Вероятностный вычислитель координаты



Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты
Вероятностный вычислитель координаты

Владельцы патента RU 2707960:

Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Черноморское высшее военно-морское ордена Красной Звезды училище имени П.С. Нахимова" Министерства обороны Российской Федерации (RU)

Изобретение относится к области радиолокации, в частности к области сопровождения цели на траектории в обзорных радиолокационных станциях (РЛС). Достигаемый технический результат - разработка вероятностного вычислителя координаты на основе метода наименьших квадратов для усреднения полученных в результате трех последовательных, через равное время, измерениях координаты РЛС. Технический результат достигается путем использования вероятностных множительных устройств, в роли которых выступают двухвходовые конъюнкторы, регистры сдвига и вероятностный сумматор. 1 ил.

 

Изобретение относится к области радиолокации, в частности к области сопровождения цели на траектории в обзорных радиолокационных станциях.

Известны устройства аналогичного назначения, построенные на основе специализированных арифметико-логических устройствах, которые состоят из умножителей и сумматоров [Сатыга О.Г. Основы построения систем управления стрельбой корабельных артиллерийских комплексов и систем стабилизации корабельного вооружения. Академия военно-морских сил им. П.С. Нахимова. Севастополь. 2009. - С. 74-78]. Основными их недостатками являются сравнительно большой аппаратный объем и низкое быстродействие.

Задачей, на решение которой направлено заявляемое изобретение является разработка устройства для вычисления координаты, обладающего малым аппаратным объемом и способностью обрабатывать сигнал в масштабе реального времени.

Решение технической задачи достигается путем использования вероятностной формы представления данных, в связи с чем изменяется аппаратная реализация рассматриваемого прототипа.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков является уменьшение аппаратного объема вероятностного вычислителя координат при сохранении точностных характеристик и возможности обработки входного сигнала в масштабе реального времени, достигаемым путем замены в прототипе аналоговых усилителей на блоки вероятностного умножения, а цифрового комбинационного сумматора на вероятностный сумматор.

Сущность изобретения поясняется чертежом Фиг., на котором изображена функциональная схема вероятностного вычислителя координаты, где:

1.1, 1.2, 1.3 - регистры хранения значений измеренных координат X1, Х2 и Х3;

2.1, 2.2, 2.3 - регистры хранения значений поправочных коэффициентов соответственно;

3.1, 3.2, 3.3 - двухвходовые конъюнкторы, выполняющие функцию арифметических умножителей вероятностно представленных операндов;

4 - вероятностный сумматор в роли которого может выступать схема [Пат. 171033 Российская Федерация, МПК G06F 19/00 Параллельный вероятностный сумматор / Моисеев Д.В., Сапожников Н.Е.; заявитель ЧВВМУ им. П.С. Нахимова. - №2017100704; заявл. 10.01.2017; опубл. 17.05.2017, бюл. №14.].

Устройство рассчитано на вычисление координаты Xi в i-ом наблюдении используя метод наименьших квадратов (МНК).

Расчет координаты цели по МНК при линейной гипотезе движения цели обозначим и определим по формуле:

где:

Функция (2) является весовой функцией оценки параметров, которые при решении задачи оценки параметров по методу МНК определяются заранее и вводятся в специально отведенные для них регистры.

При n=3:

Вероятностный вычислитель координаты функционирует следующим образом - до начала работы на входы схемы подаются значения поправочных коэффициентов и значения трех последних измеренных через равный промежуток времени - Т, соответствующий времени поворота антенны, представленные в виде вероятностных отображений.,

В наиболее простом случае вероятностного преобразования, значение параметра преобразуемой величины либо всегда положительно, либо всегда отрицательно, а сам процесс преобразования выполняется в соответствии с правилом

где xi - i-e значение параметра преобразуемого сигнала X(t);

R(tij) - j-е значение параметра вспомогательного случайного сигнала R(t), изменяющегося в интервале изменения X(t);

- число циклов преобразования сигнала X(t);

- количество статистических испытаний каждого значения хi внутри временного интервала Δti=ti+l-ti;

yij - значение вероятностного отображения параметра сигнала xi из ряда Yi(t) = {yi1; yi2; … yij; … yiK}.

Вероятностное отображение обладает свойствами синхронности (тактируемости) и независимости каждого члена отображения от любого другого.

