Устройство стабилизации напряжения магнитоэлектрического генератора

Изобретение относится к электротехнике. Технический результат заключается в возможности стабилизации напряжения двухполюсного магнитоэлектрического генератора при одновременном повышении его эффективности и минимизации массогабаритных показателей. Устройство стабилизации напряжения магнитоэлектрического генератора содержит источник постоянного тока, регулятор, магнитоэлектрический генератор, состоящий из корпуса, статора с пазовыми обмотками, ротора, подмагничивающих тороидальных обмоток, намотанных на спинке статора. Нижняя часть подмагничивающей тороидальной обмотки плотно прилегает к пазовой обмотки и уложена с ней в одних пазах. Верхняя часть подмагничивающей тороидальной обмотоки уложена в четырех общих пазах, расположенных по внешнему диаметру статора. Подмагничивающая тороидальная обмотка выполнена с возможностью отвода потерь от пазовых обмоток. Подмагничивающие тороидальные обмотки разбиты на две раздельные обмотки, соединенные между собой параллельно относительно источника постоянного тока. Четыре общих паза расположены по внешнему диаметру статора и одновременно выполняют функцию пазов для верхней части подмагничивающих тороидальных обмоток, функцию канала охлаждения и функцию механического крепления статора в корпусе магнитоэлектрического генератора. 4 ил.

 

Изобретение относится к области энергомашиностроения и может быть использовано в качестве устройства стабилизации напряжения магнитоэлектрических генераторов с постоянной частотой вращения ротора.

Известно устройство, реализующее способ стабилизации напряжения генератора при изменении скорости вращения ротора [заявка на патент РФ 2010101858/07, C1, Н02Р 9/00, 27.07.2011], включающий регулирование магнитного потока, по которому изменяют магнитное сопротивление воздушного зазора между статором и ротором путем перемещения ротора относительно статора вдоль продольной оси генератора, при этом ротор и внутренняя часть статора выполнены в форме усеченного конуса.

Недостатками аналога является сложность конструкции и снижение электромагнитных характеристик генератора.

Известно устройство для стабилизации частоты и напряжения автономных бесконтактных генераторов [патент РФ №2366071, С1, Н02Р 9/46, 27.08.2009], содержащее бесконтактный генератор, последовательно соединенные непосредственный преобразователь частоты, выходной фильтр, блок трансформаторов тока, выходные выводы, выход генератора соединен также с конденсаторами возбуждения, которые соединены с блоком стабилизации напряжения, содержащим выпрямитель, силовой транзистор, систему управлении, вход которой соединен с выходными выводами преобразователя через трансформаторно-выпрямительный блок; блок косинусной синхронизации соединен с выходом генератора и с блоками формирования управляющих сигналов, с которыми соединен также задающий генератор частоты; каждый блок формирования управляющих сигналов содержит первый и второй компараторы, первый и второй логические элементы И, первый и второй распределители импульсов, датчик тока.

Недостатками аналога являются сложность конструкции и увеличенные массогабаритные показатели бесконтактного генератора, вызванные применением дополнительной полупроводниковой техники.

Известно устройство для стабилизации напряжения бесконтактных генераторов переменного тока [патент РФ №2366072, C1, Н02Р 9/46, 27.08.2009], содержащее генератор электроэнергии, каждая из его статорных обмоток содержит по три ответвления, начало обмоток, средние выводы и концы обмоток, причем начала обмоток объединены и соединены с первым входом блока питания, средние выводы и концы обмоток через блоки стабилизации напряжения соединены с выводами для подключения нагрузки генераторов, к концам обмоток подключены первый и второй трехфазные блоки конденсаторов возбуждения, соединенных по схеме «треугольник», выходы блока питания соединены с блоками стабилизации напряжения, каждый из которых содержит первый и второй оптосимисторы соответственно, нуль-орган, генератор пилообразного напряжения, компаратор, первый и второй формирователи импульсов соответственно.

Недостатками данной конструкции является ее сложность и увеличенные массогабаритные показатели бесконтактного генератора, вызванные применением дополнительной полупроводниковой техники.

