Способ повышения добротности оптического контура кольцевого моноблочного лазерного гироскопа

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности в бесплатформенных инерциальных навигационных системах. Способ базируется на использовании технологических отверстий моноблока гироскопа как дополнительных резонаторов внутри оптической схемы за счет нанесения светоотражающего покрытия на стенки отверстий. Технический результат состоит в разработке способа повышения добротности оптической схемы, что позволяет значительно снизить потребляемую мощность системы, а также получать более точную информацию о положении гироскопа в пространстве при малых углах отклонения. Применение способа позволяет модифицировать известные лазерные гироскопы на базе кольцевых лазерных схем для навигационных систем объектов с целью повышения их точностных характеристик отсчета измеряемых угловых скоростей и сохранения базисных параметров в качестве датчиков угловых скоростей, при минимальных потерях мощности излучения. 3 ил.

 

Изобретение относится к области лазерной техники и может быть использовано при создании высокоточных датчиков угловых скоростей навигационных систем, в частности, в бесплатформенных инерциальных навигационных системах.

Известно техническое решение лазерного гироскопа, разработанное американской фирмой «Honeywell» [Горенштейн И.А., Шульман И.А. Инерциальные навигационные системы./ Под ред. канд. техн. наук И.А. Горенштейна - Москва: Машиностроение, 1970. - 230 с. - С. 161-164]. Сущность конструктивного решения аналога раскрывает чертеж на Фиг. 1.

Конструктивно система содержит: 1 - моноблочный корпус; 2 - аноды; 3,6 - зеркала с высокой отражательной способностью; 4 - цилиндрические каналы; 5 - катод; 7 - диафрагма; 8 - полупрозрачное зеркало; 9 - призма.

Корпус 1 прибора - монолитный блок из плавленого кварца, в котором сформированы цилиндрические каналы 4. Оси этих каналов лежат в одной плоскости и образуют равносторонний треугольник, в вершинах которого расположены зеркала 3, 6 и 8. Зеркала 3 и 6 имеют высокую отражательную способность в диапазоне рабочих длин волн излучения, что достигается, например, применением многослойного диэлектрического покрытия. Зеркало 8 является полупрозрачным, благодаря чему осуществляется вывод лучистой энергии из контура для съема выходного сигнала. Поверхность отражающего зеркала 3 выполнена в виде участка сферы большого радиуса, что позволяет значительно упростить юстировку оптического контура.

Недостаток конструкции заключается в потерях лучистой энергии в зонах оптических зеркал 3, 6 и 8 за счет присутствующего эффекта переотражения. При этом технологические отверстия в зонах сопряжения оптических каналов контура моноблока создают дополнительный отрицательный эффект, выполняя функции низкодобротного оптического проходного резонатора с произвольной резонансной частотой в оптическом контуре на рабочей длине волны газового лазера. Это сказывается на качестве интерференционной картины, несущей информацию об угловой скорости объекта. Точность определения угловой скорости подвижного объекта становится затруднительной при малых угловых скоростях объекта из-за шумовой составляющей, формируемой оптическим сигналом в системе.

Наиболее близкий способ к заявляемому способу реализован в моноблочной конструкции лазерного гироскопа, разработанного в ОАО "Научно-производственный комплекс "ЭЛАРА" имени Г.А. Ильенко [Лазерный гироскоп: патент РФ №2582900, МПК G01C 19/66 (2006.01); Заявка: 2014154547/28, 31.12.2014]. Сущность конструктивного решения прототипа раскрывает чертеж на Фиг. 2.

Лазерный гироскоп содержит многоугольный оптический моноблок 1 со сформированными в нем цилиндрическими оптическими каналами 4, зеркала полного отражения лучистой энергии 3 и преобразователь для съема информации в виде динамической интерференционной картины, совмещенный с полупрозрачным сферическим зеркалом 8. В качестве источника оптического излучения в конструкцию включен полупроводниковый лазерный диод 11, снабженный для обеспечения одномодового режима излучения внешним оптическим резонатором-расщепителем 12, имеющим форму усеченной призмы. Оптические каналы 4 сопрягаются с помощью технологических отверстий 10, которые по своей сущности могут выступать в роли низкодобротных оптически прозрачных резонаторов.

Недостатки конструкции прототипа аналогичны недостаткам аналога. Принципиальным моментом является отсутствие ограничений на конструктивно-технологическое решение технологических цилиндрических оптически прозрачных отверстий 10, создаваемых в зоне сопряжения оптических каналов моноблока. Это приводит к присутствию в оптическом контуре гироскопа некоторого дополнительного низкодобротного оптического резонатора с произвольной геометрией, а следовательно - с произвольной резонансной частотой. Его влияние является негативным из-за возникающих переотражений в его зоне, что снижает добротность оптической системы гироскопа в целом. При этом шумовая составляющая, формируемая оптическим сигналом в системе гироскопа, оказывает негативное влияние на точность измерения малых угловых скоростей объекта.

