребной для компенсации снижения момента тангажа от переднего горизонтального оперения, а кроме того, должно выполняться условие: sign(ϕост)=-sign(α). Именно для реализации указанных требований значение передаточного коэффициента Kго/пго должно быть положительным и представлять собой отношение абсолютных величин производных момента тангажа по углам отклонения переднего горизонтального оперения и заднего горизонтального оперения. Далее в блоке 7 величину ϕост суммируют с результирующим сигналом по параметрам движения (т.е. суммой различных сигналов), поступающим на заднее горизонтальное оперение, от автоматизации управления самолетом Δϕго авт, и тем самым получают фактический угол отклонения заднего горизонтального оперения ϕго, который поступает на соответствующий привод. Распределение сигналов по параметрам движения между передним горизонтальным оперением и задним горизонтальным оперением возможно различными способами для каждого конкретного самолета.

На фиг. 2 в качестве примера приведены расчетные зависимости несущих свойств самолета, а также углов отклонения органов продольного управления и угла атаки на переднем горизонтальном оперении от угла атаки самолета. На верхнем графике обозначены соответствующие зависимости балансировочного значения коэффициента подъемной силы:

1 - при использовании заднего горизонтального оперения в качестве основного органа управления продольным движением;

2 - при использовании переднего горизонтального оперения в качестве основного органа управления продольным движением и наличии на нем ограничений по углу атаки;

3 - при использовании переднего горизонтального оперения в качестве основного органа управления продольным движением и отсутствии на нем ограничений по углу атаки.

Видно, что при использовании предлагаемого способа продольного управления самолетом комбинированной схемы (зависимость 2) происходит повышение несущих свойств такого самолета по сравнению со случаем использования заднего горизонтального оперения в качестве основного органа управления продольным движением (зависимость 1). При выходе на ограничение по αпго несущие свойства несколько снижаются по сравнению со случаем отсутствия указанного ограничения (зависимость 3) за счет уменьшения ϕпго и роста абсолютной величины ϕго с противоположным знаком, что в итоге приводит к уменьшению подъемной силы. Все указанные зависимости рассчитаны для линейной области изменения аэродинамических характеристик всего самолета и его переднего горизонтального оперения. Поэтому в расчетах было принято, что α=0÷15°, αпго доп=20°.

Предлагаемое техническое решение позволяет на заданном значении угла атаки совершать, например: взлет и посадку с меньшей скоростью - для самолета любого назначения; маневр с большей перегрузкой на требуемой скорости или с той же перегрузкой на меньшей скорости - для маневренного самолета. Это подтверждает достижение технического результата, который заключается в повышении несущих свойств статически устойчивого самолета комбинированной схемы за счет балансировки при использовании переднего горизонтального оперения в качестве основного органа управления продольным движением. При этом степень повышения несущих свойств самолета возрастает с увеличением степени его продольной статической устойчивости.

Способ продольного управления самолетом комбинированной схемы, при котором в систему управления передают сигнал от отклонения рычага управления по тангажу и сигналы по параметрам движения, а в системе управления формируют управляющие сигналы на переднее горизонтальное оперение и на заднее горизонтальное оперение, отличающийся тем, что формирование управляющего сигнала на переднее горизонтальное оперение осуществляют суммированием сигнала от отклонения рычага управления по тангажу с соответствующими сигналами по параметрам движения и ограничивают суммарный управляющий сигнал установленным допустимым значением угла атаки на переднем горизонтальном оперении, а формирование управляющего сигнала на заднее горизонтальное оперение осуществляют суммированием соответствующих сигналов по параметрам движения с остаточным сигналом, определяемым из соотношения: ϕост=Kго/пгопгопго упр), где Kго/пго - отношение абсолютных величин производных момента тангажа по углам отклонения переднего горизонтального оперения и заднего горизонтального оперения, ϕпго - сигнал, соответствующий фактическому углу отклонения переднего горизонтального оперения при наличии ограничения по углу атаки на нем, ϕпго упр _ управляющий сигнал на переднее горизонтальное оперение, получаемый суммированием сигнала от отклонения рычага управления по тангажу с сигналами по параметрам движения.



 

Похожие патенты:

Обнаруживают и отслеживают признаки в рамках данных дальности из датчиков. Рассчитывают параметры отслеживания для каждого из признаков, при этом параметры отслеживания содержат срок отслеживания и согласованность обнаружения или переменность позиции.

Изобретение относится к профилированию дорожного полотна автогрейдером. Техническим результатом является повышение точности геометрических параметров возводимого полотна.

Изобретение относится к способу наведения летательного аппарата на источник разового излучения. Способ заключается в том, что определяют курсовой угол при пеленговании на источник излучения, выстраивают прямую линию заданного пути через точку пеленгования в направлении на источник, выводят летательный аппарат на линию заданного пути, а в случае если курсовой угол больше заданного, осуществляют разворот летательного аппарата по окружности с минимально возможным радиусом в противоположную сторону от источника разового излучения и выводят летательный аппарат на линию заданного пути с нулевым курсом на источник излучения по кратчайшему маршруту.

Группа изобретений относится к системе и способу компенсации порыва воздушной массы, воздушному летательному аппарату. Система содержит подсистему датчиков, подсистему сигналов порыва воздушной массы, выполненную с возможностью выдачи сигнала для перемещения поверхностей управления в ответ на этот сигнал.
Активная радиолокационная система захода и посадки летательных аппаратов на взлетно-посадочную полосу содержит наземное оборудование, состоящее из радиолокатора посадки (РЛП), и оборудование на борту летательного аппарата, в состав которого входит активный модуль СВЧ, бортовой компьютер и средства связи для передачи для приема цифровой информации от РЛП, при этом РЛП содержит цифровой радиолокационный модуль с фазированной антенной решеткой (ФАР), средства связи для передачи летательному аппарату радиолокационной информации (РЛИ) и средства электропитания, а активный модуль СВЧ содержит антенно-фидерные каналы, приемопередающие блоки зондирующего сигнала, линии задержки зондирующего сигнала.

