Способ определения огнестойкости строительных материалов и элементов конструкций



Способ определения огнестойкости строительных материалов и элементов конструкций
Способ определения огнестойкости строительных материалов и элементов конструкций
G01N29/048 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2707984:

федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" (RU)

Изобретение относится к области исследований физико-механических свойств материалов и может быть использовано для определения огнестойкости строительных материалов. Заявлен способ определения огнестойкости строительных материалов, характеризующийся тем, что испытуемый образец закрепляют в огневой камере, механически его нагружают, нагревают и определяют время трещинообразования. Перед механическим нагружением испытательного образца к нему прикрепляют стержни-звуководы, соединенные с пьезоэлектрическими преобразователями, подключенными к ультразвуковому прибору контроля. Измеряют по прибору контроля время прохождения ультразвуковой волны через испытуемый образец в течение всего процесса нагрева. Рассчитывают скорость прохождения ультразвуковой волны через испытуемый образец, и при резком снижении скорости прохождения ультразвуковой волны в испытательном образце, означающем момент трещинообразования, определяют огнестойкость испытуемого образца. 1 ил.

 

Изобретение относится к области исследований физико-механических свойств материалов, а именно, к способам определения огнестойкости строительных материалов и элементов конструкций при воздействии высоких температур.

В настоящее время существует необходимость строгого учета такого важного фактора, определяющего эксплуатационные возможности различных строительных материалов, как огнестойкость. Значительную роль данный фактор приобретает в тех случаях, когда используются низкопрочные и хрупкие строительные материалы, например, пеноблоки и газоблоки.

Известен способ определения огнестойкости сжатых элементов железобетонных конструкций здания, включающий испытание сжатых элементов железобетонных конструкций (ЖБК) здания (патент РФ №2281482, «Способ определения огнестойкости сжатых элементов железобетонных конструкций здания», МПК G01N 25/50, опубл. 10.08.2006).

Недостатком известного способа является высокая трудоемкость и длительность испытаний, большое количество параметров, необходимых для определения огнестойкости строительных конструкций: геометрические размеры ЖБК, схема обогрева опасных сечений в условиях пожара, степень армирования бетона сжатых элементов и условий их крепления; плотность, влажность и показатель теплопроводности бетона; величина нормативных нагрузок на ЖБК и степень напряжения опасных сечений сжатых элементов.

Из уровня техники известен способ контроля внутренних дефектов на основе метода акустической эмиссии (патент на изобретение №2141655, «Многофункциональная акустико-эмиссионная система диагностики конструкций и способ диагностирования на ее основе», МПК G01N 29/14, опубл. 20.11.1999).

Недостатком известного способа является сложность процесса контроля, включающего фильтрацию помех, анализ параметров сигналов и оценку степени опасности источников дополнительно определяемого по вычисленным спектрам с учетом координат источников. Кроме того, известный метод подразумевает использование сложного оборудования, где операции выполняют на распределенных по локально-вычислительной сети процессорах многоканальных модулей регистрации и предварительной обработки сигналов и модулей анализа сигналов под управлением операционной системы реального времени.

Из уровня техники известны способы определения огнестойкости строительных материалов и конструкций, заключающиеся в том, что материал или элемент конструкции размещают в огневой камере, подвергают тепловому воздействию и по времени до разрушения оценивают его огнестойкость (ГОСТ 30247.0-94 (ИСО 834-75) Конструкции строительные. Методы испытаний на огнестойкость. Общие требования).

Недостатками известных способов является субъективность и низкая точность определения момента трещинообразования и разрушения материала, т.к. образование трещины фиксируется визуально или с помощью фото-видео съемки при выходе ее на поверхность образца.

Наиболее близким по технической сущности к данному изобретению является способ определения огнестойкости строительных материалов и элементов конструкций, заключающийся в том, что элемент конструкции закрепляют в огневой камере, подвергают механической нагрузке, заданному тепловому воздействию и по времени до разрушения оценивают его огнестойкость (А.с. 646219, «Способ определения огнестойкости элементов строительных конструкций», МПК G01N 3/60, опубл. 05.02.1979).

Данное техническое решение принято за прототип, как наиболее приближенный способ определения огнестойкости строительных материалов и элементов конструкций.

Недостатком известного способа является его низкая точность в результате визуального определения момента трещинообразования.

Задачей авторов изобретения является разработка эффективного способа определения огнестойкости строительных материалов и элементов конструкций.

Технический результат заявляемого изобретения заключается в повышении точности определения огнестойкости строительных материалов и элементов конструкций.

