Солнечная башенная электростанция

Изобретение относится к энергетике, более конкретно - к возобновляемым источникам энергии на основе солнечных башенных электростанций (гелиотермических электростанций), реализующих термодинамический цикл, например, Ренкина или Стирлинга. В солнечной башенной электростанции, содержащей блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов, и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, и сеть потребителей, зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей. Технический результат заключается в повышении КПД солнечных башенных электростанций. 1 ил.

 

Предлагаемое техническое решение относится к энергетике, более конкретно - к возобновляемым источникам энергии на основе солнечных башенных электростанций (гелиотермических электростанций), реализующих термодинамический цикли, например, Ренкина или Стирлинга.

Известно устройство-аналог: Гелиостат (Амстиславский А.З., Муравьев А.И. Гелиостат. Авторское свидетельство СССР №1353995. Опубликован 23.11.87, Бюл. №43). Изобретение позволяет упростить конструкцию гелиостата путем изменения кинематической и оптической связи его зеркал и светочувствительного датчика (СД), а также устранить эффект перекрестной связи в управлении гелиостатом. В центральном отверстии зеркала перпендикулярно его поверхности и в плоскости симметрии цилиндрического шарнира установлен отражатель. Двухкоординатный СД расположен на валу и ориентирован параллельно ему на уровне оси шарнира. Падающее на зеркало солнечное излучение направляется отражателем в сторону СД в направлении, обратном приемнику излучения. При перемещении Солнца СД формирует сигналы на приводы, ориентирующие зеркало на приемник.

Недостатком аналога является необходимость питания приводов, азимутального и зенитного ориентирования зеркал-гелиостатов на приемник (котел) от шин электрогенератора электростанции, что снижает выдачу электроэнергии в энергосистему, т.е. снижает ее эффективность.

Известны устройства (второй аналог) - солнечные башенные электростанции на основе реализации цикла Ренкина с использованием расположенных на большой площади следящих за Солнцем плоских зеркал, отражающих солнечные лучи на центральный приемник (котел), помещенный на вершине башни (Р.Б. Ахмедов, И.В. Баум, В.А. Пожарнов, В.М. Чеховский. Солнечные электрические станции. Сер. "Гелиоэнергетика" (Итоги наука и техники ВИНИТИ). М. 1986). В книге рассматривается наряду с другими и Крымская гелиотермическая станция СЭС-5 с реализацией цикла Ренкина. Вместе с тем на сайте (https://studopedia.ru/13_6786_elektrostantsii-ispolzuyushchie-netraditsionnie-vidi-energii.html) указывается, что для Крымской СЭС-5 полный расход электроэнергии на собственные нужды, в том числе и на питание приводов азимутального и зенитного ориентирования зеркал-гелиостатов, составляет 15%. Таким образом, если полный реальный КПД-брутто для солнечного ясного полдня при плотности потока солнечного излучения G=1 кВт/м составляет

где Р[кВт] - электрическая мощность на выходе электрогенератора, S[м2] - суммарная площадь зеркал-гелиостатов, то с учетом собственных нужд КПД-нетто снижается и составляет

Недостатком второго аналога, как и у первого, является необходимость питания приводов, азимутального и зенитного ориентирования зеркал-гелиостатов на приемник (котел) от шин электрогенератора электростанции, что снижает выдачу электроэнергии в энергосистему, т.е. снижает ее эффективность.

Известно устройство-прототип (Цгоев Р.С., Шлыков Е.Н., Козлов И.С., Погосян А.В. ГЕНЕРИРУЮЩАЯ УСТАНОВКА С ДВИГАТЕЛЕМ СТИРЛИНГА. Патент РФ №2527773. МПК F02G 1/045. Опубликовано: 10.09, 2014. Бюл. №25), согласно которому изобретение относится к энергетике. Генерирующая установка содержит двигатель Стирлинга с электрогенератором на одном валу, систему охлаждения двигателя Стирлинга и нагреватель двигателя Стирлинга. Установка снабжена солнечной башенной электростанцией с зеркалами. Нагреватель двигателя Стирлинга расположен на вершине башни солнечной башенной электростанции с зеркалами. Зеркала выполнены с возможностью слежения за Солнцем и отражения солнечных лучей на нагреватель двигателя Стирлинга. Установка снабжена выпрямительным и инверторным блоками, регулятором и датчиком температуры рабочего тела в нагревателе двигателя Стирлинга. Выход датчика температуры соединен с входом регулятора. Выход регулятора соединен с управляющими входами выпрямительного и инверторного блоков. Силовой выход электрогенератора соединен с силовым входом выпрямительного блока. Силовой выход инверторного блока соединен с сетью потребителей.

