Способ мечения активированных лимфоцитов in vitro комплексным соединением

Изобретение относится к области медицины, а именно к способу мечения активированных лимфоцитов in vitro комплексным соединением. Способ включает инкубирование активированных лимфоцитов с РФП 99mTc-ТЕОКСИМ в объеме 2 мл активностью 350-500 МБк, с периодическим встряхиванием в течение в течение 20 минут, после инкубирования, в пробирку с клеточной массой вносят фосфатно-солевой буфер и доводят общий объем до 10 мл, затем пробирку центрифугируют в течение 5-6 минут при 1500-2000 об/мин, после этого надосадочную жидкость полностью удаляют, меченый 99mTc-теоксимом клеточный конгломерат ресуспендируют в 1 мл фосфатно-солевого буфера. Показатель жизнеспособности меченых активированных лимфоцитов in vitro предложенным способом остается выше 95%. Готовый клеточный препарат можно вводить пациенту внутрикожно паравертебрально на уровне лопаток или в область поясницы и исследовать пути миграции меченых клеток in vivo посредством ОФЭКТ/КТ. 1 з.п. ф-лы, 3 ил., 1 пр.

 

Изобретение относится к области медицины, а именно к онкоиммунологии и радионуклидной диагностике, и может найти применение для мониторинга распределения клеток при проведении клеточной иммунотерапии онкологическим больным. Способ мечения может являться универсальным для различных видов активированных аутологичных и аллогенных клеток (цитотоксических Т-лимфоцитов, натуральных киллеров (NK) и дендритных клеток).

За последние десятилетия существенный прогресс достигнут в области иммунотерапии, разработаны многочисленные иммунотерапевтические стратегии, продемонстрировавшие свою безопасность и эффективность в ряде клинических испытаний. Иммунотерапия в настоящее время включает такие направления: создание ингибиторов контрольных точек, естественные антитела и конъюгированные с химиопрепаратами или радиоактивными частицами, противоопухолевые вакцины, а также адоптивную клеточную терапию. Наиболее перспективным направлением является метод использования клеток-эффекторов врожденного иммунитета, в частности NK и Т-лимфоцитов, противоопухолевый потенциал которых усиливают с помощью культивирования in vitro в присутствии цитокинов. Данный метод разработан [1] и успешно внедрен в клиническую практику [2], он показал относительно высокую терапевтическую эффективность в комплексном подходе. Однако на сегодняшний момент нет единого мнения о ключевых составляющих такой терапии, и по-прежнему возникают вопросы: куда, каким образом, и какое количество клеток необходимо вводить пациенту для того, чтобы такая терапия увенчалась объективным успехом. Также не изучались пути миграции активированных лимфоцитов человека при внутрикожном введении.

Известны способы топической диагностики воспалительных заболеваний сердца (RU 2136218 C1, RU 2244515 С1), в основе которых лежит один и тот же принцип внутривенного введения аутолеикоцитов, меченных 99mTс-гексаметиленпропиленаминоксимом.

Однако в известных способах отсутствует контроль качества эффективности мечения клеток аутологичных лиейкоцитов.

Известен способ выявления очагов воспаления с помощью полиорганной сцинтиграфии (RU 2648877 С1), в основе которого лежит применение аутолейкоцитов, меченых 99mТс-теоксимом или 99mТс-церетеком для внутривенного введения пациенту.

Недостатком способа является использование пакетов типа Гемакон, что затрудняет или даже делает невозможным полное отделение клеточной массы от надосадка, содержащего свободный РФП, что может повлиять на достоверность результатов в ходе проведения ОФЭКТ-исследования.

Известен способ оценки функционального состояния селезенки (RU 2152168 С1). Проводят динамическую гамма-сцинтиграфию с меченными 99ТС эритроцитами, поврежденными нагреванием. Определяют время наступления максимальной активности γ-излучения в области селезенки (Тmах), селезеночно-печеночный индекс (СПИ). Секвестрационную функцию селезенки оценивают по кривой активность - время. Количество функционирующей красной пульпы селезенки устанавливают по СПИ. При Тmах, равном 90±30 мин, и СПИ, равном 94%, секвестрационную функцию красной пульпы оценивают нормальной.

