Зонированная система выпуска отработавших газов



Зонированная система выпуска отработавших газов
Зонированная система выпуска отработавших газов
Зонированная система выпуска отработавших газов
Зонированная система выпуска отработавших газов
Зонированная система выпуска отработавших газов
Зонированная система выпуска отработавших газов
Зонированная система выпуска отработавших газов
Зонированная система выпуска отработавших газов
Зонированная система выпуска отработавших газов
Зонированная система выпуска отработавших газов
B01D53/00 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2709434:

ДЖОНСОН МЭТТИ ПАБЛИК ЛИМИТЕД КОМПАНИ (GB)

Данное изобретение относится к основе, которая является зонированной. Каталитическое изделие имеет проточную основу, зону селективного каталитического восстановления, зону окисления, включающую зону катализатора окисления дизельного топлива и зону катализатора, предотвращающего проскок аммиака. Зона селективного каталитического восстановления расположена на основе начиная от впускного конца и вытянута на расстоянии, меньшем, чем осевая длина основы от впускного отверстия. Зона катализатора окисления дизельного топлива расположена на основе начиная с выпускной стороны и до расстояния, меньшего, чем осевая длина основы вдоль оси. Зона катализатора, предотвращающего проскок аммиака, расположена между зоной селективного каталитического восстановления и зоной катализатора окисления дизельного топлива. В других каталитических изделиях зона катализатора, предотвращающего проскок аммиака, дополнительно содержит дизельный экзотермический катализатор. Также описаны способы применения каталитических изделий в процессе селективного каталитического восстановления. Изобретение обеспечивает комбинированную активность катализатора селективного каталитического восстановления, катализатора, предотвращающего проскок аммиака, и катализатора окисления дизельного топлива или дизельного экзотермического катализатора. 3 н. и 10 з.п. ф-лы, 23 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение относится к основе, которая является зонированной, чтобы обеспечить комбинированную активность катализатора селективного каталитического восстановления (SCR), катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC) или дизельного экзотермического катализатора (DEC).

УРОВЕНЬ ТЕХНИКИ, ПРЕДШЕСТВУЮЩИЙ ДАННОМУ ИЗОБРЕТЕНИЮ

Сжигание углеводородов в дизельных двигателях, стационарных газовых турбинах и других системах образует выхлопные газы, которые должны быть обработаны, чтобы удалить оксиды азота (NOx), которые содержат NO (оксид азота) и NO2 (диоксид азота), причем NO составляет основную часть образованных NOx. Известно, что NOx вызывают ряд проблем со здоровьем у людей, а также вызывают ряд эффектов, вредных для окружающей среды, которые включают образование смога и кислотного дождя. Для того, чтобы уменьшить воздействие NOx в выхлопных газах на людей и окружающую среду, желательно исключить эти нежелательные компоненты, предпочтительно посредством процесса, который не образует другие вредные или токсичные вещества.

Выхлопные газы, образующиеся в двигателях, работающих на обедненных топливных смесях, и дизельных двигателях, являются обычно окислительными. NOx необходимо восстановить селективным образом посредством катализатора и восстановителя в процессе, известном как селективное каталитическое восстановление (SCR), который превращает NOx в элементарный азот (N2) и воду. В процессе селективного каталитического восстановления (SCR) газообразный восстановитель, обычно безводный аммиак, водный раствор аммиака или мочевину, добавляют к потоку выхлопных газов перед приведением выхлопных газов в контакт с катализатором. Восстановитель абсорбируется на катализаторе, и NOx восстанавливаются, когда газы проходят через катализированную основу или над ней. Для того чтобы максимизировать конверсию NOx, часто необходимо добавлять большее, чем стехиометрическое, количество аммиака к газовому потоку. Однако высвобождение избыточного аммиака в атмосферу могло бы неблагоприятно влиять на здоровье людей и на окружающую среду. Кроме того, аммиак является едкой щелочью, особенно в его водной форме. Конденсация аммиака и воды в областях выпускной линии ниже по потоку от каталитических нейтрализаторов отработавших газов может приводить к образованию коррозионной смеси, которая может повреждать систему выпуска отработавших газов. Поэтому высвобождение аммиака в выхлопных газах должно быть устранено. Во многих обычных системах выпуска отработавших газов катализатор окисления аммиака (иначе называемый катализатором, предотвращающим проскок аммиака, или «ASC») установлен ниже по потоку от катализатора селективного каталитического восстановления (SCR), чтобы удалять аммиак из выхлопных газов посредством конвертирования его в азот. Применение катализаторов, предотвращающих проскок аммиака, может делать возможным получение величин конверсии NOx более чем 90%, что выше типичного ездового цикла дизельного двигателя.

Являлось бы желательным иметь катализатор, который обеспечивает как удаление NOx посредством селективного каталитического восстановления (SCR), так и селективную конверсию аммиака до азота, где конверсия аммиака происходит на протяжении широкого интервала температур в ездовом цикле транспортного средства, и образуется минимальное количество оксида азота и закиси азота в качестве побочных продуктов.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В первом аспекте данное изобретение относится к каталитическому изделию, содержащему основу, содержащую впускное отверстие и выпускное отверстие, первую зону, содержащую первый катализатор селективного каталитического восстановления (SCR), и вторую зону, содержащую катализатор окисления дизельного топлива (DOC), где первая зона расположена на впускной стороне основы, и вторая зона расположена на выпускной стороне основы. Каталитическое изделие может дополнительно содержать третью зону, содержащую катализатор, предотвращающий проскок аммиака (ASC), где третья зона расположена между первой зоной и второй зоной. Катализатор, предотвращающий проскок аммиака (ASC), содержит (a) первый катализатор селективного каталитического восстановления (SCR) или второй катализатор селективного каталитического восстановления (SCR) и (b) катализатор окисления аммиака. Каталитическое изделие может обеспечиватьпредоставлять очень быстрое реагирование на мочевину или аммиак в первой зоне. Каталитическое изделие может иметь очень низкое сохранение NH3 в первой зоне.

Во втором аспекте данное изобретение относится к каталитическому изделию, содержащему основу, содержащую впускное отверстие и выпускное отверстие, первую зону, содержащую первый катализатор селективного каталитического восстановления (SCR), и вторую зону, содержащую катализатор, предотвращающий проскок аммиака (ASC), где первая зона расположена на впускной стороне основы, и вторая зона расположена непосредственно ниже по потоку от первой зоны. Катализатор, предотвращающий проскок аммиака (ASC), может содержать (a) первый катализатор селективного каталитического восстановления (SCR) или второй катализатор селективного каталитического восстановления (SCR) и (b) катализатор окисления аммиака. Каталитическое изделие может предоставлять очень быстрое реагирование на мочевину или аммиак в первой зоне. Каталитическое изделие может иметь очень низкое сохранение NH3 в первой зоне.

В другом аспекте данное изобретение относится к системе выпуска отработавших газов, содержащей каталитическое изделие в соответствии с первым аспектом данного изобретения и средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах, где средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах расположено перед каталитическим изделием.

В еще одном аспекте данное изобретение относится к источнику сжигания, содержащему систему выпуска отработавших газов, содержащую каталитическое изделие в соответствии с первым аспектом данного изобретения и средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах, где средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах расположено перед каталитическим изделием.

В еще одном аспекте данное изобретение относится к способу уменьшения образования N2O от NH3 в выхлопных газах, где данный способ включает осуществление контакта выхлопных газов, содержащих аммиак, с каталитическим изделием в соответствии с первым аспектом данного изобретения.

В другом аспекте данное изобретение относится к способу уменьшения образования NOx в выхлопных газах, где данный способ включает осуществление контакта выхлопных газов, содержащих аммиак, с каталитическим изделием в соответствии с первым аспектом данного изобретения.

В еще одном аспекте данное изобретение относится к способу уменьшения образования углеводородов в выхлопных газах, где данный способ включает осуществление контакта выхлопных газов, содержащих углеводороды, с каталитическим изделием в соответствии с первым аспектом данного изобретения.

В другом аспекте данное изобретение относится к каталитическому изделию, содержащему проточную основу, имеющую впускное отверстие, выпускное отверстие и некоторую осевую длину; зону селективного каталитического восстановления (SCR), содержащую первый катализатор селективного каталитического восстановления (SCR); и зону окисления, содержащую: (a) зону катализатора, предотвращающего проскок аммиака (ASC), и зону катализатора окисления дизельного топлива (DOC) или (b) смешанную зону из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC), где зона окисления содержит катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), зона селективного каталитического восстановления (SCR) расположена на основе от впускного конца и вытянута на расстояние, меньшее, чем осевая длина основы от впускного отверстия, зона катализатора окисления дизельного топлива (DOC) или зона смешанного катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC) расположена на основе с выпускной стороны, и когда зона катализатора окисления дизельного топлива (DOC) присутствует, зона катализатора, предотвращающего проскок аммиака (ASC), расположена между зоной селективного каталитического восстановления (SCR) и зоной катализатора окисления дизельного топлива (DOC). Каталитическое изделие может дополнительно содержать второй катализатор селективного каталитического восстановления (SCR), где второй катализатор селективного каталитического восстановления (SCR) расположен в зоне окисления. В некоторых конфигурациях, часть первого катализатора селективного каталитического восстановления (SCR) может покрывать весь или часть второго катализатора селективного каталитического восстановления (SCR). В других конфигурациях, часть второго катализатора селективного каталитического восстановления (SCR) может покрывать весь или часть первого катализатора селективного каталитического восстановления (SCR). Первый и второй катализаторы селективного каталитического восстановления (SCR) могут различаться посредством содержания разных ингредиентов и/или посредством разной загрузки катализатора. Катализатор окисления дизельного топлива (DOC) может являться дизельным экзотермическим катализатором (DEC). Зона окисления может содержать комбинированную зону ASC/DOC, содержащую катализатор окисления аммиака (ASC) и катализатор окисления дизельного топлива (DOC), где зона селективного каталитического восстановления (SCR) протянута от впускного отверстия и покрывает часть комбинированной зоны ASC/DOC, данная комбинированная зона ASC/DOC вытянута на расстояние, меньшее, чем осевая длина от выпускного отверстия. Катализатор окисления дизельного топлива (DOC) может создавать экзотермический эффект и может генерировать NO2 для пассивной регенерации фильтра ниже по потоку.

В другом аспекте данное изобретение относится к системе выпуска отработавших газов, содержащей каталитическое изделие в соответствии с первым аспектом данного изобретения и средство для образования NH3 в выхлопных газах или введения NH3 в выхлопные газы.

В еще одном аспекте данное изобретение относится к способу предоставления низкотемпературного регулирования NOx в сочетании с хорошей селективностью катализатора, предотвращающего проскок аммиака (ASC), и производительностью катализатора окисления дизельного топлива (DOC) в отношении выхлопных газов от дизельного двигателя, где данный способ включает контактирование выхлопных газов от двигателя с каталитическим изделием в соответствии с первым аспектом данного изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления дизельного топлива (DOC).

Фиг. 2 изображает характерную конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором, предотвращающим проскок аммиака (ASC), и катализатор окисления дизельного топлива (DOC) расположен ниже по потоку от катализатора, предотвращающего проскок аммиака (ASC).

Фиг. 3 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором, предотвращающим проскок аммиака (ASC), и катализатор окисления дизельного топлива (DOC) расположен ниже по потоку от катализатора, предотвращающего проскок аммиака (ASC), и катализатор, предотвращающий проскок аммиака (ASC), является смесью катализатора селективного каталитического восстановления (SCR) и катализатора окисления.

Фиг. 4 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором, предотвращающим проскок аммиака (ASC), и катализатор окисления дизельного топлива (DOC) расположен ниже по потоку от катализатора, предотвращающего проскок аммиака (ASC), и катализатор, предотвращающий проскок аммиака (ASC), является двойным слоем с нижним слоем, содержащим катализатор окисления, и верхним слоем, содержащим катализатор селективного каталитического восстановления (SCR).

Фиг. 5 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором, предотвращающим проскок аммиака (ASC), и катализатор окисления дизельного топлива (DOC) расположен ниже по потоку от катализатора, предотвращающего проскок аммиака (ASC), и катализатор, предотвращающий проскок аммиака (ASC), является двойным слоем, в котором часть первого катализатора селективного каталитического восстановления (SCR) также присутствует в верхнем слое поверх нижнего слоя, содержащего катализатор окисления.