Известно устройство стабилизации напряжения магнитоэлектрического генератора [патент US 5714823, H02K 19/12, 3.02.1998] содержащее магнитоэлектрический генератор, состоящий из статора с пазовыми обмотками и ротор, при этом в зубцах статора дополнительно уложены тороидальные подмагничивающие обмотки, которые соединяются между собой последовательно и питаются от источником постоянного тока.

Недостатками данной конструкции является ее сложность и невозможность использования ее для двухполюсных генераторов, так как в дополнительных обмотках будут наводиться значительные ЭДС.

Известно устройство стабилизации напряжения магнитоэлектрического генератора [патент РФ №132 647 U1, C1, Н02Р 9/46, 20.09.2013], содержащее магнитоэлектрический генератор, состоящий из статора с пазовыми обмотками и ротор, при этом на спинке статора дополнительно намотаны тороидальные подмагничивающие обмотки, которые соединяются с источником постоянного тока, поверх которых установлен ферромагнитный цилиндр.

Недостатками данной конструкции является ее сложность и невозможность использования ее для двухполюсных генераторов, так как в дополнительных обмотках будут наводиться значительные ЭДС, кроме того, в данной конструкции затруднен теплоотвод от обмоток подмагничивания.

Наиболее близким по технической сущности и достигаемому результату является устройство стабилизации напряжения магнитоэлектрического генератора [Специальные электрические машины под. ред. А.И. Бертинова, М. Энергоиздат, 1982 г., с. 258], содержащее, источник постоянного тока, регулятор, магнитоэлектрический генератор, состоящий из корпуса, статора с пазовыми обмотками и ротора, при этом на спинке статоре в дополнительных пазах намотаны тороидальные подмагничивающие обмотки, которые соединяются с источником постоянного тока.

Недостатками данной конструкции является высокие затраты энергии, вызванные значительным рассеянием полезного потока подмагничивания и как следствие слабая стабилизация напряжения, невозможность использования ее для двухполюсных генераторов, так как в дополнительных обмотках будут наводиться значительные ЭДС, кроме того, в данной конструкции затруднен теплоотвод от обмоток подмагничивания.

Задача изобретения - повышение эффективности регулирования и стабилизации напряжения магнитоэлектрических генераторов при применении их в автономных объектах, улучшение теплоотвода активной части магнитоэлектрического генератора и повышение энергоэффективности магнитоэлектрического генератора.

Техническим результатом является возможность стабилизации напряжения двухполюсного магнитоэлектрического генератора при одновременном повышении его эффективности и минимизации массогабаритных показателей.

Поставленная задача решается и указанный технический результат достигается тем, что в устройстве стабилизации напряжения магнитоэлектрического генератора, содержащем источник постоянного тока, регулятор, магнитоэлектрический генератор состоящий из корпуса, статора с пазовыми обмотками, ротора, подмагничивающих тороидальных обмоток, намотанных на спинке статора, согласно изобретению, нижняя часть подмагничивающей тороидальной обмотки плотно прилегает к пазовой обмотки и уложена с ней в одних пазах, а верхняя часть подмагничивающей тороидальной обмотоки уложена в четырех общих пазах, расположенных по внешнему диаметру статора, при этом подмагничивающая тороидальная обмотка выполнена с возможностью отвода потерь от пазовых обмоток, подмагничивающие тороидальные обмотки разбиты на две раздельные обмотки, соединенные между собой параллельно относительно источника постоянного тока, причем четыре общих паза, расположенных по внешнему диаметру статора, одновременно выполняют функцию пазов для верхней части подмагничивающих тороидальных обмоток, функцию канала охлаждения и функцию механического крепления статора в корпусе магнитоэлектрического генератора.