Первое свойство заключается в том, что формирование членов вероятностного отображения производится через постоянный интервал времени Δti=ti+l-ti, определяемый частотой ƒj=1/Δtj выполнения правила (4).

Свойство независимости каждого члена вероятностного отображения yij от любого другого следует из того факта, что получение вероятностного отображения соответствует схеме испытаний Бернулли. Для случайной последовательности, полученной в соответствии с данной схемой, автокорреляционная функция представляет собой δ-функцию при τ=0. Для доказательства этого следует показать, что повторные испытания в соответствии с (4) также являются независимыми. Значения вспомогательной случайной функции R(t) формируются в дискретные моменты времени. В любой момент времени функция может находиться только в одном из своих состояний rij с вероятностью Pj(t). Очевидно, что для любого t

и при заданных вероятностях Pj(t) распределение rij может быть задано плотностью вероятности:

где

есть распределение фиксированной величины rij, определяемое функцией Дирака.

Использование этих свойств и применение вероятностно представленных дискретных сигналов позволяет упростить функциональные узлы для выполнения арифметических и логических операций, в частности, сложения, вычитания, умножения, возведения в целую степень, деления, компарации и т.д. и, тем самым, резко уменьшить их аппаратурный объем.

С учетом исходного правила преобразования, вероятности появления «1» и «0» в вероятностном отображении равняются:

P(yij=1)=P[R(tij)〈xi],

P(yij=0)=1-P[R(tij)〈xi].

Математическое ожидание от вероятностного отображения определяется через ряд распределения для дискретной случайной величины yij

Тогда

Таким образом, вероятность появления «1» в вероятностном отображении есть математическое ожидание от отображения и численно равняется значению интегрального закона распределения вспомогательного сигнала R(t) при уровне сравнения xi.

Особый интерес представляет случай, когда вспомогательный случайный сигнал R(t) подчиняется равномерному закону распределения в соответствии с

Для него последнее выражение для МО перепишется в виде:

M[Yi(t)]=P(yij=1)=xi,

т.е. имеем случай линейного вероятностного преобразования.

Таким образом, количество единиц в вероятностном отображении соответствует весу значения преобразуемого в вероятностную форму, что в свою очередь позволяет выполнять операцию умножения вероятностно представленного операнда на операнд представленный в двоичных позиционных кодах. Примером преобразователя информации в вероятностные отображения может служить схема - Пат. 2660831 Российская Федерация, МПК Н03М 7/00 (2006.01) Преобразователь двоичный код - вероятностное отображение / Д.В. Моисеев, Н.Е. Сапожников; заявитель и патентообладатель ФГБВОУ ВО ЧВВМУ им. П.С. Нахимова Министерства обороны Российской Федерации (RU). - №2017100609, заявл. 10.01.2017; опубл. 10.07.2018 Бюл. №18

Значения с входов схемы записываются в регистры сдвига: измеренные значения координат в регистры (1.1), (1.2) и (1.3), а поправочные коэффициенты в регистры (2.1), (2.2) и (2.3) соответственно.

После выполнения записи поправочных коэффициентов и значений измеренных координат, представленных в виде вероятностных отображений в соответствующие регистры сдвига начинается работа схемы вероятностного вычислителя координаты: значения измеренных координат Xi и соответствующим им поправочным коэффициентам Mi поступают на входы конъюнкторов (3.1), (3.2) и (3.3) соответственно.

Для вычисления произведения двух величин, представленных в виде вероятностных отражений, следует воспользоваться соотношением:

откуда следует, что для вычисления произведения двух вероятностно представленных сомножителей необходим один двухвходовой конъюнктор.

Результаты произведения Х1 на М1, Х2 на М2 и Х3 на М3 поступают на схему параллельного вероятностного сумматора (4).

Для нахождения суммы вероятностно представленных сигналов воспользуемся соотношением:

Выход сумматора (4) является выходом всей схемы.

Технико-экономическая эффективность предлагаемого вероятностного вычислителя координаты состоит в уменьшении его аппаратного объема при сохранении точностных характеристик и возможности обработки входного сигнала в реальном масштабе времени.