Фиг. 6 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором, предотвращающим проскок аммиака (ASC).

Фиг. 7 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором, предотвращающим проскок аммиака (ASC), и катализатор, предотвращающий проскок аммиака (ASC), является смесью катализатора селективного каталитического восстановления (SCR) и катализатора окисления.

Фиг. 8 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором, предотвращающим проскок аммиака (ASC), и катализатор, предотвращающий проскок аммиака (ASC), является двойным слоем с нижним слоем, содержащим катализатор окисления, и верхним слоем, содержащим катализатор селективного каталитического восстановления (SCR).

Фиг. 9 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором, предотвращающим проскок аммиака (ASC), и катализатор, предотвращающий проскок аммиака (ASC), является двойным слоем, в котором часть первого катализатора селективного каталитического восстановления (SCR) также присутствует в верхнем слое поверх нижнего слоя, содержащего катализатор окисления.

Фиг. 10 представляет собой график, показывающий величину конверсии NOx в зависимости от уровня заполнения аммиаком для трех типов катализаторов селективного каталитического восстановления (SCR).

Фиг. 11 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления аммиака и покрывает часть, однако не полную длину, катализатора окисления аммиака. Катализатор окисления дизельного топлива (DOC) расположен поверх остающейся верхней части катализатора окисления аммиака, не покрытой первым катализатором селективного каталитического восстановления (SCR).

Фиг. 12 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед смесью катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) содержит две ступенчатые части.

Фиг. 13 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед смесью катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC). Смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) покрыта первым катализатором селективного каталитического восстановления (SCR) в зоне катализатора, предотвращающего проскок аммиака (ASC).

Фиг. 14 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед смесью катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC). Смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) полностью покрыта первым катализатором селективного каталитического восстановления (SCR) в смешанной зоне ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC).

Фиг. 15 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед двумя слоями окисления, и слой второго катализатора селективного каталитического восстановления (SCR) присутствует поверх слоев окисления и покрывает часть слоя первого катализатора селективного каталитического восстановления (SCR).

Фиг. 16 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед двумя слоями окисления, и слой второго катализатора селективного каталитического восстановления (SCR) присутствует поверх слоев окисления и покрывает часть слоя первого катализатора селективного каталитического восстановления (SCR).

Фиг. 17 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед двумя слоями окисления, и слой второго катализатора селективного каталитического восстановления (SCR) присутствует поверх слоев окисления, и слой первого катализатора селективного каталитического восстановления (SCR) покрывает часть слоя второго катализатора селективного каталитического восстановления (SCR).

Фиг. 18 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед смешанным слоем окисления, имеющим двухступенчатую форму, и слой второго катализатора селективного каталитического восстановления (SCR) присутствует поверх слоев окисления и покрывает часть слоя первого катализатора селективного каталитического восстановления (SCR).

Фиг. 19 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед смешанным слоем окисления, имеющим двухступенчатую форму, и слой второго катализатора селективного каталитического восстановления (SCR) присутствует поверх слоев окисления и покрывает часть слоя первого катализатора селективного каталитического восстановления (SCR).

Фиг. 20 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед смешанным слоем окисления, имеющим двухступенчатую форму, и слой второго катализатора селективного каталитического восстановления (SCR) присутствует поверх слоев окисления, и слой первого катализатора селективного каталитического восстановления (SCR) покрывает часть слоя второго катализатора селективного каталитического восстановления (SCR).

Фиг. 21 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед смешанным слоем окисления, и слой второго катализатора селективного каталитического восстановления (SCR) присутствует поверх слоев окисления и покрывает часть слоя первого катализатора селективного каталитического восстановления (SCR) в зоне селективного каталитического восстановления (SCR).

Фиг. 22 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед смешанным слоем окисления, имеющим двухступенчатую форму, и слой второго катализатора селективного каталитического восстановления (SCR) присутствует поверх слоев окисления и покрывает слой первого катализатора селективного каталитического восстановления (SCR) в зоне катализатора, предотвращающего проскок аммиака (ASC).

Фиг. 23 изображает конфигурацию, в которой первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед смешанным слоем окисления, и слой второго катализатора селективного каталитического восстановления (SCR) присутствует поверх слоев окисления, и слой первого катализатора селективного каталитического восстановления (SCR) покрывает слой второго катализатора селективного каталитического восстановления (SCR) в части, но не всей, смешанной зоны окисления.

ПОДРОБНОЕ ОПИСАНИЕ ДАННОГО ИЗОБРЕТЕНИЯ

Как использовано в данном описании и в прилагаемой формуле изобретения, формы единственного числа подразумевают включение формы множественного числа, если только из контекста ясно не следует иное. Соответственно, например, ссылка на «катализатор» включает смесь двух или более катализаторов, и т.п.

Как использовано в данном документе, термин «проскок аммиака» означает количество непрореагировавшего аммиака, который проходит через катализатор селективного каталитического восстановления (SCR).

Термин «носитель» означает материал, на котором закреплен катализатор.

Термин «носитель с низким накоплением аммиака» означает носитель, который сохраняет менее чем 0,001 ммоль NH3 на м3 носителя. Носитель с низким накоплением аммиака является предпочтительно цеолитом, имеющим тип каркасной структуры, выбранный из группы, состоящей из AEI, ANA, ATS, BEA, CDO, CFI, CHA, CON, DDR, ERI, FAU, FER, GON, IFR, IFW, IFY, IHW, IMF, IRN, -IRY, ISV, ITE, ITG, ITN, ITR, ITW, IWR, IWS, IWV, IWW, JOZ, LTA, LTF, MEL, МЕР, MFI, MRE, MSE, MTF, MTN, MTT, MTW, MVY, MWW, NON, NSI, RRO, RSN, RTE, RTH, RUT, RWR, SEW, SFE, SFF, SFG, SFH, SFN, SFS, SFV, SGT, SOD, SSF, SSO, SSY, STF, STO, STT, SVR, SVV, TON, TUN, UOS, UOV, UTL, UWY, VET, VNI. Более предпочтительно, молекулярное сито или цеолит имеет тип каркасной структуры, выбранный из группы, состоящей из BEA, CDO, CON, FAU, MEL, MFI и MWW, еще более предпочтительно тип каркасной структуры, выбранный из группы, состоящей из BEA и MFI.

Термин «обжигать» или «обжиг» означает нагревание материала в воздушной или кислородной атмосфере. Это определение соответствует определению ИЮПАК (IUPAC) для обжига. (ИЮПАК. Компендиум по технической терминологии, применяемой в химии, 2-е издание. («Золотая книга»). (IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Составлено A.D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Электронная скорректированная версия в формате XML: http://goldbook.iupac.org (2006-), создана M. Nic, J. Jirat, B. Kosata; обновления собраны A. Jenkins. ISBN 0-9678550-9-8. идентификатор цифрового объекта (doi):10.1351/goldbook.) Обжиг выполняют, чтобы разложить металлическую соль и промотировать обмен ионов металла внутри катализатора и также присоединение катализатора к основе. Температуры, применяемые при обжиге, зависят от компонентов в материале, подлежащем обжигу, и обычно находятся между примерно 400°C до примерно 900°C в течение приблизительно от 1 до 8 часов. В некоторых случаях обжиг может быть выполнен вплоть до температуры примерно 1200°C. В видах применения, включающих процессы, описанные в данном документе, обжиги обычно выполняют при температурах от примерно 400°C до примерно 700°C в течение приблизительно от 1 до 8 часов, предпочтительно при температурах от примерно 400°C до примерно 650°C в течение приблизительно от 1 до 4 часов.

Как использовано в данном документе, термин «примерно» означает «приблизительно» и относится к интервалу, который является необязательно ±25%, предпочтительно ±10%, более предпочтительно ±5% или наиболее предпочтительно ±1% от величины, с которой данный термин связан.

Когда интервал или интервалы представлены для различных численных элементов, интервал или интервалы могут включать указанные величины, если не указано иное.

Термин «селективность катализатора, предотвращающего проскок аммиака (ASC)», означает процент конверсии NOx. Высокая селективность катализатора, предотвращающего проскок аммиака (ASC), означает, что процентная величина конверсии аммиака до азота максимизирована, в то время как конверсия аммиака до NOx и N2O минимизирована. Целью является обладание селективностью менее чем 30% по отношению к N2O и селективностью менее чем 30% по отношению к NOx при температурах между 250°C и 500°C, при тестировании в газе, содержащем 500 млн-1 NH3 и 12% O2, при объемной скорости SV 150000 ч-1.

Термин «металл платиновой группы» или «МПГ» относится к платине, палладию, рутению, родию, осмию и иридию. Металлы платиновой группы являются предпочтительно платиной, палладием, рутением или родием.

Термин «катализатор окисления дизельного топлива (DOC)» означает катализатор окисления дизельного топлива, который спроектирован, чтобы окислять CO, углеводороды и органическое вещество в твердых частицах дизельного топлива до диоксида углерода и воды. Как использовано в данном документе, данный термин включает дизельный экзотермический катализатор (DEC), который создает экзотермический эффект.

Термин «длина по оси» представляет собой длину между впускным концом и выпускным концом.

Термин «быстрое реагирование» означает, что катализатор достигает 90% от его максимально возможной конверсии в 500 млн-1 NO и 750 млн-1 NH3 при уровне заполнения NH3 <0,5 г/л, предпочтительно <0,4 г/л, более предпочтительно <0,3 г/л.

Термин «загрузка активного компонента» относится к сумме «масса носителя платины+масса платины+масса первого катализатора селективного каталитического восстановления (SCR)» в смеси». Платина может присутствовать в катализаторе в загрузке активного компонента от примерно 0,01 до примерно 0,25 масс.%, включительно. Предпочтительно, платина может присутствовать в катализаторе в загрузке активного компонента от 0,04 до 0,2 масс.%, включительно. Более предпочтительно, платина может присутствовать в катализаторе в загрузке активного компонента от 0,07 до 0,17 масс.%, включительно. Наиболее предпочтительно, платина может присутствовать в катализаторе в загрузке активного компонента от 0,05 до 0,15 масс.%, включительно.

В первом аспекте данного изобретения, каталитическое изделие содержит проточную основу, имеющую впускное отверстие, выпускное отверстие и некоторую осевую длину; зону селективного каталитического восстановления (SCR), содержащую первый катализатор селективного каталитического восстановления (SCR); и зону окисления, содержащую: (a) зону катализатора, предотвращающего проскок аммиака (ASC), и зону катализатора окисления дизельного топлива (DOC) или (b) смешанную зону из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC), где зона окисления содержит катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), зона селективного каталитического восстановления (SCR) расположена на основе от впускного конца и вытянута на расстояние, меньшее, чем длина по оси основы от впускного отверстия, зона катализатора окисления дизельного топлива (DOC) или зона смешанного катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC) расположена на основе с выпускной стороны, и когда зона катализатора окисления дизельного топлива (DOC) присутствует, зона катализатора, предотвращающего проскок аммиака (ASC), расположена между зоной селективного каталитического восстановления (SCR) и зоной катализатора окисления дизельного топлива (DOC).

Предлагаются различные конфигурации катализаторов в каталитическом изделии.

В одной из конфигураций каталитическое изделие содержит основу, имеющую впускное отверстие и выпускное отверстие, первую зону, содержащую катализатор селективного каталитического восстановления (SCR), и вторую зону, содержащую катализатор окисления дизельного топлива, где катализатор селективного каталитического восстановления (SCR) расположен на входе основы в потоке выхлопных газов, и катализатор окисления дизельного топлива (DOC) расположен на выходе основы. (См. Фиг. 1).

В другой конфигурации, каталитическое изделие содержит основу, имеющую впускное отверстие и выпускное отверстие, первую зону, содержащую катализатор селективного каталитического восстановления (SCR), вторую зону, содержащую катализатор, предотвращающий проскок аммиака (ASC), и третью зону, содержащую катализатор окисления дизельного топлива. Фиг. 2 изображает конфигурацию, в которой катализатор селективного каталитического восстановления (SCR) расположен на входе основы в потоке выхлопных газов, катализатор, предотвращающий проскок аммиака (ASC), расположен ниже по потоку от катализатора селективного каталитического восстановления (SCR), и катализатор окисления дизельного топлива (DOC) расположен ниже по потоку от катализатора, предотвращающего проскок аммиака (ASC), на выходе основы.