Недостатком устройства-прототипа, как и аналогов, является необходимость питания приводов, азимутального и зенитного ориентирования зеркал-гелиостатов на приемник-нагреватель цикла от шин электрогенератора электростанции, что снижает выдачу электроэнергии в энергосистему, т.е. снижает ее эффективность.

Техническая задача, решаемая предлагаемым устройством, состоит в повышении эффективности солнечных башенных электростанций.

Технический результат, заключающийся в повышении КПД солнечных башенных электростанций, достигается тем, что в известной солнечной башенной электростанции, содержащей блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, сеть потребителей, зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей.

На чертеже представлен общий вид солнечной башенной электростанции.

Солнечная башенная электростанция содержит блок 1 термодинамического цикла, например, Ренкина или Стерлинга, с нагревателем 2 цикла и зеркалами-гелиостатами 3, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов 4 и 5, и отражения солнечных лучей на нагреватель 2, расположенный на вершине башни 6 солнечной башенной электростанции, сеть 7 потребителей, зеркала-гелиостаты 3 снабжены блоком 8 управления приводами 4 и 5, а также солнечными фотоэлектрическими панелями 9, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату 3, при этом входы привода 4 азимутального и привода 5 зенитного слежения за Солнцем каждого зеркала-гелиостата 3 соединены с выходами блока 8 управления приводами, первый вход которого подключен к общей выходной цепи 10 фотоэлектрических панелей 9, а второй вход подключен к сети 7 потребителей.

Кроме того, у солнечной башенной электростанции солнечные фотоэлектрические панели 9 могут быть выполнены неподвижными и размещены или между соседними зеркалами-гелиостатами, или на отдельной площадке вне поля зеркал-гелиостатов.

При этом выводы электрогенератора (электрогенератор на рисунке не показан) блока 1 термодинамического цикла через цепь 11 подключены к сети 7 потребителей. На рисунке показаны падающие на зеркало-гелиостат 3 и на фотоэлектрические панели 9 лучи 12 Солнечного излучения, а также отраженные от зеркала-гелиостата 3 лучи 13, падающие на нагреватель 2. Показаны также лучи 14 излучения от нагревателя 2 термодинамического цикла, дополнительно падающие на фотоэлектрические панели 9.

Солнечная башенная электростанция работает следующим образом. Плотность потока солнечного излучения в течение дня меняется по синусоидальному закону, т.е. в периоды восхода и заката плотность потока солнечного излучения имеет минимальное значение, а в солнечный полдень - максимальное значение, характерное для данного времени года (на плотность потока солнечного излучения влияет и облачность) и для местности. Например, летнее максимальное значение в районах, близких к экватору, как упоминалось, плотность потока солнечного излучения составляет G≈1 кВт/м2. По мере нарастания плотности потока солнечного излучения после восхода Солнца нарастает температура нагревателя 2 блока 1 термодинамического цикла, например, Ренкина или Стирлинга. Нагреватель 2, помещенный на вершине башни 6 солнечной башенной электростанции, нагревается расположенными на большой площади зеркалами-гелиостатами 3, следящими за Солнцем с помощью блока 8 управления приводом 4 азимутального и приводом 5 зенитного слежения за Солнцем и тем самым обеспечивается работа термодинамического цикла. При этом падающие лучи 12 Солнечного излучения, отраженные от зеркала-гелиостата 3, в виде лучей 13 падают на нагреватель 2.

Так как в каждый момент хронометраж астрономического перемещения солнца точно известен, то в простейшем случае блока 8 управления выполнен в виде хронометра. Блока 8 управления по астрономическому времени формирует на своем выходе сигнал задания на управление приводом 4 азимутального и приводом 5 зенитного слежения за Солнцем. Солнечные лучи 12 падают и на фотоэлектрические панели 9, которые осуществляют электропитание приводов 4 и 5.