Существо изобретения поясняется чертежами. На фиг. 1 изображен поперечный разрез устройства стабилизации напряжения магнитоэлектрического генератора. На фиг. 2 изображена электрическая схема предложенного устройства. На фиг. 3 приведены осциллограммы напряжения в подмагничивающей тороидальной обмотке и напряжение фазы в пазовой обмотки. На фиг. 4 изображена функция зависимости напряжения фазы пазовой от тока в подмагничивающей тороидальной обмотке.

Предложенное устройство содержит (фиг. 1) источник постоянного тока 1, электрически соединенный с регулятором 2, магнитоэлектрический генератор, состоящий из корпуса 3, в котором установлен статор 4 с пазовыми обмотками 5, двухполюсный ротор 6 с постоянными магнитами 7, подмагничивающие тороидальные обмотки 8, которые разбиты на две тороидальные обмотки 9 и 10, соединенные между собой параллельно (фиг. 2), каждая из тороидальных обмоток 9 и 10 состоит из нижней части подмагничивающей обмотки 11, которая уложена в общих пазах с пазовыми обмотками 5 и плотно прилегает к ним, и верхней части подмагничивающей обмотки 12, уложенной в одном из четырех общих пазов 13, расположенных по внешнему диаметру статора 4 магнитоэлектрического генератора, общие пазы 13 совместно с корпусом 3 магнитоэлектрического генератора образуют канал охлаждения, общие пазы 13 также выполняют функцию механического крепления статора в корпусе магнитоэлекрического генератора.

Устройство стабилизации напряжения магнитоэлектрического генератора работает следующим образом: при вращении двухполюсного ротора 6 с постоянными магнитами 7 в пазовых обмотках 5 наводится ЭДС, величина которого на 20-25% больше, чем необходимая для обеспечения нужного качества электроснабжения объекта, в котором применяется магнитоэлектрический генератор. При этом в каждой из параллельных между собой частях тороидальных обмоток 9 и 10 подмагничивающей тороидальной обмотки 8 через регулятор 2 от источника постоянного тока 1 протекает постоянный ток, который насыщает участок цепи магнитопровода статора 4 и снижает тем самым наводимое в нем ЭДС. В том случае, если бы подмагничивающая тороидальная обмотка 8 не состояла из двух частей 9 и 10, соединенных параллельно, то при двухполюсном роторе 6 в ней бы наводилось ЭДС (фиг. 3 и фиг. 4), и регулирование напряжения магнитоэлектрического генератора с ее помощью было бы практически невозможным. Процесс регулирования выходного напряжения магнитоэлектрического генератора описывается известными выражениями, которые представлены для общего понимания процессов в магнитоэлектрическом генераторе. Сумма магнитных напряжений на отдельных участках магнитной цепи магнитоэлектрического генератора в генераторном режиме при холостом ходе равняется магнитодвижущей силе (далее МДС), создаваемым постоянными магнитами:

где FM - МДС ПМ;

Fδ - МДС воздушного зазора;

Fj - МДС спинки магнитопровода статора 4;

Fz - МДС зубцов статора 4.

Представляя (1) в виде зависимостей МДС от магнитных индукций и напряженностей соответствующих участков, получим:

где Вδ - магнитная индукция в воздушном зазоре магнитоэлектрического генератора;

δ - воздушный зазор;

Нz - напряженность магнитного поля в зубцах статора 4;

Нj- напряженность магнитного поля в спинке статора;

hz, hj - высота зубца и спинки статора 4 соответственно;

kδ - коэффициент воздушного зазора.

Тогда, магнитную индукцию в воздушном зазоре, а следовательно и выходное напряжение магнитоэлектрического генератора можно выразить в виде:

где kƒ - коэффициент формы поля;

kw - обмоточный коэффициент;

р - число полюсов;

, ƒ, w - активная длина, частота тока и число витков пазовой обмотки 5;

D-диаметр расточки статора 4.