В другой конфигурации, каталитическое изделие содержит основу, имеющую впускное отверстие и выпускное отверстие, первую зону, содержащую катализатор селективного каталитического восстановления (SCR), вторую зону, содержащую катализатор, предотвращающий проскок аммиака (ASC), содержащий смесь первого или второго катализатора селективного каталитического восстановления (SCR) и катализатора окисления аммиака, и третью зону, содержащую катализатор окисления дизельного топлива. Фиг. 3 изображает конфигурацию, в которой катализатор, предотвращающий проскок аммиака (ASC), является смесью катализатора селективного каталитического восстановления (SCR) и платину на носителе с низким накоплением аммиака. Общая конфигурация является такой, как описано для Фиг. 2.

В другой конфигурации, каталитическое изделие содержит основу, имеющую впускное отверстие и выпускное отверстие, первую зону, содержащую катализатор селективного каталитического восстановления (SCR), вторую зону, содержащую катализатор, предотвращающий проскок аммиака (ASC), содержащий двойной слой с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим первый или второй катализатор селективного каталитического восстановления (SCR), и третью зону, содержащую катализатор окисления дизельного топлива. Фиг. 4 изображает конфигурацию, в которой катализатор, предотвращающий проскок аммиака (ASC), является двойным слоем с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим первый или второй катализатор селективного каталитического восстановления (SCR). Общая конфигурация является такой, как описано для Фиг. 2.

В другой конфигурации, каталитическое изделие содержит основу, имеющую впускное отверстие и выпускное отверстие, первую зону, содержащую катализатор селективного каталитического восстановления (SCR), вторую зону, содержащую катализатор, предотвращающий проскок аммиака (ASC), содержащий двойной слой с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим часть первого катализатора селективного каталитического восстановления (SCR), который присутствует в зоне селективного каталитического восстановления (SCR), и третью зону, содержащую катализатор окисления дизельного топлива. Фиг. 5 изображает конфигурацию, в которой катализатор, предотвращающий проскок аммиака (ASC), является двойным слоем с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим первый катализатор селективного каталитического восстановления (SCR). Общая конфигурация является такой, как описано для Фиг. 2.

В каждой из вышеописанных конфигураций каждая из зон может быть расположена на одной и той же основе, или могут иметься две основы или более с одной или несколькими зонами на каждой основе. В системе выпуска отработавших газов, когда применяют две основы или более, одна или несколько основ могут быть расположены в одном корпусе или кожухе или в разных корпусах или кожухах.

Во другом аспекте данное изобретение относится к каталитическому изделию, содержащему основу, содержащую впускное отверстие и выпускное отверстие, первую зону, содержащую первый катализатор селективного каталитического восстановления (SCR), обладающий быстрым реагированием на мочевину или аммиак, и вторую зону, содержащую катализатор, предотвращающий проскок аммиака (ASC), где первая зона расположена на впускной стороне основы, и вторая зона расположена непосредственно ниже по потоку от первой зоны. Катализатор, предотвращающий проскок аммиака (ASC), может содержать смесь первого или второго катализатора селективного каталитического восстановления (SCR) и катализатора окисления аммиака, где катализатор, предотвращающий проскок аммиака (ASC), является смесью катализатора селективного каталитического восстановления (SCR) и платины на носителе с низким накоплением аммиака. (См. Фиг. 7). Общая конфигурация является такой, как описано для Фиг. 6. Вторая зона может содержать катализатор, предотвращающий проскок аммиака (ASC), содержащий двойной слой с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим первый или второй катализатор селективного каталитического восстановления (SCR). (См. Фиг. 8). Общая конфигурация является такой, как описано для Фиг. 6. Каталитическое изделие может содержать основу, имеющую впускное отверстие и выпускное отверстие, первую зону, содержащую катализатор селективного каталитического восстановления (SCR), и вторую зону, содержащую катализатор, предотвращающий проскок аммиака (ASC), где катализатор, предотвращающий проскок аммиака (ASC), является двойным слоем с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим часть первого катализатора селективного каталитического восстановления (SCR), который присутствует в зоне селективного каталитического восстановления (SCR). (См. Фиг. 9). Общая конфигурация является такой, как описано для Фиг. 6.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где катализатор окисления аммиака и часть катализатора селективного каталитического восстановления (SCR) расположены на основе. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления аммиака и покрывает впускной конец основы и часть верхней стороны катализатора окисления аммиака. (Фиг. 1). Катализатор окисления дизельного топлива (DOC) расположен поверх остающейся верхней части катализатора окисления аммиака. Слой катализатора, предотвращающего проскок аммиака (ASC), может покрывать от примерно 10% до примерно 50%, предпочтительно от примерно 15% до примерно 40% от длины основы. Слой первого катализатора селективного каталитического восстановления (SCR) может покрывать от примерно 0% до примерно 75% длины верха катализатора окисления аммиака.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR) и слой окисления, где первый катализатор селективного каталитического восстановления (SCR) и слой окисления расположены на основе. Слой окисления, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), может быть сконфигурирован таким образом, что имеет две ступени, более низкую ступень и более верхнюю ступень, с более верхней ступенью на выпускном конце основы. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления и покрывает впускные концы обеих ступеней и верхнюю сторону первой, более низкой ступени. (Фиг. 12). Вторая (более высокая) ступень в катализаторе окисления может иметь приблизительно такую же толщину, что и слой, содержащий первый катализатор селективного каталитического восстановления (SCR). Слой окисления может покрывать от примерно 15% до примерно 40% от длины основы.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR) и слой окисления, где первый катализатор селективного каталитического восстановления (SCR) и слой окисления расположены на основе. Слой окисления содержит смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC). Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления и покрывает впускной конец и верхнюю сторону слоя окисления в зоне катализатора, предотвращающего проскок аммиака (ASC). Зона катализатора окисления дизельного топлива (DOC) содержит часть смеси катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), однако не имеет слоя катализатора селективного каталитического восстановления (SCR) поверх слоя окисления. (Фиг. 13). Слой окисления может покрывать от примерно 15% до примерно 40% от длины основы.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR) и слой окисления, где первый катализатор селективного каталитического восстановления (SCR) и слой окисления расположены на основе. Слой окисления содержит смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC). Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления и покрывает впускной конец и верхнюю сторону слоя окисления в смешанной зоне окисления (ASC/DOC) из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC). (Фиг. 14). Слой окисления может покрывать от примерно 15% до примерно 40% от длины основы.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR), катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где первый катализатор селективного каталитического восстановления (SCR) и катализатор окисления аммиака расположены на основе. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления аммиака и покрывает впускной конец и часть верхней стороны катализатора окисления аммиака. (Фиг. 15). Катализатор окисления дизельного топлива (DOC) расположен поверх остающейся верхней части катализатора окисления аммиака, и второй катализатор селективного каталитического восстановления (SCR) покрывает впускную сторону и верхнюю сторону катализатора окисления дизельного топлива (DOC) и часть первого катализатора селективного каталитического восстановления (SCR). Второй катализатор селективного каталитического восстановления (SCR) покрывает впускную сторону и верхнюю сторону катализатора окисления дизельного топлива (DOC) и часть первого катализатора селективного каталитического восстановления (SCR) в зоне катализатора, предотвращающего проскок аммиака (ASC). Фиг. 15 показывает соединение между первым и вторым катализаторами селективного каталитического восстановления (SCR) в виде линии. Соединения, имеющие другие формы, такие как ступенчатые или изогнутые, могут также быть применены. Слой катализатора, предотвращающего проскок аммиака (ASC), может покрывать от примерно 15% до примерно 40% от длины основы. Слой катализатора окисления дизельного топлива (DOC) или дизельного экзотермического катализатора (DEC) может покрывать от примерно 10% до примерно 30% от длины катализатора окисления аммиака. Второй катализатор селективного каталитического восстановления (SCR) может покрывать впускную сторону и верхнюю сторону катализатора окисления дизельного топлива (DOC), однако не часть первого катализатора селективного каталитического восстановления (SCR). Эта конфигурация не показана на фигурах.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR), катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где первый катализатор селективного каталитического восстановления (SCR) и катализатор окисления аммиака расположены на основе. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления аммиака и покрывает впускной конец и часть верхней стороны катализатора окисления аммиака. (Фиг. 16). Катализатор окисления дизельного топлива (DOC) расположен поверх остающейся верхней части катализатора окисления аммиака, и второй катализатор селективного каталитического восстановления (SCR) покрывает верхнюю сторону катализатора окисления дизельного топлива (DOC) и часть первого катализатора селективного каталитического восстановления (SCR) в зоне катализатора, предотвращающего проскок аммиака (ASC). Слой катализатора, предотвращающего проскок аммиака (ASC), может покрывать от примерно 15% до примерно 40% от длины основы. Слой катализатора окисления дизельного топлива (DOC) может покрывать от примерно 10% до примерно 30% от длины катализатора окисления аммиака.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR), катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где первый катализатор селективного каталитического восстановления (SCR) и катализатор окисления аммиака расположены на основе. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления аммиака и покрывает впускной конец катализатора окисления аммиака и впускной конец и верхнюю часть второго катализатора селективного каталитического восстановления (SCR). (Фиг. 17). Катализатор окисления дизельного топлива (DOC) расположен поверх остающейся верхней части катализатора окисления аммиака и присутствует лишь в зоне катализатора окисления дизельного топлива (DOC). Второй катализатор селективного каталитического восстановления (SCR) покрывает верхнюю сторону катализатор окисления дизельного топлива (DOC) и впускной конец катализатора окисления дизельного топлива (DOC). Слой катализатора, предотвращающего проскок аммиака (ASC), может покрывать от примерно 15% до примерно 40% от длины основы. Слой катализатора окисления дизельного топлива (DOC) может покрывать от примерно 10% до примерно 30% от длины катализатора окисления аммиака.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где первый катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC) расположены на основе. Комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC) может быть сконфигурирован таким образом, что имеет две ступени, более низкую ступень и более верхнюю ступень, с более верхней ступенью на выпускном конце основы. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед комбинированным катализатором окисления аммиака и катализатором окисления дизельного топлива (DOC) и покрывает впускной конец и часть верхней стороны комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC). (Фиг. 18). Второй катализатор селективного каталитического восстановления (SCR) покрывает впускную сторону наиболее высокой ступени комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), верхнюю сторону комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) и часть первого катализатора селективного каталитического восстановления (SCR) в зоне катализатора, предотвращающего проскок аммиака (ASC). Фиг. 18 показывает соединение между первым и вторым катализаторами селективного каталитического восстановления (SCR) в виде линии. Соединения, имеющие другие формы, такие как ступенчатые или изогнутые, могут также быть применены. Слой катализатора, предотвращающего проскок аммиака (ASC), может покрывать от примерно 15% до примерно 40% от длины основы. Слой катализатора окисления дизельного топлива (DOC) может покрывать от примерно 10% до примерно 30% от длины катализатора окисления аммиака.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где первый катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC) расположены на основе. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед катализатором окисления аммиака и покрывает впускной конец комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC). (Фиг. 19). Второй катализатор селективного каталитического восстановления (SCR) покрывает верхнюю сторону комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) и часть первого катализатора селективного каталитического восстановления (SCR) в зоне селективного каталитического восстановления (SCR). Слой катализатора, предотвращающего проскок аммиака (ASC), может покрывать от примерно 15% до примерно 40% от длины основы. Слой катализатора окисления дизельного топлива (DOC) может покрывать от примерно 10% до примерно 30% от длины катализатора окисления аммиака.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR), и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где первый катализатор селективного каталитического восстановления (SCR) и катализатор окисления аммиака расположены на основе. Комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC) может быть сконфигурирован таким образом, что имеет две ступени, более низкую ступень и более верхнюю ступень, с более верхней ступенью на выпускном конце основы. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед комбинированным катализатором окисления аммиака и катализатором окисления дизельного топлива (DOC) и покрывает впускной конец комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) и впускной конец и верхнюю часть второго катализатора селективного каталитического восстановления (SCR). (Фиг. 20). Второй катализатор селективного каталитического восстановления (SCR) покрывает верхнюю сторону комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), который может быть сконфигурирован таким образом, что имеет две ступени, более низкую ступень и более верхнюю ступень, с более верхней ступенью на выпускном конце основы. Слой, содержащий комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), может покрывать от примерно 15% до примерно 40% от длины основы.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где первый катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC) расположены на основе. Комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC) может быть сконфигурирован таким образом, что имеет две ступени, более низкую ступень и более верхнюю ступень, с более верхней ступенью на выпускном конце основы. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед комбинированным катализатором окисления аммиака и катализатором окисления дизельного топлива (DOC) и покрывает впускной конец комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC). (Фиг. 21). Второй катализатор селективного каталитического восстановления (SCR) покрывает верхнюю сторону комбинированного катализатора окисления аммиака и часть первого катализатора селективного каталитического восстановления (SCR) в зоне селективного каталитического восстановления (SCR). Фиг. 21 показывает соединение между первым и вторым катализаторами селективного каталитического восстановления (SCR) в виде линии. Соединения, имеющие другие формы, такие как ступенчатые или изогнутые, могут также быть применены. Слой катализатора, предотвращающего проскок аммиака (ASC), может покрывать от примерно 15% до примерно 40% от длины основы. Комбинированный слой катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) может покрывать от примерно 10% до примерно 30% от длины катализатора окисления аммиака.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где первый катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC) расположены на основе. Комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC) может быть сконфигурирован таким образом, что имеет две ступени, более низкую ступень и более верхнюю ступень, с более верхней ступенью на выпускном конце основы. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед комбинированным катализатором окисления аммиака и катализатором окисления дизельного топлива (DOC) и покрывает впускной конец комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) и верхнюю часть комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) в зоне катализатора, предотвращающего проскок аммиака (ASC). (Фиг. 22). Второй катализатор селективного каталитического восстановления (SCR) покрывает верхнюю сторону комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) в зоне окисления дизельного топлива (DOC) и часть первого катализатора селективного каталитического восстановления (SCR) в зоне селективного каталитического восстановления (SCR). Слой катализатора, предотвращающего проскок аммиака (ASC), может покрывать от примерно 15% до примерно 40% от длины основы. Слой катализатора окисления дизельного топлива (DOC) может покрывать от примерно 10% до примерно 30% от длины катализатора окисления аммиака.