Указанный технический результат достигается за счет того, что в способе определения огнестойкости строительных материалов, характеризующимся тем, что испытуемый образец закрепляют в огневой камере, механически его нагружают, нагревают и определяют время трещинообразования, согласно изобретению, перед механическим нагружением испытуемого образца к нему прикрепляют стержни-звуководы, соединенные с пьезоэлектрическими преобразователями, подключенными к ультразвуковому прибору контроля, измеряют по прибору контроля время прохождения ультразвуковой волны через испытуемый образец в течение всего процесса нагрева, рассчитывают скорость прохождения ультразвуковой волны через испытуемый образец, и при резком снижении скорости прохождения ультразвуковой волны в испытуемом образце, означающем момент трещинообразования, определяют огнестойкость испытуемого образца.

Закрепление стержней-звуководов, соединенных с пьезоэлектрическими преобразователями и ультразвуковым прибором контроля на испытательном образце, обеспечивает возможность прохождения ультразвуковой волны при его механическом нагружении и тепловом воздействии, определения времени и скорости прохождения ультразвуковой волны. Момент трещинообразования определяется резким снижением скорости прохождения ультразвуковой волны в элементе строительной конструкции.

В предлагаемом способе исследуемые образцы строительных материалов подвергают комплексным испытаниям, как это предусмотрено в прототипе, однако момент трещинообразования определяется не визуально, а по параметрам ультразвуковых волн - времени и скорости прохождения ультразвуковой волны сквозь испытуемый образец.

Принцип ультразвукового метода контроля основан на том факте, что твердые материалы являются хорошим проводником звуковых волн, посредством чего, волны отражаются не только от граничных поверхностей, но и внутренних дефектов (трещины, различные включения и т.п.). Эффект взаимодействия звуковых волн с материалом усиливается по мере уменьшения длины волны и, соответственно, увеличения частоты колебаний.

Способность ультразвукового метода обнаруживать скрытые дефекты типа трещин основана на том, что плоскостной дефект (трещина), расположенный на пути ультразвукового импульса, задерживает его приход, так как при огибании дефекта удлиняется путь ультразвукового импульса. Следовательно, наличие внутреннего дефекта (трещины) в образце строительного материала может быть обнаружено по увеличению времени прохождения ультразвука (снижению скорости прохождения ультразвука) по сравнению с бездефектным участком. Образованию и продвижению магистральной трещины в образце строительного материала при нагреве предшествует распространение, направленных в разные стороны, микротрещин. В условиях действия высоких температур, микротрещина, возникшая в точке, где была достигнута опасная комбинация напряжений, может очень быстро распространиться на большое расстояние и привести к разрушению конструкции в целом.

Такой подход, в отличие от прототипа, в предлагаемом способе повышает надежность испытаний, обеспечивает возможность объективно, в автоматическом режиме определять момент трещинообразования в образцах строительных материалов и конструкций, при этом внутренний дефект или сетка трещин фиксируется до образования магистральной трещины, т.е. до выхода ее на поверхность образца.

На фиг. представлена экспериментальная зависимость скорости прохождения ультразвука от температуры в образцах газобетона и пенобетона.

Параметром контроля служило время прохождения ультразвука через контролируемый образец, которое измеряли в микросекундах (мкс) с помощью портативного ультразвукового прибора на рабочей частоте ультразвуковых колебаний 60 кГц с относительной погрешностью ±1%. Информативным показателем служила скорость прохождения ультразвука через испытуемый образец, которая определялась с относительной погрешностью не более ±2% по формуле:

C=(L/(t1-t2))⋅103,

где С - скорость ультразвука, м/с; L - база прозвучивания (размер образца в направлении прозвучивания), мм; t1 - время прохождения ультразвука, мкс; t2-время прохождения (задержка) в звуководах, мкс.

В процессе нагрева образцов (см. фиг.) скорость ультразвука незначительно снижается за счет теплового расширения. В момент времени, соответствующего 500°С для пенобетона и 530°С для газобетона, происходит резкое снижение скорости (повышение времени) ультразвука в испытуемом образце, что свидетельствует о начале процесса трещинообразования внутри образца и снижении огнестойкости.

Предлагаемый способ позволяет достигнуть технический результат, который заключается в достижении более высокой эффективности способа определения огнестойкости строительных материалов и элементов конструкций за счет объективного и точного установления факта нарушения их целостности методом ультразвукового контроля, позволяющего установить момент трещинообразования по резкому увеличению времени и снижению скорости прохождения ультразвуковой волны в элементе строительной конструкции.