Сущность способа повышения добротности оптического контура в кольцевом моноблочном лазерном гироскопе с полупроводниковым лазерным диодом состоит в следующем.

Кольцевой оптический контур моноблочного гироскопа образован тремя цилиндрическими оптическими каналами, тремя зеркалами отражения лучистой энергии и технологическими цилиндрическими оптически прозрачными отверстиями. Повысить добротность кольцевой оптической схемы можно путем компенсации потерь на переотражение лучистой энергии в каналах и зеркалах за счет трансформации технологических цилиндрических оптически прозрачных отверстий в высокодобротные оптические резонаторы типа Фабри-Перо, в которых резонансная длина волны равна рабочей длине волны гироскопа, т.е. равна рабочей длине волны полупроводникового лазера.

Общими признаками способа повышения добротности оптического контура в прототипе в аналоге и прототипе являются:

- источник лазерного излучения;

- зеркала отражения лучистой энергии;

- цилиндрические оптические каналы;

- технологические цилиндрические оптически прозрачные отверстия.

Технический результат состоит в повышении добротности оптической схемы лазерного гироскопа за счет увеличения добротности цилиндрических оптически прозрачных резонаторов и направлен на снижение шумовой составляющей, формируемой оптическим сигналом в системе, что повышает чувствительность устройства при малых угловых скоростях объекта.

Заявляемый способ повышения добротности оптического контура реализуется следующим образом:

- в цилиндрических оптически прозрачных резонаторах наносится светоотражающее покрытие, по крайней мере, на одну из его внутренних поверхностей, что позволяет совместно с зеркалами оптического контура создавать высокодобротные резонаторы Фабри-Перо для циркулирующей в оптическом контуре гироскопа лучистой энергии лазерного источника;

- геометрические размеры цилиндрических оптически прозрачных резонаторов должны обеспечивать резонансную длину волны, равную рабочей длине волны полупроводникового лазерного диода.

Общими для заявляемого способа и прототипа являются следующие признаки:

- полупроводниковый лазерный диод;

- многоугольный оптический моноблок;

- цилиндрические оптические каналы, сформированные в многоугольном оптическом моноблоке;

- технологические цилиндрические отверстия в зонах сопряжения цилиндрических оптических каналов формируют низкодобротные оптически прозрачные резонаторы;

- зеркала отражения лучистой энергии, примыкающие непосредственно к граням оптического моноблока, которые совместно с цилиндрическими оптическими каналами и технологическими цилиндрическими отверстиями завершают формирование замкнутой кольцевой оптической схемы;

Отличными от прототипа являются следующие признаки:

- по крайней мере, на одну из внутренних поверхностей оптически прозрачных резонаторов нанесено светоотражающее покрытие;

- геометрические размеры оптически прозрачных резонаторов определяют резонансную длину волны, равную рабочей длине волны полупроводникового лазерного диода.

Сущность заявляемого способа повышения добротности оптического контура раскрывает схема на Фиг. 3

В кольцевую оптическую схему прототипа, формируемую в моноблоке 1 на основе цилиндрических оптических каналов 4 и зеркал отражения лучистой энергии 3 и 8, вводятся дополнительные высокодобротные объемные резонаторы 15, сопряженные с оптическими каналами 4 (Фиг. 3а). При распространении оптического сигнала в контуре моноблока 1 потери в цилиндрических оптических каналах 4 и на зеркалах отражения лучистой энергии 3, 8 компенсируются усилением сигнала в объемных высокодобротных резонаторах типа Фабри-Перо (Фиг. 3б, в), чем достигается повышение добротности в оптическом контуре. Общая добротность системы становится больше. Вариант создания торцевого отражателя 13 в высокодобротном объемном резонаторе 15 приведен на Фиг. 3б. Комбинированный вариант - создание торцевого отражателя 13 и бокового отражателя 14, приведен на Фиг. 3в.

Использование заявляемого способа повышения добротности оптического контура в лазерном гироскопе позволяет модифицировать известные датчики угловых скоростей для навигационных систем объектов с целью минимизации потерь мощности и повышения их точностных характеристик путем снижения шумовой составляющей, формируемой оптическим сигналом в кольцевой оптической системе гироскопа.

Техническое решение, положенное в основу устройства, явным образом не следует из уровня техники. Кроме того, в процессе патентного поиска не выявлены технические решения, имеющие признаки, совпадающие с отличительными признаками заявленного способа.

Заявленный способ имеет существенные отличия от наиболее близких аналогов и удовлетворяет критерию патентоспособности изобретения - «новизна».