Далее при появлении нагрузки на выводных концах пазовой обмотки 5 под действием магнитного поля реакции якоря выходное напряжение магнитоэлектрического генератора снижается (фиг. 4), при этом с помощью регулятора 2 снижается ток в подмагничивающей тороидальной обмотки 8. Так как подмагничивания тороидальная обмотка 8 выполнена из проводящего материала, то ее теплопроводность довольно высокая и через ее нижнюю часть подмагничивающей обмотки 11 потери в пазовой обмотке 5 передаются на верхнюю часть подмагничивающей обмотки 12 и отводятся с помощью хладагента, который протекает в общих пазах 13, расположенных по внешнему диаметру статора 4 магнитоэлектрического генератора, общие пазы 13 совместно с корпусом 3 магнитоэлектрического генератора образуют канал охлаждения.

Итак, заявляемое изобретение позволяет обеспечить возможность стабилизации напряжения двухполюсного магнитоэлектрического генератора при одновременном повышении его эффективности и минимизации массогабаритных показателей.

В результате устройство стабилизации напряжения магнитоэлектрического генератора позволяет обеспечить повышение эффективности регулирования и стабилизации напряжения магнитоэлектрических генераторов при применении их в автономных объектах, улучшение теплоотвода от активной части магнитоэлектрических и повышение их эффективности.

Устройство стабилизации напряжения магнитоэлектрического генератора, содержащее источник постоянного тока, регулятор, магнитоэлектрический генератор, состоящий из корпуса, статора с пазовыми обмотками, ротора, подмагничивающих тороидальных обмоток, намотанных на спинке статора, отличающееся тем, что нижняя часть подмагничивающей тороидальной обмотки плотно прилегает к пазовой обмотке и уложена с ней в одних пазах, а верхняя часть подмагничивающей тороидальной обмотоки уложена в четырех общих пазах, расположенных по внешнему диаметру статора, при этом подмагничивающая тороидальная обмотка выполнена с возможностью отвода потерь от пазовых обмоток, подмагничивающие тороидальные обмотки разбиты на две раздельные обмотки, соединенные между собой параллельно относительно источника постоянного тока, причем четыре общих паза, расположенных по внешнему диаметру статора, одновременно выполняют функцию пазов для верхней части подмагничивающих тороидальных обмоток, функцию канала охлаждения и функцию механического крепления статора в корпусе магнитоэлектрического генератора.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано для регулирования напряжения генераторов трехфазного переменного тока автономных источников электрической энергии.

Изобретение относится к электротехнике и может быть использовано для создания стабилизированных электромашинных источников электропитания на базе синхронных генераторов.

Изобретение относится к электротехнике и может быть использовано для проектирования синхронных машин малой и средней мощности, преимущественно генераторов для автономных электростанций.

Изобретение относится к области электротехники и может быть использовано в источнике постоянного напряжения повышенной мощности с малым коэффициентом пульсации для выработки постоянного напряжения.