Питание блока 8 управления приводами 4 и 5 в периоды нормального солнечного освещения осуществляется через первый вход, который подключен к общей выходной цепи 10 фотоэлектрических панелей 9, а в периоды облачности и для возврата гелиостата в исходное (утреннее) положение, питание осуществляется через второй вход, подключенный к сети 7 потребителей.

В свою очередь, если выбрать установленную мощность фотоэлектрических панелей 9 равной мощности собственных нужд солнечной башенной электростанции, то КПД-нетто вырастет до КПД-брутто (в вышеприведенном примере для СЭС-5 с 0.106 вырастит до 0.125).

Одновременно отраженные от зеркала-гелиостата 3 лучи 13, падающие на нагреватель 2, нагревают его поверхность до такой температуры, что он сам начинает излучать лучи 14, в основном в инфракрасном диапазоне. Эти лучи 14 падают на фотоэлектрические панели 9 дополнительно к лучам 12 и увеличивают выработку электроэнергии фотоэлектрическими панелями 9.

При концентрации зеркалами-гелиостатами 3 солнечного излучения на нагревателе 2 он, как и абсолютно черное тело, поглощает все излучение, которое на него попадает, и нагревается до определенной абсолютной температуры, визуально превращается в светящийся шар и, согласно закона Планка, создает излучение со спектральной плотностью потока энергии, излучаемой черным телом при достигнутой абсолютной температуре нагрева. Например, для кремниевых фотоэлектрических панелей 9 на расстоянии 100 метров от нагревателя 2 плотность потока 14 излучения дополнительно увеличится 5-7%, и далее убывает обратно пропорционально квадрату расстояния.

У солнечной башенной электростанции могут быть два более простых дополнительных варианта, когда солнечные фотоэлектрические панели 9 выполнены неподвижными и размещены или между соседними зеркалами-гелиостатами 3, или на отдельной площадке вне поля зеркал-гелиостатов. В этих случаях излучение от нагревателя 2 будут воспринимать только те фотоэлектрические панели 9, которые постоянно обращены к нагревателю 2.

Таким образом, применение предлагаемого устройства позволяет достичь поставленной технической задачи в повышении эффективности солнечных башенных электростанций. Технический результат, заключающийся в повышении КПД солнечных башенных электростанций, достигается тем, что в солнечной башенной электростанции собственные нужды покрываются фотоэлектрическими панелями, закрепленными на зеркалах - гелиостатах с возможностью дополнительно воспринимать излучение нагревателя станции.

Солнечная башенная электростанция, содержащая блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, сеть потребителей, отличающаяся тем, что зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей.



 

Похожие патенты:

Изобретение относится к электротехнике, лазерной и оптоволоконной технике. Устройство для генерирования и передачи по оптоволоконной линии электромагнитных колебаний заданной частоты (в том числе и промышленной частоты) на основе аппроксимации синусоидальной функции последовательностью импульсных функций с использованием силового и информационного каналов содержит: блок управления, блок генерирования и инжектирования импульсов силового светового потока лазерной частоты, блок генерирования и инжектирования информационных импульсов светового потока лазерной частоты, оптоволоконную линию передачи силового светового потока лазерной частоты, оптоволоконную линию передачи информационного светового потока лазерной частоты, фотовольтаический приемник импульсов силового светового потока лазерной частоты, фотовольтаический приемник импульсов информационного светового потока лазерной частоты, схему формирования периодического электрического выходного сигнала заданной частоты Выходной сигнал устройства формируется из последовательности электрических импульсов одинаковой длительности.

Группа изобретений относится к области энергетического обеспечения летательного аппарата тяжелее воздуха при помощи солнечных батарей. Предложен способ энергетического обеспечения летательного аппарата тяжелее воздуха, основанный на использовании электрических двигателей и солнечных батарей, выполненных с возможностью улавливания рассеянного и отраженного светового излучения как от подстилающей поверхности, так и от находящегося выше или ниже летательного аппарата облачного покрова.