Способ определения огнестойкости строительных материалов, характеризующийся тем, что испытуемый образец закрепляют в огневой камере, механически его нагружают, нагревают и определяют время трещинообразования, отличающийся тем, что перед механическим нагружением испытательного образца к нему прикрепляют стержни-звуководы, соединенные с пьезоэлектрическими преобразователями, подключенными к ультразвуковому прибору контроля, измеряют по прибору контроля время прохождения ультразвуковой волны через испытуемый образец в течение всего процесса нагрева, рассчитывают скорость прохождения ультразвуковой волны через испытуемый образец, и при резком снижении скорости прохождения ультразвуковой волны в испытательном образце, означающем момент трещинообразования, определяют огнестойкость испытуемого образца.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может использоваться при создании устройств и приборов для контроля качества эластичных материалов с малым поперечным сечением, предпочтительно защитных нитей и лент полимерных с нанесенным термоадгезионным слоем и голографическим рисунком, используемых при производстве ценных бумаг.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях.

Изобретение относится к области испытания материалов при повышенной температуре в условиях индукционного нагрева в протоке инертного газа. Представленная в заявке установка для испытания механических свойств материалов стандартная, имеет камеру, в которой установлен ВЧ-индуктор с цилиндром внутри него.

Изобретение относится к области технической физики и может быть использовано для формирования образцов тонких покрытий, применяемых при испытании на когезионную прочность растяжением при повышенных температурах.

Предлагаемое изобретение относится к испытательной технике, в частности к способам испытания конструкционных материалов на прочность в широком диапазоне низких температур.

Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости. Устройство содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании.

Изобретение относится к способам определения термомеханических характеристик полимерных композиционных материалов, а именно к способам определения теплостойкости Т.

Изобретение относится к области усталостных испытаний материалов на изгиб и предназначено для охлаждения образцов в процессе подготовки и проведения усталостных испытаний на изгиб.

Изобретение относится к способам испытания металлов на растяжение с высокой температурой нагрева и может быть использовано при определении зависимости интенсивности напряжения от степени и скорости деформации, которые необходимо учитывать в технологических расчетах формоизменяющих операций изотермической штамповки листовых металлов.

Изобретение относится к сейсмоакустике и может быть использовано для определения толщины ледопородного ограждения в процессе искусственного замораживания грунтов при проходке шахтных стволов.

Использование: для возбуждения пьезоэлектрических акустических преобразователей. Сущность изобретения заключается в том, что устройство для возбуждения пьезоэлектрических акустических преобразователей состоит из генератора электрических колебаний, с выходом которого соединен последовательный индуктивно-емкостный колебательный контур, к емкости которого подключен пьезокерамический преобразователь, при этом к выходным усилителям мощности задающего генератора прямоугольных электрических колебаний подключены идентичные электрические цепи, состоящие из последовательно соединенных параллельного индуктивно-емкостного колебательного контура, настроенного на вторую гармонику электрических колебаний задающего генератора, последовательного индуктивно-емкостного колебательного контура, расчетная емкость которого замещена (заменена) суммой внутренних емкостей, соединенных между собой группой пьезоэлектрических акустических преобразователей, имеющих равную резонансную частоту с частотой электрических колебаний задающего генератора, между которым и усилителями мощности включены фазовращатели, позволяющие сканировать акустические колебания в вертикальной и горизонтальной плоскости.

Использование: для ультразвуковой визуализации (УЗВ) объектов, расположенных в жидких средах. Сущность изобретения заключается в том, что первый акустический волновод 16 и волноводную матрицу 18 частично размещают в исследуемой агрессивной среде 1 (все остальные элементы размещают в неагрессивной среде 6).

Использование: для неразрушающего контроля металлургических изделий. Сущность изобретения заключается в том, что модуль для содействия калибровке устройства для контроля металлургических изделий содержит: запоминающее устройство, выполненное с возможностью хранения данных в форме пар «значение/угол», при этом каждая пара соответствует амплитуде отклика на ультразвуковой контроль в направлении металлургического изделия, которое соответствует указанному углу; вычислительное устройство, выполненное с возможностью выполнения функции обработки в отношении сохраненных данных, при этом данные организованы в: первый набор данных, относящийся к многонаправленному отражателю, расположенному в металлургическом изделии, при этом пары из первого набора соответствуют амплитудам отклика на ультразвуковые контроли в по меньшей мере одном из рабочих направлений многонаправленного отражателя, и второй набор данных, относящийся к направленному отражателю, расположенному в металлургическом изделии, при этом второй набор данных содержит для направленного отражателя по меньшей мере одну пару, соответствующую амплитуде отклика на ультразвуковой контроль по одному рабочему направлению данного отражателя, при этом функция обработки приспособлена для установления третьего набора данных посредством интерполяции пар из первого набора данных и второго набора данных, при этом пары из третьего набора данных соответствуют стандартным амплитудам для ультразвуковых контролей в по меньшей мере некоторых из рабочих направлений многонаправленного отражателя.

Использование: для инерциального возбуждения механических колебаний в упругой оболочке. Сущность изобретения заключается в том, что на стенке упругой оболочки устанавливают источник колебаний, представляющий собой инерциальный резонатор, состоящий из электропривода и закрепленного на его валу эксцентрика, при вращении которого возникают инерционные силы, реализующие через ось привода вибрационное воздействие на стенки упругой оболочки.