Известен также способ диагностики очаговых поражений селезенки (RU 2190959 С2). Проводят радионуклидное исследование с использованием меченных 99mТс и поврежденных нагреванием эритроцитов. Используют радиофармпрепарат радиоактивностью 20 mCi. Через 2,5 ч после его введения проводят однофотонную эмиссионную компьютерную томографию и при регистрации дефектов накопления или очагов гиперфиксации радиофармпрепарата на SPECT-срезах определяют очаговые поражения селезенки.

Однако в известных способах является некорректный прием мечения клеток: внутривенное введение транспортного вещества без радионуклида, с последующим забором крови и инкубацией с радионуклидом последней, что может отразиться на достоверности результатов ОФЭКТ-исследования.

Прототипом предлагаемого технического решения является способ метки мононуклеарных клеток красного костного мозга с помощью 99mТС-эксаметазима (RU 2343933 С1). Клеточную суспензию инкубируют с 4 мл 99mТс-эксаметазима в течение 10 минут при комнатной температуре, с последующей отмывкой, центрифугированием в течение 5 минут при 150g, после чего собирают надосадок, ресуспензируют его, для получения меченных 99mТс-эксаметазимом мононуклеарных клеток красного костного мозга, при этом инкубирование проводят с 1500-2000 мБк 99mТс-эксаметазима, отмывку проводят 10 мл изотонического раствора натрия хлорида, а ресуспензирование в 10 мл изотонического раствора натрия хлорида.

Недостатком данного способа является использование РФП с большой удельной активностью, что экономически нецелесообразно, поскольку клетки имеют конечную насыщаемость препаратом и увеличение активности никак не влияет на это свойство; также все действия по отмывке и ресуспендированию клеточной массы проводились с использованием физиологического раствора, что негативно сказывается на функциональной активности клеток.

Техническим результатом предлагаемого изобретения является получение меченой РФП культуры активированных лимфоцитов с высокими показателями жизнеспособности и эффективности мечения клеток.

Технический результат достигается тем, что также как и в известном способе проводят мечение активированных клеток in vitro.

Особенностью заявляемого способа является то, что инкубирование клеток проводят 99mТс-теоксимом в объеме 1,5-2 мл, активностью 350-500 МБк, с периодическим встряхиванием клеточной суспензии в течение 20 минут, затем к меченой клеточной субстанции добавляют фосфатно-солевой буфер в объеме 7-10 мл и центрифугируют в течение 6 минут при 2000 оборотов/минуту на центрифуге с бакетным ротором, отбирают надосадок, содержащий свободный 99mТс-теоксим, полученный клеточный конгломерат ресуспендируют в 1 мл фосфатно-солевого буфера, далее определяют с помощью раствора трипанового синего жизнеспособность меченых лимфоцитов в камере Горяева, оценивают качество мечения путем измерения активности полученной клеточной массы с помощью радиометра и получением сцинтиграммы пробирки с меченой клеточной массой. Причем мечению подвергают аутологичные или аллогенные лимфоциты и дендритные клетки.

Изобретение поясняется подробным описанием, клиническим примером и иллюстрациями, на которых изображено:

Фиг. 1 - Пробирка с мечеными лимфоцитами: А - осажденные меченые лимфоциты; Б - сцинтиграмма меченой клеточной массы;

Фиг. 2 - Сцинтиграфия тела пациента К.: В - места введения меченого клеточного препарата, Г - лимфоциты из места введения мигрировали в правый подмышечный лимфоузел, Д - аллергическая проба с применением чистого РФП 99mТс-теоксимом;

Фиг. 3 - ОФЭКТ/КТ исследование путей миграции активированных меченых 99mТс-теоксимом лимфоцитов пациента К.: Г - меченые активированные лимфоциты мигрировали в правый подмышечный лимфоузел.