Изобретение относится к области электротехники. Техническим результатом является расширение функциональных возможностей системы за счет возможности питания нагрузок переменного напряжения нестабильной частоты, но стабильной амплитуды и регулируемого исполнительного электропривода с рекуперативным торможением, а также за счет возможности пофазной симметрирующей стабилизации переменного напряжения стабильной частоты, который обеспечивается благодаря тому, что в автономную систему электроснабжения, содержащую в каждом магистральном канале трехфазный электромашинный стартер-генератор переменного напряжения с нестабильными параметрами, диодно-мостовой выпрямитель, двухконденсаторную фильтровую стойку, корректор коэффициента мощности, состоящий из первого индуктивно-емкостного фильтра и трех двунаправленных электронных ключей, первый импульсный модулятор с тремя вентильно-ключевыми стойками, фильтровым конденсатором, трансформатор с первой и второй обмотками, четыре группы распределительных шин для подключения: первая - стартера-генератора и нагрузок переменного напряжения с нестабильными параметрами, вторая - нагрузок переменного напряжения со стабильными параметрами, третья и четвертая - источников электропитания и нагрузок, а также питания аналогичных шин низкого и повышенного постоянных напряжений параллельных магистральных каналов, и кроме того, блок управления с цепями обратных связей и с первой группой импульсно-модуляторных выводов, во-первых, введены второй импульсный модулятор, трансреактор с обмотками, фильтровые конденсаторы, обратимый выпрямительно-инверторный преобразователь, повышающий импульсный конвертер, балластные дроссели, управляемый вентильный мостовой выпрямитель, пятая группа распределительных шин для подключения нагрузок переменного напряжения с нестабильной частотой, но стабильной амплитудой, второй индуктивно-емкостный фильтр и трехфазный циклоконвертер, состоящий из двунаправленных управляемых вентилей, трансформатор снабжен третьей обмоткой, а также тремя фазными обмотками, а блок управления снабжен второй группой импульсно-модуляторных выводов и группой релейно-сигнальных выводов, во-вторых, в каждый из модуляторов введен буферный конденсатор, в-третьих, импульсный конвертер выполнен состоящим из диодно-ключевой стойки, управляемого вентиля и дроссельно-конденсаторной стойки, а блок управления снабжен дополнительными выводами, в-четвертых, модуляторы снабжены демпферно-снабберными цепочками, состоящими из демпферных дросселей снабберных конденсаторов и двухдиодных стоек и, в-пятых, в нее введены внешние выводы для подключения регулируемого исполнительного электропривода и три трехфазные группы управляемых контакторов, а блок управления снабжен командными выводами, а в-шестых, в каждый модулятор введен уравнительный делитель напряжений, состоящий из уравнительного реактора и двух диодно-ключевых стоек, а блок управления снабжен вспомогательными импульсно-модуляторными выводами.

Изобретение относится к электротехнике и предназначено для использования на горных предприятиях для повышения эффективности технологического процесса передвижения горных машин при использовании автономных дизель-генераторных станций.

Изобретение относится к области электротехники. Электромеханическое устройство обеспечивает увеличение частоты вращения вала без введения громоздких узлов при наличии бесперебойного электропитания благодаря введению второй аккумуляторной батареи, преобразователя постоянного напряжения в импульсное, блока из двух автоматических расцепителей и двух электродвигателей, при этом первый, второй, третий входы и первый, второй выходы блока из двух автоматических расцепителей соответственно соединены с первым, вторым выходом устройства подзарядки батареи, с выходом преобразователя постоянного напряжения в импульсное и с первыми входами первой и второй аккумуляторных батарей, с вторыми входами этих батарей, кроме того, выход вышеупомянутого преобразователя постоянного напряжения в импульсное также соединен с вторым входом автоматического расцепителя и с входом первого электродвигателя, жестко связанного со вторым электродвигателем, имеющим вход, соединенный с выходом выпрямителя и имеющий жесткую связь с исполнительным механизмом.

Изобретение относится к области электротехники и может быть использовано в системах электропитания и электроуправления. Техническим результатом является обеспечение работы при увеличенной нагрузке без увеличения громоздкости и уменьшения времени бесперебойного электропитания.

Изобретение относится к области электротехники. Электромеханическое устройство обеспечивает постоянство бесперебойного электропитания без введения громоздких узлов благодаря использованию блока из двух автоматических расцепителей, срабатывающих после окончания импульса, а также благодаря введению преобразователя постоянного напряжения в импульсное, имеющего: первый вход, соединенный с выходом коммутатора, второй вход, соединенный с выходом выпрямителя, и выход, соединенный с входом электродвигателя и третьим входом блока из двух автоматических расцепителей, срабатывающих после окончания импульса.

Изобретение относится к области электротехники и может быть использовано в автономных объектах, в частности автомобилях для генерирования электрической энергии и запуска двигателей внутреннего сгорания.

Изобретение относится к области электротехники и может быть использовано для управления валом генератора. Техническим результатом является увеличение частоты вращения вала генератора в отсутствие громоздких узлов.

Изобретение относится к области электротехники и может быть использовано для управления двигателями при регулировании мощности системы газовая турбина - генератор, например, газотурбовозов, гибридных локомотивов.

Изобретение относится к области электротехники и может быть использовано в качестве генератора электрической энергии для автономных объектов, гибридных силовых установках и т.д.
Наверх