Группа изобретений относится к наружной облицовочной панели здания, кровельному покрытию, блоку электрического соединения для наружной облицовочной панели здания, наборам для соединения с преобразователем панелей, оснащенных фотогальваническим устройством, электрическому устройству.

Изобретение относится к возобновляемым источникам энергии, а именно к комбинированным ветро- и солнечно-энергетическим установкам, снабжающей помещение комфортной температурой, естественным освещением и электроэнергией при выращивании с.-х.

Изобретение относится к области преобразования солнечной энергии в электрическую, в первую очередь к конструкции солнечных электростанций. В солнечной электростанции двухсторонние солнечные модули установлены на горизонтальной поверхности в экваториальной области от 30° ю.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. Технический результат состоит в повышении удельной мощности приемника за счет отсутствия потерь энергии на блокировку и затенение в отклоняющей оптической системе.

Изобретение относится к электротехнике, в частности к электрическим машинам с постоянными магнитами и солнечными модулями. Технический результат – повышение эффективности работы.

Изобретение относится к области электроэнергетики и может быть использовано при организации электроснабжения потребителей электроэнергией на переменном токе от солнечных батарей, а также при строительстве промышленных солнечных электростанций.

Изобретение относится к системам автономного электроснабжения. Система автономного электроснабжения содержит ветротурбину переменной скорости вращения, фотоэлектрический преобразователь, преобразующий световую энергию в электрическую энергию постоянного тока, приводной дизель, механически связанный с аксиальным многофазным бесконтактным синхронным генератором, аккумуляторную батарею, выполненную с возможностью соединения через выпрямитель с выходом аксиального многофазного бесконтактного синхронного генератора и имеющую возможность подключения к потребителям постоянного тока и через инвертор к потребителям переменного тока, тепловой преобразователь, трехвходовую аксиальную генераторную установку, механически связанную с приводным дизелем и имеющую механический, световой и тепловой входы, и сумматор тепловой энергии с первым и вторым входами, выход которого подсоединен к тепловому входу трехвходовой аксиальной генераторной установки, при этом ветротурбина жестко связана с механическим входом трехвходовой аксиальной генераторной установки, выход фотоэлектрического преобразователя соединен со световым входом трехвходовой аксиальной генераторной установки, а выход теплового преобразователя подсоединен к первому входу сумматора тепловой энергии, при этом аккумуляторная батарея выполнена с возможностью подключения через выпрямитель к выходу трехвходовой аксиальной генераторной установки, а приводной дизель сообщен с блоком утилизации тепла, выход которого подключен ко второму входу сумматора тепловой энергии.

Группа изобретений относится к опорной пластине и узлу, образованному фотоэлектрической панелью и указанной пластиной. Технический результат заключается в повышении эффективности рекуперации тепла, излучаемого фотоэлектрической панелью.

Изобретение относится к теплотехнике, в частности для использования в установках для нагревания и нагнетания воздуха в рециркуляционных нагревательных установках, а именно в камерных сушилках для древесины.

Изобретение относится к гелиоэнергетике, и может быть использовано в солнечных установках для преобразования солнечной энергии в тепловую, и направлено на повышение эффективности теплопередачи.

Изобретение относится к гелиоэнергетике и может быть использовано в солнечных установках для преобразования солнечной энергии в тепловую. Солнечный водонагреватель содержит многосекционные теплообменники, выполненные в виде коаксиальных стеклянных трубок, в межтрубном пространстве которых создан вакуум.

Солнечная электростанция содержит основание, на котором на опорном подшипнике установлен вертикальный вал с рамой. На верхнем конце вертикального вала установлена радиальная муфта, на которой закреплена солнечная фотобатарея, закрепленная под углом к плоскости горизонта, равным половине максимального зенитального угла солнца, и разделенная на две равные части, между которыми закреплена вертикальная пластина, преимущественно с отражающей поверхностью.

Изобретение относится к области преобразования солнечной энергии в электрическую, в первую очередь к конструкции солнечных электростанций. В солнечной электростанции двухсторонние солнечные модули установлены на горизонтальной поверхности в экваториальной области от 30° ю.