Способ осуществляют следующим образом.

В стерильных условиях ламинарного бокса пипеткой собирают из культуральных флаконов необходимое для введения пациенту количество активированных лимфоцитов (5-30*106 клеток/мл), помещают в стерильную пробирку с коническим дном. Активированные лимфоциты осаждают центрифугированием, после чего пипеткой удаляют надосадочную жидкость и ресуспендируют клетки в объеме 1 мл.

1. Элюат в объеме 2 мл активностью 350-500 МБк, полученный из генератора технеция 99mТс, в асептических условиях вносят с помощью шприца во флакон с ТЕОКСИМом, содержимое флакона перемешивают встряхиванием до полного растворения препарата.

2. К клеточной суспензии стерильным шприцем вносят 99mТс-ТЕОКСИМ. Затем инкубируют лимфоциты (с периодическим встряхиванием) в течение 20 минут.

3. После инкубирования, в пробирку с клеточной массой вносят фосфатно-солевой буфер, доводят общий объем до 10 мл. Затем устанавливают пробирку в центрифугу с бакетным ротором и центрифугируют в течение 5-6 минут при 1500-2000 об/мин., после чего полностью удаляют надосадочную жидкость.

4. Меченый 99mТс-теоксимом клеточный конгломерат респуспендируют в 1 мл фосфатно-солевого буфера.

5. Определяют с помощью раствора трипанового синего жизнеспособность меченых лимфоцитов в камере Горяева или на автоматическом счетчике клеток.

6. Измеряют активность полученной клеточной массы в радиометре.

7. Получают сцинтиграфическое изображение пробирки с меченой клеточной массой (Фиг. 1).

Клинический пример.

Пациентка К., 1965 пр., диагноз: рак левой молочной железы (T3N0M1), полученное ранее лечение: хирургическое, ПХТ. Поступила в отделение клинической иммунологии МРНЦ. им. А.Ф. Цыба для проведения адоптивной клеточной иммунотерапии.

Для выделения популяции мононуклеарных клеток использовали периферическую кровь, полученную в результате пункции локтевой вены. Выделенные лимфоциты культивировали в течение 3 дней в среде с добавлением ИЛ-2, ИЛ-15. После завершения процесса культивирования получили активированные лимфоциты в количестве 10 млн. клеток. Затем к полученной клеточной массе добавляли 99mТс-ТЕОКСИМ объемом 2 мл и активностью 350 МБк, инкубировали в течение 20 мин. После инкубирования, в пробирку с клеточной массой вносили фосфатно-солевой буфер, доводя общий объем до 10 мл, центрифугировали в течение 6 минут при 2000 об/мин в центрифуге с бакетным ротором. Далее полностью удаляли надосадочную жидкость со свободным РФП. Клетки ресуспендировали в 1 мл. фосфатно-солевого буфера. С помощью красителя трипанового синего в камере Горяева определяли жизнеспособность клеток, которая составила 96,4%. Измеряли активность клеточной массы при помощи радиометра РИС-А1 «Дозкалибратора» - 29,0 МБк. Активированные лимфоциты, меченые 99mТс-теоксимом, вводили пациентке внутрикожно паравертебрально на уровне лопаток, используя инсулиновый шприц.

За 5 дней до введения меченых активированных лимфоцитов пациентке в те же места внутрикожно вводили свободный 99mТс-ТЕОКСИМ, на сцинтиграммах наблюдали гипернакопление препарата лишь в местах его введения, а также физиологическое накопление (почки, мочевой пузырь, желудок).

Визуализацию путей миграции меченых активированных лимфоцитов проводили сразу после введения и через 4 часа после введения клеток на совмещенной системе ОФЭКТ/КТ Discovery NM/CT 670. Анализ изображений показал, что меченые 99mТс-теоксимом активированные лимфоциты из места введения мигрировали в правый подмышечный лимфоузел (Фиг. 2 и Фиг. 3).