В другой конфигурации, каталитическое изделие может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), где первый катализатор селективного каталитического восстановления (SCR) и комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC) расположены на основе. Первый катализатор селективного каталитического восстановления (SCR) расположен в потоке выхлопных газов перед комбинированным катализатором окисления аммиака и катализатором окисления дизельного топлива (DOC) и покрывает впускной конец комбинированного катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) и впускной конец и верхнюю часть второго катализатора селективного каталитического восстановления (SCR). (Фиг. 23). Второй катализатор селективного каталитического восстановления (SCR) покрывает верхнюю сторону комбинированного катализатора окисления аммиака. Слой, содержащий комбинированный катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), может покрывать от примерно 15% до примерно 40% от длины основы.

Как показано выше и на фигурах, первый катализатор селективного каталитического восстановления (SCR) может покрывать часть зоны катализатора, предотвращающего проскок аммиака (ASC), или смешанной зоны ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC). Каталитическое изделие может иметь: (a) зону катализатора, предотвращающего проскок аммиака (ASC), содержащую нижний слой, содержащий катализатор окисления аммиака, и верхний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) покрывает всю часть катализатора окисления аммиака в зоне катализатора, предотвращающего проскок аммиака (ASC), и (b) зону катализатора окисления дизельного топлива (DOC), содержащую нижний слой, содержащий катализатор окисления аммиака, и верхний слой содержащий катализатор окисления дизельного топлива (DOC), где катализатор окисления дизельного топлива (DOC) покрывает всю часть катализатора окисления аммиака в зоне катализатора окисления дизельного топлива (DOC).

Зона катализатора, предотвращающего проскок аммиака (ASC), может содержать нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и часть первого катализатора селективного каталитического восстановления (SCR) также образует верхний слой, который покрывает всю часть смеси катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) в зоне катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) содержит смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где смесь расположена на основе в зоне катализатора, предотвращающего проскок аммиака (ASC), и зоне катализатора окисления дизельного топлива (DOC).

Зона катализатора, предотвращающего проскок аммиака (ASC), может содержать нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где нижний слой расположен на основе, и часть первого катализатора селективного каталитического восстановления (SCR) образует верхний слой, который покрывает всю часть нижнего слоя в зоне катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) содержит смесь катализатора окисления аммиака и дизельный экзотермический катализатор (DEC), где смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) в зоне катализатора окисления дизельного топлива (DOC) расположена на основе.

Зона окисления может содержать смешанную зону ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC), содержащую нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и верхний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), где верхний слой покрывает весь нижний слой, и нижний слой расположен на основе.

В некоторых конфигурациях, каталитическое изделие может дополнительно содержать второй катализатор селективного каталитического восстановления (SCR), где второй катализатор селективного каталитического восстановления (SCR) покрывает часть первого катализатора селективного каталитического восстановления (SCR), и второй катализатор селективного каталитического восстановления (SCR) является таким же, что и первый катализатор селективного каталитического восстановления (SCR), или отличным от него.

Каталитическое изделие может дополнительно содержать второй катализатор селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) покрывает часть второго катализатора селективного каталитического восстановления (SCR), и второй катализатор селективного каталитического восстановления (SCR) является таким же, что и первый катализатор селективного каталитического восстановления (SCR), или отличным от него. Зона катализатора, предотвращающего проскок аммиака (ASC), может содержать первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) и катализатор окисления аммиака. Зона катализатора, предотвращающего проскок аммиака (ASC), может содержать нижний слой, содержащий катализатор окисления аммиака, средний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), и третий слой, содержащий второй катализатор селективного каталитического восстановления (SCR). Толщина среднего слоя может уменьшаться от впускной стороны зоны катализатора, предотвращающего проскок аммиака (ASC), к выпускной стороне зоны катализатора, предотвращающего проскок аммиака (ASC), толщина второго катализатора селективного каталитического восстановления (SCR) может увеличиваться от впускной стороны зоны катализатора, предотвращающего проскок аммиака (ASC), к выпускной стороне зоны катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) может содержать нижний слой, содержащий катализатор окисления аммиака, средний слой, содержащий катализатор окисления дизельного топлива (DOC), и верхний слой, содержащий второй катализатор селективного каталитического восстановления (SCR), где нижний слой в зоне катализатора, предотвращающего проскок аммиака (ASC), и зоне катализатора окисления дизельного топлива (DOC) расположен на основе, и катализатор окисления дизельного топлива (DOC) расположен лишь в зоне катализатора окисления дизельного топлива (DOC).

Когда катализатор содержит второй катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) может покрывать часть первого катализатора селективного каталитического восстановления (SCR), и второй катализатор селективного каталитического восстановления (SCR) может быть таким же, что и первый катализатор селективного каталитического восстановления (SCR), или отличным от него.

Когда катализатор содержит второй катализатор селективного каталитического восстановления (SCR), зона катализатора, предотвращающего проскок аммиака (ASC), может содержать нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), средний слой, содержащий первый катализатор окисления, и третий слой, содержащий второй катализатор селективного каталитического восстановления (SCR). Толщина среднего слоя может уменьшаться от впускной стороны зоны катализатора, предотвращающего проскок аммиака (ASC), к выпускной стороне зоны катализатора, предотвращающего проскок аммиака (ASC), толщина второго катализатора селективного каталитического восстановления (SCR) может увеличиваться от впускной стороны зоны катализатора, предотвращающего проскок аммиака (ASC), к выпускной стороне зоны катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) может содержать нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и верхний слой, содержащий второй катализатор селективного каталитического восстановления (SCR), где нижний слой в зоне катализатора, предотвращающего проскок аммиака (ASC), и зоне катализатора окисления дизельного топлива (DOC) расположен на основе.

Когда катализатор содержит второй катализатор селективного каталитического восстановления (SCR), зона селективного каталитического восстановления (SCR) может содержать первый катализатор селективного каталитического восстановления (SCR) и второй катализатор селективного каталитического восстановления (SCR) где второй катализатор селективного каталитического восстановления (SCR) покрывает часть первого катализатора селективного каталитического восстановления (SCR) в зоне селективного каталитического восстановления (SCR), и смешанная зона ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC) содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где нижний слой расположен на основе, и верхний слой, содержащий второй катализатор селективного каталитического восстановления (SCR), который покрывает всю часть нижнего слоя в смешанной зоне ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC).

Катализаторы селективного каталитического восстановления (SCR)

В различных вариантах осуществления, композиции могут содержать один или два катализатора селективного каталитического восстановления (SCR). Первый катализатор селективного каталитического восстановления (SCR) всегда присутствует в композиции. Второй катализатор селективного каталитического восстановления (SCR) может быть таким же, что и первый катализатор селективного каталитического восстановления (SCR), или отличается от него. Предпочтительно второй катализатор селективного каталитического восстановления (SCR) отличается от первого катализатора селективного каталитического восстановления (SCR). Первый катализатор селективного каталитического восстановления (SCR) может отличаться от второго катализатора селективного каталитического восстановления (SCR) посредством содержания другого активного компонента, как описано ниже, посредством отличающейся загрузки активного компонента, или того и другой.

Каталитическое изделие может дополнительно содержать второй катализатор селективного каталитического восстановления (SCR), где второй катализатор селективного каталитического восстановления (SCR) покрывает часть первого катализатора селективного каталитического восстановления (SCR) и весь слой катализатора окисления дизельного топлива (DOC), и покрытие из второго катализатора селективного каталитического восстановления (SCR) содержит второй катализатор селективного каталитического восстановления (SCR), который является таким же, что и первый катализатор селективного каталитического восстановления (SCR), или отличным от него.

Одним из свойств каталитического изделия является то, что катализатор может предоставлять контроль селективности проскакивания NH3 посредством преобразования примерно 90% NOx, образованного при окислении NH3 посредством зоны катализатора, предотвращающего проскок аммиака (ASC), и зоны катализатора окисления дизельного топлива (DOC) до азота и воды.

Первый катализатор селективного каталитического восстановления (SCR) и, когда второй катализатор селективного каталитического восстановления (SCR) присутствует, первый и второй катализаторы селективного каталитического восстановления (SCR) содержат активный компонент, независимым образом выбранный из группы, состоящей из неблагородного металла, оксида неблагородного металла, молекулярного сита, металлзамещенного молекулярного сита или их смеси. Неблагородный металл может быть выбран из группы, состоящей из ванадия (V), молибдена (Mo), вольфрама (W), хрома (Cr), церия (Ce), марганца (Mn), железа (Fe), кобальта (Co), никеля (Ni) и меди (Cu), и их смесей. Композиции селективного каталитического восстановления (SCR), состоящие из ванадия, поддерживаемого на огнеупорном оксиде металла, таком как глинозем, кремнезем, диоксид циркония, диоксид титана, оксид церия и их комбинации, хорошо известны и широко применяются в промышленном масштабе в передвижной технике. Типичные композиции описаны в патентах США №№ 4010238 и 4085193, полное содержание которых включено в данный документ посредством ссылки. Композиции, применяемые в промышленном масштабе, особенно в передвижной технике, содержат TiO2, на котором WO3 и V2O5 диспергированы при концентрациях в интервале от 5 до 20 масс.% и от 0,5 до 6 масс.%, соответственно. Катализаторы селективного каталитического восстановления (SCR) могут содержать Nb-Ce-Zr или Nb на MnO2. Эти катализаторы могут содержать другие неорганические материалы, такие как SiO2 и ZrO2, действующие в качестве связующих или промоторов.

Когда катализатор селективного каталитического восстановления (SCR) является неблагородным металлом, каталитическое изделие может дополнительно содержать по меньшей мере один промотор на основе неблагородного металла. Как использовано в данном документе, «промотор» понимается как означающий вещество, которое, когда оно добавлено в катализатор, увеличивает активность катализатора. Промотор на основе неблагородного металла может быть в форме металла, оксида металла или их смеси. По меньшей мере один промотор катализатора из неблагородного металла может быть выбран из неодима (Nd), бария (Ba), церия (Ce), лантана (La), празеодима (Pr), магния (Mg), кальция (Ca), марганца (Mn), цинка (Zn), ниобия (Nb), циркония (Zr), молибдена (Mo), олова (Sn), тантала (Ta), стронция (Sr) и их оксидов. По меньшей мере один промотор катализатора из неблагородного металла может предпочтительно быть MnO2, Mn2O3, Fe2O3, SnO2, CuO, CoO, CeO2 и их смесями. По меньшей мере один промотор катализатора из неблагородного металла может быть добавлен к катализатору в форме соли в водном растворе, такой как нитрат или ацетат. По меньшей мере один промотор катализатора из неблагородного металла и по меньшей мере один катализатор из неблагородного металла, например, медь, могут быть импрегнированы из водного раствора в материал(ы) оксидного носителя, могут быть добавлены в покрытие из пористого оксида (washcoat), содержащее материал(ы) оксидного носителя, или могут быть импрегнированы в носитель, предварительно покрытый покрытием из пористого оксида.