Заявленное устройство технически осуществимо и промышленно реализуемо на приборостроительном предприятии. В связи с изложенным, материалы заявки на предполагаемое изобретение соответствует уровню патентоспособности и промышленно применимо.

Способ повышения добротности оптического контура кольцевого моноблочного лазерного гироскопа с лазерным источником накачки, содержащего многоугольный оптический моноблок с цилиндрическими оптическими каналами и технологическими отверстиями, формирующими в зонах их сопряжения резонаторы с зеркалами отражения лучистой энергии, примыкающими непосредственно к граням оптического моноблока, которые совместно формируют замкнутую кольцевую оптическую схему, отличающийся тем, что повышение добротности оптического контура достигается за счет увеличения добротности резонаторов, конструктивно сформированных в зонах сопряжения оптических каналов путем нанесения светоотражающего покрытия, по крайней мере, на одну из внутренних поверхностей, что позволяет совместно с зеркалами оптического контура создавать высокодобротные резонаторы Фабри-Перо для циркулирующей в оптическом контуре гироскопа лучистой энергии лазерного источника.



 

Похожие патенты:

Изобретение относится к метрологии, в частности, к твердотельным волновым гироскопам. Твердотельный волновой гироскоп содержит резонатор в виде осесимметричного тонкостенного элемента, способного к вибрации, один электрод резонатора, множество электродов датчиков, электродов управления, электронный блок управления, содержащий устройства вычисления угла, стабилизации амплитуды колебаний, подавления квадратурных колебаний и соединенный с электродами резонатора, электродами датчиков, электродами управления.

Изобретение относится к измерительной технике, а именно к микромеханическим элементам -гироскопам и акселерометрам. Способ автономного повышения точности применения микромеханической элементной базы, содержит этапы, на которых на основе синхронных измерений избыточного количества соосных ММЭ путем поворота, по крайней мере, одного из них на 180° и попарным сопоставлением с ним измерений остальных ММЭ, определяют суммарные (систематические плюс случайные) смещения нулей всех ММЭ, при этом повороты могут проводиться регулярно или эпизодически, автоматически или вручную, как в подготовительных стационарных режимах, так и в рабочих, при реальном возмущенном движении объекта; реализуют эффективную фильтрацию шумов измерений без динамических ошибок и детектирования; реализуют статистическую обработку и оценивание фильтром Калмана суммарных смещений ММЭ и их остаточной несоосности..

Изобретение относится к приборостроению и может быть использовано при создании зеемановских лазерных гироскопов. Способ уменьшения магнитного дрейфа зеемановских лазерных гироскопов содержит этапы, на которых создают поле, компенсирующее сумму всех действующих на зеемановский лазерный гироскоп постоянных магнитных полей путем подачи в катушку, охватывающую газоразрядный промежуток зеемановского лазерного гироскопа, постоянного тока, при этом величину постоянного тока, который подают в катушку, охватывающую газоразрядный промежуток зеемановского лазерного гироскопа, устанавливают равной 19 мкА.

Изобретение относится к области приборостроения и может применяться при построении датчиков угловой скорости (гироскопических датчиков), используемых в качестве источников первичных измерений инерциальных систем ориентации и навигации.

Изобретение относится к электромеханическим устройствам и может быть использовано для преобразования энергии колебания морских волн в электроэнергию. Сущность изобретения заключается в том, что гироскопический преобразователь энергии морских волн обеспечивает самоустановку гироскопов перед раскруткой и возможность активной адаптации к изменяющейся интенсивности волнения водной поверхности.

Изобретение относится к производству твердотельных волновых гироскопов. Способ определения дисбаланса масс полусферического резонатора твердотельного волнового гироскопа дополнительно содержит этапы, на которых измеряют реакцию в опоре в месте крепления резонатора, а математическая обработка сигнала заключается в определении величины амплитуды и углового положения колебаний относительно датчиков возбуждения, рассчитанных по формуле где a1 - амплитуда сигнала с первого пьезоэлектрического датчика;а2 - амплитуда сигнала со второго пьезоэлектрического датчика;а3 - амплитуда сигнала с третьего пьезоэлектрического датчика;А - амплитуда колебаний; где ϕ - угловое положение колебаний ножки относительно датчиков возбуждения.Технический результат – повышение точности определения дефектов резонатора.

Изобретение относится к области измерительной техники, а именно к устройствам для измерения угловой скорости. Сущность: формируют пучок когерентного оптического излучения с управляемой частотой излучения.

Способ определения давления в кольцевых лазерных гироскопах заключается в том, что в кольцевом лазерном гироскопе с гелий-неоновой смесью кратковременно возбуждают электрический разряд, устанавливают рабочий ток и регистрируют спектр излучения в диапазоне длин волн от 500 нм до 600 нм, определяют интенсивности линий неона 585,2 нм и гелия 587,5 нм, рассчитывают отношение интенсивности линии неона 585,2 нм к интенсивности линии гелия 587,5 нм и определяют давление гелий-неоновой смеси кольцевого лазерного гироскопа по калибровочному графику.