Вероятностный вычислитель координаты, характеризующийся тем, что в состав схемы входят три последовательных регистра хранения результатов измерения координаты, три регистра хранения поправочных коэффициентов, три двухвходовых конъюнктора и один параллельный сумматор на три входа, в начале работы схемы в регистры хранения результатов измерения координаты загружаются вероятностные отображения трех последних измеренных координат, в регистры хранения поправочных коэффициентов загружаются вероятностные отображения соответствующих поправочных координат, после чего вероятностные отображения с выходов соответствующих регистров хранения поправочных коэффициентов и регистров хранения результатов измерения координаты попарно параллельно поступают на входы двухвходовых конъюнкторов, выполняющих функцию множительных устройств, произведение соответствующих координат и поправочных коэффициентов с выходов трех коньюнкторов поступают параллельно на входы вероятностного сумматора, на выходе которого формируется сумма произведений измеренных координат на соответствующие им поправочные коэффициенты, выход сумматора является выходом всей схемы.



 

Похожие патенты:

Изобретение относится к медицине. Технический результат заключается в расширении арсенала средств.

Изобретение относится к устройствам для связи устройства числового программного управления (УЧПУ) с исполнительными механизмами станка. Технический результат заключается в возможности применения одной панели управления к разным типам станков.

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении качества информационного поиска.

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении надежности контроллера датчиков.

Изобретение относится к технике связи и предназначено для обработки данных при передаче множественных видов элементов аудиоданных. Технический результат – уменьшение нагрузки по обработке данных на приеме при передаче множественных видов элементов аудиоданных.

Группа изобретений относится к медицине, а именно к электронной системе мониторинга и помощи в терапии и профилактике пациента, и может быть использовано для наблюдения за пациентом.

Группа изобретений относится к медицине, а именно к обеспечению аутентификации пользователя. Предложен способ, включающий передачу объектом, относящимся к учреждению, которое предоставляет данные о пациентах и/или осуществляет доступ к данным о пациентах, облачной системе поддержки принятия клинических решений первого запроса и первого маркера сеанса, сгенерированного объектом и содержащего идентификатор для идентификации сеанса взаимодействия объекта с облачной системой поддержки принятия клинических решений.

Изобретение относится к персональным средствам экстренного реагирования. Технический результат заключается в уменьшении времени ответа на вызовы с повышенным риском для клиента персональной системы экстренного реагирования (ПСЭР).

Изобретение относится к цифровой вычислительной технике. Технический результат заключается в расширении арсенала технических средств.

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении возможности создания идентификации аннотации в электронному отчету об изображении на основании предварительно аннотированных изображений.

Изобретение относится к средствам фильтрации импульсных помех в радиосигналах. Технический результат заключается в устранении задержки в выходном сигнале, а также уменьшении дисперсии ошибок, вносимых помехами.

Предлагаемое изобретение относится к средствам цифровой обработки изображений. Техническим результатом является повышение качества сегментации изображений.

Предлагаемое изобретение относится к области вычислительной техники и может быть использовано в системах анализа и обработки изображений, цифровом телевидении. Технический результат заявленного предложения заключается в улучшении изображения за счет разбиения изображения на блоки разных размеров и их обработки, с использованием вычисления коэффициента преобразования изображения методом «α-rooting».

Изобретение относится к области цифровой техники для обработки данных, предназначенных для вычисления значений функций приближенными методами, в особенности экстраполяцией.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении точности широтно-импульсного преобразователя.

Группа изобретений относится к вычислительной технике и может быть использована для вычисления градиента. Техническим результатом является обеспечение вычисления градиента основанной на данных функциональной модели.

Изобретение относится к области цифровой обработки информации и может быть использовано для экстраполяции положения движущихся объектов. Техническим результатом является повышение точности оценки, устойчивости и снижение объема вычислительных затрат.

Изобретение относится к области автоматики и вычислительной техники. Технический результат – обеспечение автоматического выбора коэффициента сглаживания в зависимости от скорости медианы процесса (МП).

Изобретение относится к области автоматики и вычислительной техники. Технический результат – обеспечение автоматического выбора величины степени сглаживания числа задействованных каналов сглаживания, обратно пропорциональной скорости медианы процесса.

Изобретение относится к вычислительной технике и может быть использовано для мониторинга состояния сложных объектов, результатом которого является оценка многопараметрического интегрального показателя состояния объекта.

Изобретение относится к области вычислительной техники. Технический результат заключается в получении однородного множества данных, которые используются для получения ситуационных моделей, обеспечивающих возможности прогнозирования и автоматического регулирования производства.
Наверх