Катализаторы селективного каталитического восстановления (SCR) могут содержать молекулярное сито или металлзамещенное молекулярное сито. Как использовано в данном документе, термин «молекулярное сито» понимается как означающий метастабильный материал, содержащий очень маленькие поры точного и однородного размера, который может быть применен в качестве адсорбента для газов и жидкостей. Молекулы, которые достаточно малы, чтобы проходить через поры, адсорбируются, в то время как молекулы большего размера нет. Молекулярное сито может быть цеолитовым молекулярным ситом, нецеолитовым молекулярным ситом или их смесью.

Цеолитовым молекулярным ситом является микропористый алюмосиликат, имеющий любую из каркасных структур, перечисленных в Базе данных цеолитовых структур, опубликованной Международной ассоциацией по цеолитам (IZA). Каркасные структуры включают, однако без ограничения ими, типы CHA, FAU, BEA, MFI, MOR. Неограничивающие примеры цеолитов, имеющих эти структуры, включают шабазит, фожазит, цеолит Y, ультрастабильный цеолит Y, бета-цеолит, морденит, силикалит, цеолит X и ZSM-5. Алюмосиликатные цеолиты могут иметь молярное отношение кремнезем/глинозем (SAR), определенное как SiO2/Al2O3) от по меньшей мере примерно 5, предпочтительно по меньшей мере примерно 20, при применимых интервалах от примерно 10 до 200.

Катализаторы селективного каталитического восстановления (SCR) могут содержать молекулярное сито с малым, средним или большим размером пор, или же их комбинации. «Молекулярное сито с малым размером пор» является молекулярным ситом, имеющим в своей структуре максимальный размер кольца из 8 тетраэдрически координированных атомов. «Молекулярное сито со средним размером пор» является молекулярным ситом, имеющим в своей структуре максимальный размер кольца из 10 тетраэдрически координированных атомов. «Молекулярное сито с большим размером пор» является молекулярным ситом, имеющим в своей структуре максимальный размер кольца из 12 тетраэдрически координированных атомов.

Катализатор селективного каталитического восстановления (SCR) может содержать молекулярное сито с малым размером пор, выбранное из группы, состоящей из алюмосиликатных молекулярных сит, алюмосиликатных молекулярных сит с замещенным металлом, алюмофосфатных (AlPO) молекулярных сит, алюмофосфатных молекулярных сит с замещенным металлом (MeAlPO), силикоалюмофосфатных (SAPO) молекулярных сит и силикоалюмофосфатных молекулярных сит с замещенным металлом (MeAPSO), и их смесей.

Катализаторы селективного каталитического восстановления (SCR) могут содержать молекулярное сито с малым размером пор, выбранное из группы типов каркасной структуры, состоящей из ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG и ZON, и их смесей и/или сростков. Предпочтительно молекулярное сито с малым размером пор выбирают из группы типов каркасной структуры, состоящей из CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR и ITE.

Катализаторы селективного каталитического восстановления (SCR) могут содержать молекулярное сито со средним размером пор, выбранное из группы типов каркасной структуры, состоящей из AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ITH, ITR, JRY, JSR, JST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, SVR, SZR, TER, TON, TUN, UOS, VSV, WEI и WEN, и их смесей и/или сростков. Предпочтительно молекулярное сито со средним размером пор выбирают из группы типов каркасной структуры, состоящей из MFI, FER и STT.

Катализаторы селективного каталитического восстановления (SCR) могут содержать молекулярное сито с большим размером пор, выбранное из группы типов каркасной структуры, состоящей из AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, IWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OKO, OSI, RON, RWY, SAF, SAO, SBE, SBS, SBT, SEW, SFE, SFO, SFS, SFV, SOF, SOS, STO, SSF, SSY, USI, UWY и VET, и их смесей и/или сростков. Предпочтительно молекулярное сито с большим размером пор выбирают из группы типов каркасной структуры, состоящей из MOR, OFF и BEA.

Металлзамещенное молекулярное сито может иметь по меньшей мере один металл из одной из групп VB, VIB, VIIB, VIIIB, IB или IIB Периодической таблицы, осажденный на внекаркасных позициях структуры на внешней поверхности или внутри каналов, полостей или каркасов молекулярных сит. Металлы могут находиться в одной из нескольких форм, включающих, однако не ограничивающихся ими, атомы или кластеры металла с нулевой валентностью, изолированные катионы, моноядерные или полиядерные оксикатионы или же оксиды металлов. Предпочтительно, металлами могут являться железо, медь и их смеси или комбинации.

Металл может быть объединен с цеолитом при применении смеси или раствора предшественника металла в подходящем растворителе. Термин «предшественник металла» означает любое соединение или комплекс, которые могут быть диспергированы на цеолите, чтобы предоставить каталитически активный металлический компонент. Предпочтительно, растворитель является водой, вследствие как экономических аспектов, так и экологических аспектов применения других растворителей. Когда медь применяют в качестве предпочтительного металла, подходящие комплексы или соединения включают, однако не ограничиваются ими, безводный и гидратированный сульфат меди, нитрат меди, ацетат меди, ацетилацетонат меди, оксид меди, гидроксид меди и соли аммиакатов меди (например, [Cu(NH3)4]2+). Это изобретение не ограничено предшественниками металла конкретного типа, составом или чистотой. Молекулярное сито может быть добавлено к раствору металлического компонента, чтобы образовать суспензию, которой затем предоставляют возможность реакционного взаимодействия таким образом, что металлический компонент распределяется на цеолите. Металл может быть распределен в поровых каналах, а также на внешней поверхности молекулярного сита. Металл может быть распределен в ионной форме или в качестве оксида металла. Например, медь может быть распределена в качестве ионов меди (II), ионов меди (I) или в качестве оксида меди. Молекулярное сито, содержащее металл, может быть отделено от жидкой фазы суспензии, промыто и высушено. Результирующее металлсодержащее молекулярное сито может затем быть подвергнуто обжигу, чтобы зафиксировать металл в молекулярном сите. Предпочтительно, первый и второй катализаторы могут содержать Cu-SCR, Fe-SCR, ванадий, промотированный Ce-Zr или промотированный MnO2.

Второй катализатор селективного каталитического восстановления (SCR) является предпочтительно Cu-SCR катализатором или Fe-SCR катализатором, более предпочтительно Cu-SCR катализатором. Cu-SCR катализатор содержит медь и молекулярное сито с малым размером пор. Fe-SCR катализатор содержит железо и молекулярное сито, предпочтительно молекулярное сито с большим размером пор, такое как BEA. Медь или железо могут быть расположены внутри каркасной структуры молекулярного сита и/или во внекаркасных (обменных) позициях внутри молекулярного сита.

Металлзамещенное молекулярное сито может содержать в интервале от примерно 0,10% до примерно 10% по массе металла группы VB, VIB, VIIB, VIIIB, IB или IIB, расположенного на внекаркасных позициях структуры на внешней поверхности или внутри каналов, полостей или каркасов молекулярного сита. Предпочтительно, металл во внекаркасных позициях структуры может присутствовать в количестве в интервале от примерно 0,2% до примерно 5% по массе.

Металлзамещенное молекулярное сито может быть молекулярным ситом с поддерживаемой медью (Cu) или железом (Fe), имеющим от примерно 0,1 до примерно 20,0 масс.% меди или железа от общей массы катализатора. Более предпочтительно медь или железо присутствует от примерно 0,5 масс.% до примерно 15 масс.% от общей массы катализатора. Более предпочтительно медь или железо присутствует от примерно 1 масс.% до примерно 9 масс.% от общей массы катализатора.

В различных конфигурациях, описанных выше, палладий может присутствовать в заднем катализаторе селективного каталитического восстановления (SCR), чтобы способствовать увеличению экзотермических эффектов, созданных катализатором без влияния на селективность катализатора, предотвращающего проскок аммиака (ASC).

Катализатор окисления дизельного топлива

Катализатор окисления дизельного топлива (DOC) может содержать благородный металл, неблагородный металл, или цеолит, предпочтительно металл платиновой группы или его смеси. Предпочтительно катализатор окисления дизельного топлива содержит платину, палладий или комбинацию платины и палладия. Металл платиновой группы может присутствовать в количестве от примерно 5 г/фут3 (177 г/м3) до примерно 75 г/фут3 (2649 г/м3), предпочтительно от примерно 8 г/фут3 (283 г/м3) до примерно 50 г/фут3 (1766 г/м3), более предпочтительно от примерно 10 г/фут3 (353 г/м3) до примерно 30 г/фут3 (1059 г/м3). Катализатор окисления дизельного топлива может содержать комбинацию платины (Pt) и палладия (Pd) где Pt и Pd присутствуют при соотношении от 1:0 до 0:1, включая предельные значения. Комбинация Pt и Pd может предоставлять экзотермический эффект катализатору окисления дизельного топлива (DOC). Катализатор окисления дизельного топлива (DOC) может покрывать между примерно 10% до примерно 40% от длины носителя, предпочтительно между примерно 10% до примерно 30% от длины носителя, более предпочтительно между примерно 10% до примерно 25% от длины носителя.

Катализатор окисления дизельного топлива (DOC) может являться дизельным экзотермическим катализатором (DEC). Дизельный экзотермический катализатор (DEC) может содержать благородный металл, неблагородный металл или цеолит, предпочтительно металл платиновой группы, более предпочтительно платину, палладий или комбинацию платины и палладия. Когда катализатор окисления дизельного топлива (DOC) является дизельным экзотермическим катализатором (DEC), дизельный экзотермический катализатор (DEC) может создавать экзотермический эффект и генерировать NO2 для пассивной регенерации фильтра ниже по потоку. Дизельный экзотермический катализатор (DEC) может содержать комбинацию платины и палладия, при этом массовое отношение Pt:Pd составляет от 1:0 до 0:1, предельное значение не включено. Дизельный экзотермический катализатор (DEC) может присутствовать при загрузке от примерно 5 до примерно 75 г/фут3 (177-2649 г/м3), включительно, предпочтительно от примерно 10 до примерно 40 г/фут3 (353-1413 г/м3), включительно.

Катализатор, предотвращающий проскок аммиака

Катализатор, предотвращающий проскок аммиака, может содержать верхний слой, содержащий катализатор селективного каталитического восстановления (SCR), поверх нижнего слоя, содержащего катализатора окисления. Катализатор окисления аммиака может содержать металл платиновой группы, предпочтительно платину или палладий, или их смесь. Металл платиновой группы может присутствовать на носителе, содержащем, молекулярное сито, металлзамещенное молекулярное сито на носителе с низким накоплением аммиака, предпочтительно на носителе, имеющим низкую способность к сохранению аммиака. Катализатор, предотвращающий проскок аммиака, может содержать смесь платины на носителе с низким накоплением аммиака с катализатором каталитического восстановления (SCR). Загрузка металла платиновой группы в катализаторе окисления аммиака может находиться в интервале от примерно 0,5 до примерно 10 г/фут3 (18-353 г/м3), включительно, предпочтительно от примерно 1 до примерно 5 г/фут3 (35-177 г/м3), включительно. Катализатор окисления аммиака может покрывать от примерно 10% до примерно 40% от длины носителя, предпочтительно от примерно 15% до примерно 30% от длины носителя. Катализатор, предотвращающий проскок аммиака (ASC), может содержать цеолит или металлзамещенный цеолит в дополнение к металлу платиновой группы (МПГ) на носителе.

Катализатор, предотвращающий проскок аммиака, может являться двойным слоем с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим катализатор селективного каталитического восстановления (SCR). Катализатор окисления аммиака является предпочтительно металлом платиновой группы, предпочтительно платиной, палладием, рутением или их смесью. Двухслойный катализатор, предотвращающий проскок аммиака, предпочтительно содержит нижний слой, содержащий платину или смесь платины и палладия, и верхний слой, содержащий смесь палладия на носителе с медьсодержащим цеолитом, предпочтительно медьсодержащим шабазитом. Эти композиции могут способствовать улучшению экзотермических характеристик катализатора. Катализатор, предотвращающий проскок аммиака, может являться единственным слоем, содержащим смесь катализатора окисления и катализатора селективного каталитического восстановления (SCR).