Использование предложенного способа в клинике позволяет получать меченые 99mТс-теоксимом активированные лимфоциты и затем изучать их миграцию in vivo посредством ОФЭКТ/КТ при проведении адоптивной клеточной иммунотерапии. Показатель жизнеспособности меченой культуры при таком способе мечения составляет не менее 95%, а методы инструментальной верификации эффективности мечения (измерение активности собственно меченной клеточной массы и ее сцинтиграфия) указывают на то, что именно клетки захватили 99mТс-теоксим, и в свободной форме РФП в полученном клеточном препарате на содержится, что важно для исключения ложноположительных результатов ОФЭКТ-исследования. Способ апробирован на пяти пациентах с различными нозологическими формами онкологической патологии. При анализе была отмечена общая для всех клинических случаев закономерность - меченые активированные лимфоциты из мест введения направленно мигрировали в лимфоузлы, часть из которых расположена рядом с областью основной онкологической патологии. Этот факт означает, что достигнута основная цель адоптивной клеточной биотерапии - активация специфического противоопухолевого ответа иммунной системы.

1. Способ мечения активированных лимфоцитов in vitro комплексным соединением, включающий мечение активированных клеток in vitro, отличающийся тем, что из культуральных флаконов собирают необходимое для введения пациенту количество активированных лимфоцитов 5-30*106 клеток/мл и помещают в стерильную пробирку, активированные лимфоциты осаждают центрифугированием, после чего надосадочную жидкость удаляют и ресуспендируют клетки в объеме 1 мл, далее элюат в объеме 2 мл активностью 350-500 МБк, полученный из генератора технеция 99mTc, вносят с помощью шприца во флакон с ТЕОКСИМом и перемешивают встряхиванием до полного растворения препарата, далее к клеточной суспензии вносят 99mTc-ТЕОКСИМ и затем лимфоциты инкубируют с периодическим встряхиванием в течение 20 минут, после инкубирования, в пробирку с клеточной массой вносят фосфатно-солевой буфер и доводят общий объем до 10 мл, затем пробирку центрифугируют в течение 5-6 минут при 1500-2000 об/мин, после чего надосадочную жидкость полностью удаляют, меченый 99mTc-теоксимом клеточный конгломерат ресуспендируют в 1 мл фосфатно-солевого буфера и с помощью раствора трипанового синего определяют жизнеспособность меченых лимфоцитов в камере Горяева или на автоматическом счетчике клеток, измеряют активность полученной клеточной массы в радиометре и получают сцинтиграфическое изображение пробирки с меченой клеточной массой.

2. Способ по п. 1, отличающийся тем, что проводят мечение аутологичных или аллогенных лимфоцитов и дендритных клеток.



 

Похожие патенты:

Группа изобретений относится к медицине и касается способа детектирования в исследуемом образце присутствия и/или свойств связывания анализируемых антител, способных реагировать с одной или более антигенными молекулами, включающего (a) обеспечение первой антигенной молекулы, выбранной из CRF; (b) обеспечение второй антигенной молекулы, выбранной из CRF; (c) приведение первых антигенных молекул и вторых антигенных молекул в контакт с образцом с образованием комплексов, содержащих [первую антигенную молекулу]-[анализируемое антитело]-[вторую антигенную молекулу]; (d1) обеспечение средства иммобилизации и/или (d2) обеспечение второго средства мечения; и (e) обеспечение первого средства мечения; и (g) детектирование присутствия комплексов, образованных во время или после этапа (c).

Группа изобретений относится к области ветеринарии, а именно к диагностике, и может быть использована для выявления антигенов Toxoplasma gondii или антител к ним в сыворотке или плазме крови животных, а также в материале, полученном от животных методом биопсии, и в тканях и органах животных после убоя.