Изобретение относится к средствам преобразования энергии солнечного излучения в электроэнергию. Водно-солнечная электростанция, использующая в качестве теплового агента нагреваемую солнечным излучением воду, включает теплообменник, паровую турбину и электрогенератор.

Изобретение относится к способам извлечения петротермальной энергии с последующим применением в системах теплоснабжения и хладоснабжения. Из скважины с температурным градиентом по обсадной трубе теплоноситель подается в подземный котел-теплообменник, нагревается, поднимается по концентрично опущенной в обсадную трубу трубе и передает тепло потребителю при помощи теплового насоса.

Изобретение относится к области теплоэнергетики и возобновляемой энергетики и может быть использовано для теплоснабжения автономных объектов – жилых домов, санаториев, фермерских хозяйств и прочих автономных объектов.

Изобретение относится к бытовой технике и предназначено для подогрева воздуха в помещении. Заявлено устройство для подогрева воздуха, содержащее корпус осесимметричной формы, внутри которого размещены теплообменные трубы, вентилятор с электродвигателем, закрепленный на входном торце, при этом электродвигатель соединен электрическими проводами с источником электроэнергии, а в качестве источника электроэнергии использован термоэлектрический генератор, содержащий термоэлектрические элементы, зажатые между теплоподводящими и теплоотводящим радиаторами.

Группа изобретений относится к медицинской технике, а именно к средствам экзотермического нагрева тела человека. Экзотермический нагреватель для тела человека содержит основное тело экзотермического нагревателя, который производит тепло посредством реакции окисления и в котором имеющий плоскую форму экзотермический элемент, содержащий окисляющийся металл, электролит, углеродный компонент и воду, покрыт первым покровным листом и вторым покровным листом, причем первый покровный лист представляет собой лист, который является воздухопроницаемым и по существу не ограничивает реакцию окисления, удерживающий воду материал расположен таким образом, что он находится, по меньшей мере, частично в контакте с экзотермическим элементом, и экзотермический нагреватель удовлетворяет условиям, когда (А) разность между внутренней температурой экзотермического элемента и максимальной температурой поверхности основного тела экзотермического нагревателя составляет от 10°C или менее, (B) максимальная температура кожи, получаемая, когда экзотермический нагреватель помещается на кожу человека, составляет от 38°C до 42°C, и (C) соотношение количества (мг/см2⋅10 мин) пара, производимого в течение 10 минут после начала реакции окисления к массе (г/см2) экзотермического элемента принимает значение в диапазоне от 50 до 250.

Устройство для нагрева теплоносителя содержит реакционную камеру с топливной смесью порошков гидрида лития, алюминия, никеля. Оно оснащено источником нагрева реакционной камеры, которая снабжена датчиком температуры и выполнена с возможностью теплового контакта с теплоносителем. В реакционную камеру введена трубка для предварительного вакуумирования и регулирования загрузки водорода, причем на входе в трубку установлен фильтр. Устройство позволяет приготовить топливную смесь из более доступных компонентов, а также осуществить настройку на оптимальный режим работы. 2 ил.

Изобретение относится к энергетике, более конкретно - к возобновляемым источникам энергии на основе солнечных башенных электростанций, реализующих термодинамический цикл, например, Ренкина или Стирлинга. В солнечной башенной электростанции, содержащей блок термодинамического цикла, например, Ренкина или Стирлинга, с нагревателем цикла и зеркалами-гелиостатами, выполненными с возможностью азимутального и зенитного слежения за Солнцем с помощью приводов, и отражения солнечных лучей на нагреватель, расположенный на вершине башни солнечной башенной электростанции, и сеть потребителей, зеркала-гелиостаты снабжены блоком управления приводами, а также солнечными фотоэлектрическими панелями, фиксированно прикрепленными по периметру к каждому зеркалу-гелиостату, или фотоэлектрическими панелями, выполненными неподвижными и размещенными, например, между соседними зеркалами-гелиостатами, при этом входы привода азимутального и привода зенитного слежения за Солнцем каждого зеркала-гелиостата соединены с выходами блока управления приводами, первый вход которого подключен к общей выходной цепи фотоэлектрических панелей, а второй вход подключен к сети потребителей. Технический результат заключается в повышении КПД солнечных башенных электростанций. 1 ил.

Наверх