Катализатор окисления аммиака, и в некоторых вариантах осуществления катализатор окисления дизельного топлива (DOC), может содержать металл платиновой группы, предпочтительно платину, палладий, рутений или их комбинацию. Металл платиновой группы может присутствовать в количестве от примерно 0,5 г/фут3 (18 г/м3) до примерно 50 г/фут3 (1766 г/м3), предпочтительно от 1 г/фут3 (35 г/м3) до 30 г/фут3 (1059 г/м3). Катализатор окисления может содержать комбинацию платины (Pt) и палладия (Pd) где Pt и Pd присутствуют при соотношении от 10:1 до 1:100 по массе, предпочтительно от 5:1 до 1:10 по массе.

Катализатор окисления аммиака может содержать платину на носителе с низким накоплением аммиака. Носитель с низким накоплением аммиака может являться кремнийсодержащим носителем. Кремнийсодержащий носитель может содержать кремнезем или цеолит с по меньшей мере одним из следующих соотношений кремнезема к глинозему: (a) по меньшей мере 100, (b) по меньшей мере 200, (c) по меньшей мере 250, (d) по меньшей мере 300, (e) по меньшей мере 400, (f) по меньшей мере 500, (g) по меньшей мере 750 и (h) по меньшей мере 1000. Кремнийсодержащий носитель может содержать молекулярное сито, имеющее тип каркасной структуры BEA, CDO, CON, FAU, MEL, MFI или MWW. Отношение количества катализатора селективного каталитического восстановления (SCR) к количеству платины на носителе с низким накоплением аммиака может находиться в интервале от 0:1 до 300:1, предпочтительно 3:1 до 300:1, более предпочтительно 7:1 до 100:1 и наиболее предпочтительно 10:1 до 50:1, включая каждое из предельных значений в отношении, в расчете на массу этих компонентов.

Когда катализатор, предотвращающий проскок аммиака, представляет собой единственный слой, содержащий смесь катализатора селективного каталитического восстановления (SCR) и катализатора окисления, смесь может дополнительно содержать Pd, Nb-Ce-Zr или Nb на МпO2.

Катализаторы, описанные в данном документе, могут быть применены при обработке селективным каталитическим восстановлением (SCR) выхлопных газов от различных двигателей. Одним из свойств катализатора, содержащего смесь платины на кремнийсодержащем носителе с первым катализатором селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) является Cu-SCR катализатором, является то, что он может предоставлять улучшение в выходе N2 от аммиака при температуре от примерно 250°C до примерно 350°C, по сравнению с катализатором, содержащим сравнимый состав, в котором первый катализатор селективного каталитического восстановления (SCR) присутствует в качестве первого слоя, и платина, поддерживаемая на слое, который сохраняет аммиак, присутствует во втором слое, и газ, содержащий NH3, проходит через первый слой перед прохождением через второй слой. Другим свойством катализатора, содержащего смесь платины на кремнийсодержащем носителе с первым катализатором селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) является Cu-SCR катализатором, является то, что он может предоставлять уменьшенное образование N2O от NH3 по сравнению с катализатором, содержащим сравнимый состав, в котором первый катализатор селективного каталитического восстановления (SCR) присутствует в качестве первого слоя, и поддерживаемая платина присутствует во втором слое, и газ, содержащий NH3, проходит через первый слой перед прохождением через второй слой. Другим свойством катализатора, содержащего смесь платины на носителе с низким накоплением аммиака с первым катализатором селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) является Cu-SCR катализатором или Fe-SCR катализатором, является то, что он может предоставлять уменьшенное образование N2O от NH3 по сравнению с катализатором, содержащим сравнимый состав, в котором первый катализатор селективного каталитического восстановления (SCR) присутствует в качестве первого слоя, и платина, поддерживаемая на носителе, который сохраняет аммиак, присутствует во втором покровном слое, и газ, содержащий NH3, проходит через первый слой перед прохождением через второй покровный слой.

Каталитическое изделие может содержать основу, содержащую впускное отверстие и выпускное отверстие, первую зону, содержащую первый катализатор селективного каталитического восстановления (SCR), и вторую зону, содержащую катализатор окисления, где первая зона расположена на впускной стороне основы, и вторая зона расположена на выпускной стороне основы. Каталитическое изделие может содержать основу, которая содержит первую основу и вторую основу, где каждая основа содержит впускной конец и выпускной конец, и по меньшей мере часть первой зоны расположена на первой основе, и часть второй зоны расположена на второй основе, где первая зона расположена на впускной стороне первой основы, и вторая зона расположена на выпускной стороне второй основы. Каталитическое изделие может содержать основу, которая содержит первую основу и вторую основу, каждая основа содержит впускной конец и выпускной конец, и первая зона и третья зона расположены на первой основе, где первая зона расположена на впускной стороне первой основы, и третья зона расположена на выпускной стороне первой основы, и вторая зона расположена на второй основе. Каталитическое изделие может содержать основу, содержащую первую основу и вторую основу, где каждая основа содержит впускной конец и выпускной конец, и первая зона расположена на первой основе, и вторая зона расположена на второй основе, где вторая зона расположена на впускной стороне второй основы, и третья зона расположена на выпускной стороне второй основы.

В одном аспекте данного изобретения, различные конфигурации катализаторов могут быть приготовлены в зависимости от желательной конфигурации катализатора, предотвращающего проскок аммиака (ASC). Часть катализатора, содержащего смесь платины на носителе, который не сохраняет аммиак, с первым катализатором селективного каталитического восстановления (SCR), обозначают как «смесь» на фигурах, описанных ниже.

Основа для катализатора может являться любым материалом, обычно применяемым для получения автомобильных катализаторов, который содержит проточную или фильтрующую структуру, такую как сотовую структуру, экструдированный носитель, металлическую основу или фильтр селективного каталитического восстановления (SCRF). Предпочтительно основа является инертной основой. Основа предпочтительно имеет множество тонких, параллельных каналов для протекания газа, протянутых от впускной до выпускной поверхности основы таким образом, что каналы открыты для протекания текучей среды. Такие монолитные носители могут содержать вплоть до примерно 700 или более каналов (или «ячеек») на квадратный дюйм поперечного сечения, хотя гораздо меньше может быть использовано. Например, носитель может иметь от примерно 7 до 600, более обычно от примерно 100 до 400, ячеек на квадратный дюйм («ячеек/кв.дюйм»). Каналы, которые являются по существу прямыми путями от их впускного отверстия для текучей среды до их выпускного отверстия для текучей среды, определены стенками, которые покрыты катализатором селективного каталитического восстановления (SCR) в качестве «покрытия из пористого оксида», так что газы, протекающие через каналы, контактируют с каталитическим материалом. Каналы для протекания в монолитной основе являются тонкостенными каналами, которые могут иметь любую подходящую форму поперечного сечения, такую как трапецеидальную, прямоугольную, квадратную, треугольную, синусоидальную, гексагональную, овальную, круговую, и т.д. Данное изобретение не ограничивается конкретным типом, материалом или геометрией основы.

Керамические основы могут быть изготовлены из любого подходящего огнеупорного материала, такого как кордиерит, кордиерит-α-глинозем, α-глинозем, карбид кремния, нитрид кремния, диоксид циркония, муллит, сподумен, глинозем-кремнезем-оксид магния, силикат циркония, силлиманит, силикаты магния, циркон, петалит, алюмосиликаты и их смеси.

Основы с проточными стенками могут также быть сформированы из керамических волокнистых композиционных материалов, таких как те, что сформированы из кордиерита и карбида кремния. Такие материалы способны противостоять условиям окружающей среды, особенно высоким температурам, имеющим место при обработке потоков выхлопных газов.

Основы могут являться высокопористой основой. Термин «высокопористая основа» относится к основе, имеющей пористость между примерно 40% и примерно 80%. Высокопористая основа может иметь пористость предпочтительно по меньшей мере примерно 45%, более предпочтительно по меньшей мере примерно 50%. Высокопористая основа может иметь пористость предпочтительно менее чем примерно 75%, более предпочтительно менее чем примерно 70%. Термин «пористость», как использовано в данном документе, относится к общей пористости, предпочтительно определяемой ртутной порометрией.

Предпочтительно, основой может являться кордиерит, высокопористый кордиерит, металлическая основа, экструдированный SCR, фильтр, фильтр селективного каталитического восстановления (SCRF) или экструдированный катализатор.

Покрытие из пористого оксида, содержащее один или несколько катализаторов, может быть нанесено на основу при применении способа, известного в данной области техники. После нанесения покрытия из пористого оксида композиция может быть высушена и необязательно подвергнута обжигу. По меньшей мере нанесение одного покрытия из пористого оксида требуется для каждой из зон. Когда два покрытия или более наносят на одну основу, покрытия из пористого оксида предпочтительно сушат перед нанесением дополнительного покрытия из пористого оксида на основу. После того, как последнее покрытие из пористого оксида нанесено на основу, основа со слоями покрытия из пористого оксида может быть высушена и подвергнута обжигу. Время, температура и условия для обжига основы с покрытиями из пористого оксида зависят от применяемых катализаторов, носителей и основ. Обжиг может быть выполнен при сухих условиях или гидротермическим образом, т.е. при наличии некоторого содержания влаги. Обжиг может быть выполнен в течение времени между примерно 30 минутами и примерно 4 часами, предпочтительно между примерно 30 минутами и примерно 2 часами, более предпочтительно между примерно 30 минутами и примерно 1 часом.

Покрытие из пористого оксида, содержащее смесь платины на кремнийсодержащем носителе и первого катализатора селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) является Cu-SCR катализатором, может быть нанесено на впускной стороне основы при применении способа, известного в данной области техники. После нанесения покрытия из пористого оксида композиция может быть высушена и подвергнута обжигу. Когда композиция содержит второй катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) может быть нанесен в виде отдельного покрытия из пористого оксида на высушенное изделие или обожженное изделие, имеющее нижний слой, как описано выше. После того, как второе покрытие из пористого оксида нанесено, оно мжет быть высушено и подвергнуто обжигу, как было выполнено для первого слоя.

Основа со слоем, содержащим платину, может быть высушена и подвергнута обжигу при температуре в интервале от 400°C до 1200°C, предпочтительно от 450°C до 700°C и более предпочтительно от 500°C до 650°C. Обжиг предпочтительно выполняют при сухих условиях, однако он может также быть выполнен гидротермическим образом, т.е. при наличии некоторого содержания влаги. Обжиг может быть выполнен в течение времени между примерно 30 минутами и примерно 4 часами, предпочтительно между примерно 30 минутами и примерно 2 часами, более предпочтительно между примерно 30 минутами и примерно 1 часом.

Каталитическое изделие может присутствовать в более чем одной части. Каталитическое изделие может являться единственной частью, содержащей единственную основу, содержащую первую, вторую и третью зоны, или множеством частей, каждая из которых содержит одну или несколько основ, каждая из которых содержит одну или несколько зон. При размещении в системе выпуска отработавших газов двигателя, части могут быть связаны или соединены совместно. Соединение может быть постоянным, таким как посредством сплавления, или отделяемым, таким как посредством применения крепежных средств, таких как гайки и болты. Каталитическое изделие может содержать первую часть и вторую часть, где первая часть содержит первую зону и вторую зону, и вторая часть содержит третью зону. Каталитическое изделие может содержать первую часть и вторую часть, где первая часть содержит первую зону, и вторая часть содержит вторую зону и третью зону. Катализаторы могут содержать первую часть, вторую часть и третью часть, где первая часть содержит первую зону, вторая часть содержит вторую зону, и третья часть содержит третью зону.