Изобретение относится к способу получения производного окисленного декстрана, пригодного для его визуализации в сыворотке крови, включающему проведение реакции окисленного декстрана с меткой для его визуализации при температуре 80-90°С, в качестве метки для визуализации используют гидразид акридонуксусной кислоты; реакцию гидразид акридонуксусной кислоты - окисленный декстран проводят при соотношении компонентов 1:10 соответственно в пересчете на массу сухого вещества в течение 90 минут, фильтруют полученную суспензию, охлаждают ее до комнатной температуры, добавляют липосомообразующий агент, выдерживают полученную липосомальную форму производного окисленного декстрана при температуре 4-6°С в течение не менее 24 часов, затем фильтруют ее с помощью микрофильтра.

Изобретение относится к биотехнологии и вирусологии. Изобретение раскрывает способ определения специфической активности антирабического иммуноглобулина.

Изобретение относится к аналитической химии, а именно для изучения различных биомолекул методом люминесцентной визуализации клеток и их компонент. Для этого используют флуоресцентный оптический ДНК сенсор, состоящий из подложки и адсорбированной на ней тонкой пленки комплекса ДНК-люминофор.

Изобретение относится к медицине, в частности к средствам исследования и диагностики с помощью биочипов. Способ селективного анализа на основе иммунологических реакций с использованием биочипов включает подготовку пробы, смешение антигенов пробы с суперпарамагнитными частицами, соединенными с антителами к указанным антигенам пробы, транспортировку смеси в зону селективного детектирования по имуннологическим реакциям через капилляры и воздействие на смесь магнитным полем.

Изобретение относится к области биотехнологии, конкретно к применению выделенного антитела к CXCR4 в диагностике рака, что может быть использовано в медицине. В частности, раскрыты способы диагностики и/или прогнозирования онкогенного расстройства, связанного с экспрессией CXCR4, определения, является ли указанное расстройство или пациент, страдающий им восприимчивым к лечению анти-CXCR4 антителом, способы определения эффективной схемы лечения и наборы для лечения указанных заболеваний.

Изобретение относится к биотехнологии, а именно к электрохимическому иммуноанализу. Предложен способ определения содержания грамотрицательных бактерий в анализируемой среде.

Настоящее изобретение относится к области иммунологии. Предложено антитело и его антигенсвязывающий фрагмент, способные связываться с дельта-подобным лигандом 4 (DLL4) человека, в том числе в форме меченого антитела или его антигенсвязывающего фрагмента, конструкции с константным доменом иммуноглобулина, конъюгата с терапевтическим или цитотоксическим средством и в кристаллизованной форме.

Настоящее изобретение относится к области биотехнологии. Предложены варианты гуманизированного анти-CD79b антитела, каждый из которых характеризуется наличием легкой и тяжелой цепи и набором 6 CDR с установленной аминокислотной последовательностью и по меньшей мере одним свободным цистеиновым аминокислотным остатком, выбранным из А118С (по Европейской нумерации) в тяжелой цепи и V205C (по нумерации Кэбат) в легкой цепи.

Изобретение относится к медицине, в частности к способу получения активной фармацевтической субстанции циркония-89 в форме [89Zr]Zr-оксалата и [89Zr]Zr-цитрата для радиофармацевтических лекарственных препаратов.

Изобретение относится к области медицины, а именно к онкологии, гинекологии и лучевой диагностике, и может быть использовано для визуализации «сторожевых» лимфатических узлов (СЛУ) при эндометриоидной аденокарциноме.

Группа изобретений относится к медицине и касается способа получения радиоконъюгата актиния-225 (Ac-225), включающего стадии (а) конъюгирования хелатообразующего агента с биологической молекулой в конъюгирующей реакционной смеси для получения конъюгированной биологической молекулы; (b) очистки реакционной смеси для удаления неконъюгированных хелатообразующих агентов и (c) хелатирования одного или нескольких Ас-225 радионуклидов с конъюгированной биологической молекулой в хелатообразующей реакционной смеси при температуре 37±2°C для получения Ас-225 радиоконъюгата, где хелатообразующая реакционная смесь содержит кислоту и имеет рН от 5,5 до 7,0; и где биологическая молекула представляет собой HuM195, хелатирующий агент представляет собой p-SCN-Bn-DOTA, радиоактивность Ac-225 составляет 1 ± 0,2 мКи и содержание HuM195 составляет 1 ± 0,2 мг.