Изобретение относится к системе управления полетом беспилотных летательных аппаратов (БПЛА) с дифференциальным позиционированием на основе сети постоянно действующих референцных станций (CORS).

Использование: в области электротехники. Технический результат – обеспечение экономии потребления электроэнергии роботом-уборщиком.

Группа изобретений относится к способу и системе обеспечения автоматической посадки летательного аппарата на взлетно-посадочную полосу, устройству обработки данных для осуществления способа.

Система автоматического управления самолетом при снижении на этапе стабилизации высоты круга содержит навигационно-измерительный комплекс, два масштабных блока, пять сумматоров, два нелинейных блока, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления, рулевой привод, руль высоты, два ключа, задатчик высоты круга, датчик скорости полета самолета, блок логики, соединенные определенным образом.

Изобретение относится к области судовождения, в частности к системам управления, обеспечивающим автоматическое управление движением морского подвижного объекта (МПО) по маршруту.

Изобретение относится к аэродинамическому управлению техническими объектами, преимущественно малоразмерными летательными аппаратами (ЛА), совершающими полет с маневрированием на небольших углах атаки и скольжения (например, по прямолинейным или баллистическим траекториям).

Настоящее изобретение относится к способу и взаимодействующей с ним системе управления для торможения левым и правым колесами опоры шасси. Желаемый параметр (L) левого торможения принимается для левого колеса, а желаемый параметр (R) правого торможения принимается для правого колеса.

Система автоматического управления углом крена и ограничения угловой скорости крена летательного аппарата содержит задатчик угла крена, вычислитель автопилота угла крена, алгебраический селектор, сервопривод элеронов летательного аппарата, датчик угла крена летательного аппарата, задатчик максимальной угловой скорости крена, вычислитель автомата ограничения угловой скорости крена, датчик угловой скорости крена летательного аппарата, датчик положения ручки управления летчика, вычислитель максимальной угловой скорости крена, датчик высоты полета, датчик числа М, датчик угла атаки, датчик угла скольжения, датчик положения элеронов, соединенные определенным образом.

Изобретение относится к способу управления многосекционным рулем летательного аппарата. Для управления многосекционным рулем формируют команды управления каждой секцией для обеспечения требуемых моментов.

Группа изобретений относится к способу и системе управления продольным движением при разбеге по взлетно-посадочной полосе и наборе высоты беспилотного летательного аппарата (БПЛА) с сочлененными на киле передними и задними крыльями.

Система автоматического управления беспилотным летательным аппаратом по углу крена содержит три сумматора, исполнительное устройство, датчик угловой скорости, датчик угла крена, дифференциатор, интегратор, пять усилителей, соединенные определенным образом.

Изобретение относится к способу управления скоростью полета самолета с учетом стабилизации скорости. Для управления скоростью полета самолета используют основной управляющий сигнал, поступающий на привод тяги двигателей, а также дополнительный управляющий сигнал, поступающий на привод секций интерцепторов, условие подключения которого определяется заданной величиной разницы между текущей и заданной приборной скоростью, которая может задаваться пилотом с пульта управления или автоматически при решении оптимизационных задач и выбирается из условия потребной величины долевого участия интерцепторов в решении задачи стабилизации и отслеживания заданной приборной скорости совместно с управлением тягой двигателей определенным образом.

Изобретение относится к способу формирования вспомогательных управляющих сигналов на пробеге самолета. Для осуществления способа передают управляющие сигналы с датчиков системы измерения параметров полета в вычислительную систему автоматического управления полетом для формирования вспомогательного управляющего сигнала на привод секций интерцепторов, а также осуществляют дифференциальное управление тормозами колес определенным образом.

Группа изобретений относится к способу и устройству формирования сигнала управления рулевым приводом беспилотного летательного аппарата (БПЛА). Для формирования сигнала управления задают сигнал управления, усиливают его и ограничивают, фильтруют сигнал вычитания, усиливают отфильтрованный сигнал, формируют текущий скоростной сигнал отклонения руля и масштабируют его, отрабатывают текущий сигнал отклонения руля исполнительным механизмом, при этом дополнительно измеряют скоростной напор, угол атаки, коэффициент эффективности шарнирного момента от угла атаки и от отклонения руля, формируют текущий сигнал скорости с учетом его нечувствительности в зоне текущего значения шарнирного момента определенным образом.

Система автоматического управления углом курса и ограничения угла крена летательного аппарата содержит задатчик угла курса, четыре элемента сравнения, вычислитель заданного угла крена, алгебраический селектор минимального сигнала, вычислитель автопилота угла крена, сервопривод элеронов, датчик угла курса летательного аппарата, датчик угла крена летательного аппарата, задатчик максимального угла крена, залдатчик минимального угла крена, третий элемент сравнения, алгебраический селектор максимального сигнала, соединенные определенным образом.

Изобретение относится к способу управления самолетом комбинированной схемы. Для управления самолетом в систему управления передают сигнал от отклонения рычага управления по тангажу и сигналы по параметрам движения, в системе управления формируют определенным образом управляющие сигналы на переднее и заднее горизонтальное оперение. Обеспечивается повышение несущих свойств статически устойчивого самолета комбинированной схемы, сохранение установленного диапазона эксплуатационных углов атаки. 2 ил.

Наверх