Катализатор селективного каталитического восстановления (SCR) требует присутствия восстановителя, такого как аммиак, для функционирования. Обычно предшественник аммиак, такой как мочевина, инжектируют в поток выхлопных газов, где он преобразуется в аммиак. Система выпуска отработавших газов может содержать каталитическое изделие в соответствии с первым аспектом данного изобретения и первое средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах, где первое средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах расположено перед каталитическим изделием. Система выпуска отработавших газов может дополнительно содержать катализированный сажевый фильтр (CSF), фильтр твердых частиц выхлопа дизельных двигателей (DPF) или фильтр селективного каталитического восстановления (SCRF) (катализатор селективного каталитического восстановления (SCR) на фильтре), где катализированный сажевый фильтр (CSF), фильтр твердых частиц выхлопа дизельных двигателей (DPF) или фильтр селективного каталитического восстановления (SCRF) расположены ниже по потоку от катализатора окисления дизельного топлива (DOC). Обычно катализированный сажевый фильтр (CSF), фильтр твердых частиц выхлопа дизельных двигателей (DPF) или фильтр селективного каталитического восстановления (SCRF) расположены ниже по потоку от каталитического изделия. После катализированного сажевого фильтра (CSF) или фильтра твердых частиц выхлопа дизельных двигателей (DPF) может следовать катализатор селективного каталитического восстановления (SCR) и затем катализатор, предотвращающий проскок аммиака (ASC). Когда система содержит катализатор селективного каталитического восстановления (SCR) или фильтр селективного каталитического восстановления (SCRF) после катализатора окисления дизельного топлива (DOC), второе средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах может быть расположено между каталитическим изделием и катализатором селективного каталитического восстановления (SCR) или фильтром селективного каталитического восстановления (SCRF). Система выпуска отработавших газов может дополнительно содержать катализированный сажевый фильтр (CSF) или фильтр селективного каталитического восстановления (SCRF), где катализированный сажевый фильтр (CSF) или фильтр селективного каталитического восстановления (SCRF) расположены ниже по потоку от каталитического изделия, и, когда система содержит фильтр селективного каталитического восстановления (SCRF), второе средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах расположено между каталитическим изделием и фильтром селективного каталитического восстановления (SCRF).

В другом аспекте данного изобретения, двигатель может содержать систему выпуска отработавших газов, содержащую каталитическое изделие в соответствии с первым аспектом данного изобретения и средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах, где первое средство для введения NH3 или образования NH3 в выхлопных газах может быть расположено перед каталитическим изделием. Двигатель может являться дизельным двигателем на транспортном средстве, дизельным двигателем на стационарной установке или дизельным двигателем на водоплавающем судне, таком как корабль.

Применение каталитических изделий, описанных выше, делает возможной высокую конверсию NOx на ранней стадии в цикле холодного пуска. Катализатор с высокой загрузкой по объему (V) может быть применен, поскольку от катализатора требуется лишь активность при низкой температуре. NOx конвертируется сразу же без сохранения. Это может уменьшать количество проскакиваемого аммиака, которое требуется конвертировать катализатором, предотвращающим проскок аммиака (ASC), уменьшая потребность в катализаторе, предотвращающем проскок аммиака (ASC), чтобы функционировать достаточным образом при более низких температурах во время запуска. Поскольку имеется меньшая потребность в сохранении аммиака, то может быть облегчено контролирование инжекции мочевины. При более высоких температурах, NH3 не требуется инжектировать, если дополнительная система с катализатором селективного каталитического восстановления (SCR) расположена ниже по потоку от каталитического изделия.

Каталитические изделия, описанные в данном документе, могут предпочтительно генерировать некоторое количество NO2 во время обычного функционирования для того, чтобы промотировать пассивную регенерацию фильтра, расположенного ниже по потоку от каталитического изделия. Предпочтительно, каталитические изделия могут создавать экзотермический эффект или промотировать пассивную регенерацию. Более предпочтительно, каталитические изделия могут создавать экзотермический эффект и промотировать пассивную регенерацию. Термин «могут создавать экзотермический эффект» означает, что каталитическое изделие может сжигать дизельное топливо с ультранизким содержанием серы (ULSD) или эквивалентное топливо при температуре 300°C на входе катализатора и создавать увеличение температуры ≥150°C на протяжении катализатора, при проскакивании углеводородов (HC) <1500 млн-1 C1, на протяжении всех рабочих точек двигателя.

Система выпуска отработавших газов может содержать каталитическое изделие в соответствии с первым аспектом данного изобретения и средство для образования NH3 в выхлопных газах или введения NH3 в выхлопные газы. Система выпуска отработавших газов может предоставлять низкотемпературное регулирование NOx в сочетании с хорошей селективностью катализатора, предотвращающего проскок аммиака (ASC), и производительностью катализатора окисления дизельного топлива (DOC). Каталитическое изделие в соответствии с первым аспектом данного изобретения может быть непосредственно соединено с двигателем.

Способ предоставления низкотемпературного регулирования NOx в сочетании с хорошей селективностью катализатора, предотвращающего проскок аммиака (ASC), и производительностью катализатора окисления дизельного топлива (DOC) в отношении выхлопных газов от дизельного двигателя, включает контактирование выхлопных газов от двигателя с каталитическим изделием в соответствии с первым аспектом данного изобретения.

Данное изобретение может также быть определено в соответствии с одним из следующих определений:

1. Каталитическое изделие, содержащее

i. проточную основу, содержащую впускное отверстие, выпускное отверстие и осевую длину;

ii. зону селективного каталитического восстановления (SCR), имеющую первый катализатор селективного каталитического восстановления (SCR) и расположенную на основе от впускного отверстия на расстоянии, меньшем, чем осевая длина основы; и

iii. и зону окисления, содержащую катализатор окисления аммиака, содержащий металл платиновой группы (МПГ) и катализатор окисления дизельного топлива (DOC), содержащий металл платиновой группы (МПГ), в которой катализатор окисления аммиака, содержащий металл платиновой группы (МПГ), и катализатор окисления дизельного топлива (DOC), содержащий металл платиновой группы (МПГ), расположены в (a) зоне катализатора, предотвращающего проскок аммиака (ASC), и отдельной зоне катализатора окисления дизельного топлива (DOC) или (b) смешанной зоне из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC), в которой зона катализатора окисления дизельного топлива (DOC) или смешанная зона катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC) расположена на основе от выпускного конца на расстоянии, меньшем, чем осевая длина основы, и когда присутствует отдельная зона катализатора окисления дизельного топлива (DOC), зона катализатора, предотвращающего проскок аммиака (ASC), расположена между зоной селективного каталитического восстановления (SCR) и зоной катализатора окисления дизельного топлива (DOC), при условии, что катализатор окисления дизельного топлива (DOC) имеет более высокую концентрацию (в граммах на литр) металла платиновой группы (МПГ) по сравнению с катализатором окисления аммиака.

2. Каталитическое изделие по пункту 1, где первый катализатор селективного каталитического восстановления (SCR) покрывает часть зоны катализатора, предотвращающего проскок аммиака (ASC), или смешанной зоны ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC).

3. Каталитическое изделие по пункту 1, где (a) зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий катализатор окисления аммиака, и верхний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) покрывает всю часть катализатора окисления аммиака в зоне катализатора, предотвращающего проскок аммиака (ASC), и (b) зона катализатора окисления дизельного топлива (DOC) содержит нижний слой, содержащий катализатор окисления аммиака, и верхний слой, содержащий катализатор окисления дизельного топлива (DOC), где катализатор окисления дизельного топлива (DOC) покрывает всю часть катализатора окисления аммиака в зоне катализатора окисления дизельного топлива (DOC).

4. Каталитическое изделие по пункту 1, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и часть первого катализатора селективного каталитического восстановления (SCR) также образует верхний слой, который покрывает всю часть смеси катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) в зоне катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) содержит смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где смесь расположена на основе в зоне катализатора, предотвращающего проскок аммиака (ASC), и зоне катализатора окисления дизельного топлива (DOC).

5. Каталитическое изделие по пункту 1, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где нижний слой расположен на основе, и часть первого катализатора селективного каталитического восстановления (SCR) образует верхний слой, который покрывает всю часть нижнего слоя в зоне катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) содержит смесь катализатора окисления аммиака и дизельного экзотермического катализатора (DEC), где смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) в зоне катализатора окисления дизельного топлива (DOC) расположена на основе.

6. Каталитическое изделие по пункту 1, где зона окисления содержит смешанную зону ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC), содержащую нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и верхний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), где верхний слой покрывает весь нижний слой, и нижний слой расположен на основе.

7. Каталитическое изделие по пункту 1, дополнительно содержащее второй катализатор селективного каталитического восстановления (SCR), где второй катализатор селективного каталитического восстановления (SCR) покрывает часть первого катализатора селективного каталитического восстановления (SCR), и второй катализатор селективного каталитического восстановления (SCR) является таким же, что и первый катализатор селективного каталитического восстановления (SCR), или отличным от него.

8. Каталитическое изделие по пункту 1, дополнительно содержащее второй катализатор селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) покрывает часть второго катализатора селективного каталитического восстановления (SCR), и второй катализатор селективного каталитического восстановления (SCR) является таким же, что и первый катализатор селективного каталитического восстановления (SCR), или отличным от него.

9. Каталитическое изделие по пункту 7, где второй катализатор селективного каталитического восстановления (SCR) содержит активный катализатор, иной, чем первый катализатор селективного каталитического восстановления (SCR).

10. Каталитическое изделие по пункту 8, где второй катализатор селективного каталитического восстановления (SCR) имеет иную загрузку, чем первый катализатор селективного каталитического восстановления (SCR).

11. Каталитическое изделие по пункту 7, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) и катализатор окисления аммиака.

12. Каталитическое изделие по пункту 7, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий катализатор окисления аммиака, средний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), и третий слой, содержащий второй катализатор селективного каталитического восстановления (SCR).

13. Каталитическое изделие по пункту 7, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), средний слой, содержащий первый катализатор окисления, и третий слой, содержащий второй катализатор селективного каталитического восстановления (SCR).

14. Каталитическое изделие по пункту 7, где зона катализатора селективного каталитического восстановления (SCR) содержит первый катализатор селективного каталитического восстановления (SCR) и второй катализатор селективного каталитического восстановления (SCR), и второй катализатор селективного каталитического восстановления (SCR) покрывает часть первого катализатора в зоне селективного каталитического восстановления (SCR), и смешанная зона ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC) содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где нижний слой расположен на основе, и верхний слой, содержащий второй катализатор селективного каталитического восстановления (SCR), который покрывает всю часть нижнего слоя в смешанной зоне ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC).

15. Каталитическое изделие по пункту 1, где катализатор, предотвращающий проскок аммиака (ASC), содержит двойной слой с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим катализатор селективного каталитического восстановления (SCR).

16. Система выпуска отработавших газов, содержащая каталитическое изделие по пункту 1 и средство для образования NH3 в выхлопных газах или введения NH3 в выхлопные газы.

17. Способ предоставления низкотемпературного регулирования NOx в сочетании с хорошей селективностью катализатора, предотвращающего проскок аммиака (ASC), и производительностью катализатора окисления дизельного топлива (DOC) в отношении выхлопных газов от дизельного двигателя, данный способ включает контактирование выхлопных газов от двигателя с каталитическим изделием по пункту 1.

18. Каталитическое изделие, содержащее проточную основу, содержащую впускное отверстие, выпускное отверстие и осевую длину; зону селективного каталитического восстановления (SCR), содержащую первый катализатор селективного каталитического восстановления (SCR); и зону окисления, содержащую: (a) зону катализатора, предотвращающего проскок аммиака (ASC), и зону катализатора окисления дизельного топлива (DOC) или (b) смешанную зону из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC), где зона окисления содержит катализатор окисления аммиака и катализатор окисления дизельного топлива (DOC), зона селективного каталитического восстановления (SCR) расположена на основе от впускного конца и вытянута на расстояние, меньшее, чем осевая длина основы от впускного конца, зона катализатора окисления дизельного топлива (DOC) или зона смешанного катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC) расположена на основе с выпускной стороны, и когда присутствует зона катализатора окисления дизельного топлива (DOC), зона катализатора, предотвращающего проскок аммиака (ASC), расположена между зоной селективного каталитического восстановления (SCR) и зоной катализатора окисления дизельного топлива (DOC).

19. Каталитическое изделие по пункту 18, где первый катализатор селективного каталитического восстановления (SCR) покрывает часть зоны катализатора, предотвращающего проскок аммиака (ASC), или смешанной зоны ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC).

20. Каталитическое изделие по пункту 18, где (a) зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий катализатор окисления аммиака, и верхний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) покрывает всю часть катализатора окисления аммиака в зоне катализатора, предотвращающего проскок аммиака (ASC), и (b) зона катализатора окисления дизельного топлива (DOC) содержит нижний слой, содержащий катализатор окисления аммиака, и верхний слой, содержащий катализатор окисления дизельного топлива (DOC), где катализатор окисления дизельного топлива (DOC) покрывает всю часть катализатора окисления аммиака в зоне катализатора окисления дизельного топлива (DOC).