Изобретение относится к области медицины, в частности к лучевой диагностике, и может быть использовано для оценки изменений клеточной перфузии головного мозга. Способ оценки изменений клеточной перфузии головного мозга включает проведение однофотонной эмиссионной компьютерной томографии головного мозга, построение графиков накопления радиофармпрепарата по срезам головного мозга и анализ перфузии мозговой ткани.

Изобретение относится к медицине, а именно к онкологии и лучевой радионуклидной диагностике, и может быть использовано для диагностики операбельного рака молочной железы с гиперэкспрессией Her2/neu.

Изобретение относится к ядерной медицине и может быть использовано для приготовления радиофармацевтического препарата, содержащего галлий-68, для обнаружения очагов неоваскуляризации.

Изобретение относится к медицине, а именно к онкологии и лучевой радионуклидной диагностике, и может быть использовано для радионуклидной диагностики вторичной отечно-инфильтративной формы рака молочной железы с гиперэкспрессией Her2/neu с использованием рекомбинантных адресных молекул DARPin9_29.

Изобретение относится к медицине, а именно к онкологии и лучевой диагностике, и может быть использовано для оценки эффективности химиотерапии злокачественных лимфом.

Изобретение относится к области биохимии. Описана группа изобретений, включающая в себя выделенное антитело или его функциональный фрагмент, которое связывается с сиалированным антигеном Льюисаa, выделенный полинуклеотид, кодирующий тяжелую цепь вышеуказанного антитела или его функционального фрагмента, выделенный полинуклеотид, кодирующий легкую цепь вышеуказанного антитела или его функционального фрагмента, конъюгат, который связывается с сиалированным антигеном Льюисаа, содержащий вышеуказанное антитело или его функциональный фрагмент, фармацевтическую композицию для лечения заболевания, способ лечения или профилактики заболевания, где указанным заболеванием является злокачественное или опухолевое образование с клетками, экспрессирующими сиалированный антиген Льюисаа, и способ обнаружения опухоли у пациента, включающий введение вышеуказанного конъюгата.

Изобретение относится к медицине, а именно к лучевой радионуклидной диагностике, и может быть использовано для выполнения радионуклидного остеосцинтиграфического исследования минерального обмена в костной ткани.

Настоящее изобретение относится к иммунологии. Предложен связывающий домен против EGFRvIII, содержащий его химерный антигенный рецептор, кодирующие нуклеиновые кислоты, вектор, клетка, а также применения указанных изобретений в производстве лекарственного средства, способы создания клетки и получения популяции клеток, способ обеспечения иммунитета, способ лечения.

Изобретение относится к области медицины, а именно к способу мечения активированных лимфоцитов in vitro комплексным соединением. Способ включает инкубирование активированных лимфоцитов с РФП 99mTc-ТЕОКСИМ в объеме 2 мл активностью 350-500 МБк, с периодическим встряхиванием в течение в течение 20 минут, после инкубирования, в пробирку с клеточной массой вносят фосфатно-солевой буфер и доводят общий объем до 10 мл, затем пробирку центрифугируют в течение 5-6 минут при 1500-2000 обмин, после этого надосадочную жидкость полностью удаляют, меченый 99mTc-теоксимом клеточный конгломерат ресуспендируют в 1 мл фосфатно-солевого буфера. Показатель жизнеспособности меченых активированных лимфоцитов in vitro предложенным способом остается выше 95. Готовый клеточный препарат можно вводить пациенту внутрикожно паравертебрально на уровне лопаток или в область поясницы и исследовать пути миграции меченых клеток in vivo посредством ОФЭКТКТ. 1 з.п. ф-лы, 3 ил., 1 пр.

Наверх