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит блок управления и индикации, который соединен с первым и вторым генераторами.

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что осуществляют излучение и прием ультразвуковых волн на двух частотах с разными периодами, измерение временных интервалов между излученными и принятыми ультразвуковыми волнами, определение расстояния до отражателя путем умножения скорости распространения ультразвука в контролируемой среде на время его распространения, при этом при усилении принятых ультразвуковых волн амплитуду сигналов задают одинаковой для обеих частот, а после измерения временных интервалов между излученными и принятыми ультразвуковыми волнами на двух частотах, определяют время распространения принятых ультразвуковых волн в соответствии с заданным выражением, полученное значение используют при определении расстояния до отражателя.

Использование: для ультразвуковой дефектоскопии. Сущность изобретения заключается в том, что устройство (100) ультразвуковой дефектоскопии содержит ультразвуковой решеточный зонд (10), имеющий ультразвуковые элементы (11); вычислитель (33) расчетного времени прихода отраженных-формой волн для вычисления расчетного времени прихода отраженных-формой волн для расчетной отраженной-формой волны на основе расчетной скорости звука в объекте (1) испытаний; экстрактор (34) фактического времени прихода отраженных-формой волн для получения фактического времени прихода отраженных-формой волн на основе фактической отраженной-формой волны; вычислитель (35) разности времен прихода отраженных-формой волн для вычисления разности посредством вычитания фактического времени прихода отраженных-формой волн из расчетного времени прихода отраженных-формой волн в качестве разности времен прихода отраженных-формой волн и вычислитель (32) времени задержки для вычисления времен задержки для взаимного сдвига времен передачи ультразвуковых волн и приема ультразвуковых волн ультразвуковыми элементами (11) с учетом разностей времен прихода отраженных-формой волн.

Изобретение относится к в способу мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин.

Использование: для контроля конструкций из полимерных композиционных материалов (ПКМ). Сущность изобретения заключается в том, что осуществляют ввод ультразвуковых колебаний в материал одного из соединяемых листов, либо в материал листа в соединении «лист - заполнитель», регистрацию сигналов, отраженных от дефектов в листе, от дефектов в клеевом слое и от границ раздела «лист - клеевой слой», «клеевой слой - лист», «клеевой слой - заполнитель» с помощью ультразвукового дефектоскопа, снабженного прямым совмещенным пьезоэлектрическим широкополосным преобразователем и двухстробовой системой автоматической сигнализации дефектов (АСД), при этом наличие дефекта в листе определяется по величине амплитуды ультразвукового сигнала, отраженного от несплошности внутри листа, а наличие дефекта в клеевом слое определяется по величине амплитуды сигнала, отраженного от клеевого слоя в месте расположения дефекта клеевого слоя, относительно положения соответствующих стробов АСД, устанавливаемых при настройке дефектоскопа на образце, имеющем искусственные дефекты листа и клеевого слоя, причем обнаружение указанных дефектов производится при регистрации амплитуд ультразвуковых сигналов, отраженных от дефекта в листе и от дефекта клеевого слоя, которая осуществляется при одном акте сканирования поверхности одного из соединяемых листов, либо листа в соединении «лист - заполнитель», при этом положение, временная длительность и уровень по шкале амплитуд дефектоскопа первого из двух стробов АСД устанавливается при настройке на искусственном дефекте листа, а второго строба - на искусственном дефекте клеевого слоя, выполненных в образцах.

Использование: для контроля металла рабочих лопаток турбины, подвергающихся длительным эксплуатационным нагрузкам при повышенных температурах. Сущность изобретения заключается в том, что к лопаткам турбины применяются методы дефектоскопии, показывающие наличие дефектов в металле путем обследования после останова турбины большой группы лопаток, на которых возможно наличие трещин.

Изобретение относится к области исследований физико-механических свойств материалов и может быть использовано для определения огнестойкости строительных материалов. Заявлен способ определения огнестойкости строительных материалов, характеризующийся тем, что испытуемый образец закрепляют в огневой камере, механически его нагружают, нагревают и определяют время трещинообразования. Перед механическим нагружением испытательного образца к нему прикрепляют стержни-звуководы, соединенные с пьезоэлектрическими преобразователями, подключенными к ультразвуковому прибору контроля. Измеряют по прибору контроля время прохождения ультразвуковой волны через испытуемый образец в течение всего процесса нагрева. Рассчитывают скорость прохождения ультразвуковой волны через испытуемый образец, и при резком снижении скорости прохождения ультразвуковой волны в испытательном образце, означающем момент трещинообразования, определяют огнестойкость испытуемого образца. 1 ил.

Наверх