Группа изобретений относится к способу калибровки вибрационного гироскопа. Способ калибровки вибрационного гироскопа содержит этапы, на которых осуществляют возбуждение вибрации вдоль оси возбуждения резонансной структуры, при этом ось возбуждения позиционируется в первой угловой позиции, считывание вибрации резонансной структуры на первой оси считывания резонансной структуры в то время, когда ось возбуждения позиционируется в первой угловой позиции, формирование первого сигнала считывания, указывающего считываемую вибрацию резонансной структуры на первой оси считывания, непрерывное вращение оси возбуждения вокруг резонансной структуры во вторую угловую позицию, считывание вибрации резонансной структуры на второй оси считывания резонансной структуры в то время, когда ось возбуждения позиционируется во второй угловой позиции, формирование второго сигнала считывания, указывающего считываемую вибрацию резонансной структуры на второй оси считывания, и суммирование первого сигнала считывания со вторым сигналом считывания, чтобы извлекать смещение гироскопа.

Изобретение относится к гироскопам вибрационного типа, в частности к микромеханическим гироскопам, которые предназначены для измерения угловой скорости движения основания.

Изобретение относится к лазерной измерительной технике. Многомодовый волоконный лазерный гироскоп включает кольцевой лазер, состоящий из оптического усилителя, кольцевого резонатора в виде смотанного в катушку световода, фазового модулятора, с помощью которого создается частотная подставка, и волоконного разветвителя Х-типа, два порта которого служат для вывода части мощности излучения кольцевого лазера, устройство объединения выводимых из кольцевого лазера волн, фотоприемник и электронную систему.

Изобретение относится к бесплатформенным инерциальным навигационным системам (БИНС). Заявленное изобретение представляет собой БИНС, включающую инерциальный моноблок, выполненный по меньшей мере с одной герметичной крышкой, и монтажную раму, снабженные фиксирующими элементами для закрепления моноблока на монтажной раме, при этом корпус моноблока имеет на наружной поверхности по меньшей мере одну ручку для переноса и перемещения моноблока в монтажной раме, а также соединительные элементы для электрической связи функциональных элементов БИНС с внешними устройствами, при этом упомянутые функциональные элементы размещены внутри инерциального моноблока и выполнены в виде связанных между собой БЧЭ, преобразователя сигналов датчиков, по меньшей мере одного вычислителя, а также источника вторичного питания, при этом согласно изобретению внутренняя полость инерциального моноблока содержит разделенные перегородкой первый и второй отсеки, причем в первом отсеке установлен БЧЭ, выполненный в виде единого корпуса кубической формы с герметизируемыми с помощью крышек четырьмя полостями, при этом в трех взаимно ортогональных полостях расположены кольцевые лазеры прямоугольной формы с функциональной электроникой лазерного гироскопа, а в четвертой - высоковольтный источник напряжения, устройство регулирования периметра и контроля лазерных гироскопов, а также блок из трех акселерометров, размещенных в едином жестком корпусе, обеспечивающем при его закреплении в БЧЭ параллельность осей чувствительности акселерометров и кольцевых лазеров, при этом корпус БЧЭ закрыт снаружи магнитными экранами и снабжен амортизаторами для крепления к стенкам инерциального моноблока, а во втором отсеке установлены упомянутые источник вторичного питания, преобразователь сигналов датчиков и по меньшей мере один вычислитель, при этом в герметичной крышке инерциального моноблока выполнен герметично закрывающийся съемный люк.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения линейной скорости на поверхности или внутри движущихся макрообъектов.

Настоящее изобретение относится к средствам адаптивной оптики и может быть использовано для стабилизации частоты кольцевого лазера в системах регулировки периметра кольцевого резонатора лазерного гироскопа.

Настоящее изобретение относится к средствам адаптивной оптики и может быть использовано для стабилизации частоты кольцевого лазера в системах регулировки периметра кольцевого резонатора лазерного гироскопа.

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности бесплатформенных инерциальных навигационных систем.

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности бесплатформенных инерциальных навигационных систем.

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности бесплатформенных инерциальных навигационных систем.

Лазерный гироскоп содержит многоугольный оптический моноблок со сформированными оптическими каналами, зеркала полного отражения, полупрозрачное зеркало, призму и внешний оптический резонатор для сопряжения полупроводникового лазера с оптическим моноблоком, выполненный из оптически прозрачного материала.

Изобретение относится к измерительной технике, в частности, к системам навигации. Предложенные способы сборки кольцевого резонатора включают в себя установку зеркал, сварку электродов, электровакуумную обработку и герметизацию.
Наверх