21. Каталитическое изделие по пункту 18, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и часть первого катализатора селективного каталитического восстановления (SCR) также образует верхний слой, который покрывает всю часть смеси катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) в зоне катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) содержит смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где смесь расположена на основе в зоне катализатора, предотвращающего проскок аммиака (ASC), и зоне катализатора окисления дизельного топлива (DOC).

22. Каталитическое изделие по пункту 18, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где нижний слой расположен на основе, и часть первого катализатора селективного каталитического восстановления (SCR) образует верхний слой, который покрывает всю часть нижнего слоя в зоне катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) содержит смесь катализатора окисления аммиака и дизельного экзотермического катализатора (DEC), где смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) в зоне катализатора окисления дизельного топлива (DOC) расположена на основе.

23. Каталитическое изделие по пункту 18, где зона окисления содержит смешанную зону ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC), содержащую нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и верхний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), где верхний слой покрывает весь нижний слой, и нижний слой расположен на основе.

24. Каталитическое изделие по пункту 1, дополнительно содержащее второй катализатор селективного каталитического восстановления (SCR), где второй катализатор селективного каталитического восстановления (SCR) покрывает часть первого катализатора селективного каталитического восстановления (SCR), и второй катализатор селективного каталитического восстановления (SCR) является таким же, что и первый катализатор селективного каталитического восстановления (SCR), или отличным от него.

25. Каталитическое изделие по пункту 1, дополнительно содержащее второй катализатор селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) покрывает часть второго катализатора селективного каталитического восстановления (SCR), и второй катализатор селективного каталитического восстановления (SCR) является таким же, что и первый катализатор селективного каталитического восстановления (SCR), или отличным от него.

26. Каталитическое изделие по пункту 20, где второй катализатор селективного каталитического восстановления (SCR) содержит активный катализатор, иной, чем первый катализатор селективного каталитического восстановления (SCR).

27. Каталитическое изделие по пункту 20, где второй катализатор селективного каталитического восстановления (SCR) имеет иную загрузку, чем первый катализатор селективного каталитического восстановления (SCR).

28. Каталитическое изделие по пункту 24, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) и катализатор окисления аммиака.

29. Каталитическое изделие по пункту 24, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий катализатор окисления аммиака, средний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), и третий слой, содержащий второй катализатор селективного каталитического восстановления (SCR).

30. Каталитическое изделие по пункту 29, где толщина среднего слоя уменьшается от впускной стороны зоны катализатора, предотвращающего проскок аммиака (ASC), к выпускной стороне зоны катализатора, предотвращающего проскок аммиака (ASC), и толщина второго катализатора селективного каталитического восстановления (SCR) увеличивается от впускной стороны зоны катализатора, предотвращающего проскок аммиака (ASC), к выпускной стороне зоны катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) содержит нижний слой, содержащий катализатор окисления аммиака, средний слой, содержащий катализатор окисления дизельного топлива (DOC), и верхний слой, содержащий второй катализатор селективного каталитического восстановления (SCR), где нижний слой в зоне катализатора, предотвращающего проскок аммиака (ASC), и зоне катализатора окисления дизельного топлива (DOC) расположен на основе, и катализатор окисления дизельного топлива (DOC) расположен лишь в зоне катализатора окисления дизельного топлива (DOC).

31. Каталитическое изделие по пункту 24, где зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), средний слой, содержащий первый катализатор окисления, и третий слой, содержащий второй катализатор селективного каталитического восстановления (SCR).

32. Каталитическое изделие по пункту 31, где толщина среднего слоя уменьшается от впускной стороны зоны катализатора, предотвращающего проскок аммиака (ASC), к выпускной стороне зоны катализатора, предотвращающего проскок аммиака (ASC), и толщина второго катализатора селективного каталитического восстановления (SCR) увеличивается от впускной стороны зоны катализатора, предотвращающего проскок аммиака (ASC), к выпускной стороне зоны катализатора, предотвращающего проскок аммиака (ASC), и зона катализатора окисления дизельного топлива (DOC) содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и верхний слой, содержащий второй катализатор селективного каталитического восстановления (SCR), где нижний слой в зоне катализатора, предотвращающего проскок аммиака (ASC), и зоне катализатора окисления дизельного топлива (DOC) расположен на основе.

33. Каталитическое изделие по пункту 24, где зона катализатора селективного каталитического восстановления (SCR) содержит первый катализатор селективного каталитического восстановления (SCR) и второй катализатор селективного каталитического восстановления (SCR), и второй катализатор селективного каталитического восстановления (SCR) покрывает часть первого катализатора в зоне селективного каталитического восстановления (SCR), и смешанная зона ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC) содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), где нижний слой расположен на основе, и верхний слой, содержащий второй катализатор селективного каталитического восстановления (SCR), который покрывает всю часть нижнего слоя в смешанной зоне ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC).

34. Каталитическое изделие по любому из пунктов 18-34, где первый катализатор селективного каталитического восстановления (SCR) и, когда второй катализатор селективного каталитического восстановления (SCR) присутствует, первый и второй катализаторы селективного каталитического восстановления (SCR) содержат активный компонент, независимым образом выбранный из группы, состоящей из неблагородного металла, оксида неблагородного металла, молекулярного сита, металлзамещенного молекулярного сита или их смеси.

35. Каталитическое изделие по пункту 31, где неблагородный металл выбран из группы, состоящей из ванадия (V), молибдена (Mo), вольфрама (W), хрома (Cr), церия (Ce), марганца (Mn), железа (Fe), кобальта (Co), никеля (Ni) и меди (Cu), и их смесей.

36. Каталитическое изделие по п. 31, дополнительно содержащее по меньшей мере один промотор на основе неблагородного металла.

37. Каталитическое изделие по пункту 31, где молекулярное сито или металлзамещенное молекулярное сито является молекулярным ситом с малым, средним или большим размером пор или же их смесью.

38. Каталитическое изделие по пункту 31, где катализатор селективного каталитического восстановления (SCR) содержит молекулярное сито с малым размером пор, выбранное из группы, состоящей из алюмосиликатных молекулярных сит, алюмосиликатных молекулярных сит с замещенным металлом, алюмофосфатных (AlPO) молекулярных сит, алюмофосфатных молекулярных сит с замещенным металлом (MeAlPO), силикоалюмофосфатных (SAPO) молекулярных сит и силикоалюмофосфатных молекулярных сит с замещенным металлом (MeAPSO), и их смесей.

39. Каталитическое изделие по пункту 31, где катализатор селективного каталитического восстановления (SCR) содержит молекулярное сито с малым размером пор, выбранное из группы типов каркасной структуры, состоящей из ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG и ZON, и их смесей и/или сростков.

40. Каталитическое изделие по пункту 31, где катализатор селективного каталитического восстановления (SCR) содержит молекулярное сито с малым размером пор, выбранное из группы типов каркасной структуры, состоящей из AEI, AFX, CHA, DDR, ERI, ITE, KFI, LEV и SFW.

41. Каталитическое изделие по пункту 31, где катализатор селективного каталитического восстановления (SCR) содержит молекулярное сито со средним размером пор, выбранное из группы типов каркасной структуры, состоящей из AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ITH, ITR, JRY, JSR, JST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, SVR, SZR, TER, TON, TUN, UOS, VSV, WEI и WEN, и их смесей и/или сростков.

42. Каталитическое изделие по пункту 31, где катализатор селективного каталитического восстановления (SCR) содержит молекулярное сито с большим размером пор, выбранное из группы типов каркасной структуры, состоящей из AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, IWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OKO, OSI, RON, RWY, SAF, SAO, SBE, SBS, SBT, SEW, SFE, SFO, SFS, SFV, SOF, SOS, STO, SSF, SSY, USI, UWY и VET, и их смесей и/или сростков.

43. Каталитическое изделие по пункту 18, где слой первого катализатора селективного каталитического восстановления (SCR) покрывает от примерно 50 до примерно 90%, предпочтительно от примерно 60 до примерно 80%, более предпочтительно от примерно 70 до примерно 80%, осевой длины основы.

44. Каталитическое изделие по пункту 18, где катализатор, предотвращающий проскок аммиака (ASC), содержит двойной слой с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим катализатор селективного каталитического восстановления (SCR).

45. Каталитическое изделие по пункту 18, где катализатор окисления аммиака содержит металл платиновой группы.

46. Каталитическое изделие по пункту 45, где загрузка металла платиновой группы в катализаторе окисления аммиака находится в интервале от 0,5 г/фут3 (18 г/м3) до 50 г/фут3 (1766 г/м3).

47. Каталитическое изделие по пункту 18, где катализатор окисления аммиака содержит платину, палладий или их комбинацию.

48. Каталитическое изделие по пункту 18, где катализатор окисления аммиака или смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) покрывает от примерно 10% до примерно 50% от длины носителя.

49. Каталитическое изделие по пункту 18, где катализатор окисления аммиака или смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) покрывает от примерно 10% до примерно 40%, включительно, от длины носителя.

50. Каталитическое изделие по пункту 18, где зона окисления покрывает от примерно 10% до примерно 40% от длины носителя, предпочтительно от примерно 15% до примерно 30% от длины носителя.

51. Каталитическое изделие по пункту 18, где катализатор окисления дизельного топлива (DOC) содержит благородный металл, неблагородные металлы или цеолит.

52. Каталитическое изделие по пункту 18, в котором катализатор окисления дизельного топлива (DOC) присутствует при загрузке от примерно 5 до примерно 75 г/фут3 (177-2649 г/м3), предпочтительно от примерно 10 г/фут3 (353 г/м3) до примерно 40 г/фут3 (1413 г/м3).

53. Каталитическое изделие по пункту 18, в котором катализатор окисления дизельного топлива (DOC) содержит платину или палладий.

54. Каталитическое изделие по пункту 18, в котором катализатор окисления дизельного топлива (DOC) содержит платину и палладий, и массовое отношение Pt:Pd составляет от 1:0 до 0:1, предельное значение не включено.

55. Каталитическое изделие по пункту 18, в котором катализатор окисления дизельного топлива (DOC) покрывает между от примерно 10% до примерно 30% от длины носителя, предпочтительно от примерно 10% до примерно 25% от длины носителя.

56. Каталитическое изделие по пункту 18, где катализатор предоставляет контроль селективности проскакивания NH3 посредством преобразования примерно 90% NOx, образованного при окислении NH3 посредством зоны катализатора, предотвращающего проскок аммиака (ASC), и зоны катализатора окисления дизельного топлива (DOC) до азота и воды.

57. Каталитическое изделие по пункту 18, где катализатор окисления дизельного топлива (DOC) является дизельным экзотермическим катализатором (DEC), и дизельный экзотермический катализатор (DEC) создает экзотермический эффект и образует NO2 для пассивной регенерации фильтра ниже по потоку.

58. Каталитическое изделие по пункту 57, где дизельный экзотермический катализатор (DEC) содержит благородный металл, неблагородные металлы или цеолит.

59. Каталитическое изделие по пункту 58, в котором дизельный экзотермический катализатор (DEC) присутствует при загрузке от примерно 5 г/фут3 (177 г/м3) до примерно 75 г/фут3 (2649 г/м3), предпочтительно от примерно 10 г/фут3 (353 г/м3) до примерно 40 г/фут3 (1413 г/м3).

60. Каталитическое изделие по пункту 58, в котором дизельный экзотермический катализатор (DEC) содержит платину, палладий или комбинацию платины и палладия,

61. Каталитическое изделие по пункту 58, в котором дизельный экзотермический катализатор (DEC) содержит платину и палладий, и массовое отношение Pt:Pd составляет от 1:0 до 0:1, предельное значение не включено.

62. Каталитическое изделие по пункту 18, где основой является кордиерит, высокопористый кордиерит, металлическая основа, экструдированный SCR, фильтр, фильтр селективного каталитического восстановления (SCRF) или экструдированный катализатор.

63. Каталитическое изделие по пункту 18, где основа является инертной основой.

64. Система выпуска отработавших газов, содержащая каталитическое изделие по пункту 18 и средство для образования NH3 в выхлопных газах или введения NH3 в выхлопные газы.

65. Система выпуска отработавших газов по пункту 64, где каталитическое изделие по пункту 18 непосредственно соединено с двигателем.

66. Способ предоставления низкотемпературного регулирования NOx в сочетании с хорошей селективностью катализатора, предотвращающего проскок аммиака (ASC), и производительностью катализатора окисления дизельного топлива (DOC) в отношении выхлопных газов от дизельного двигателя, данный способ включает контактирование выхлопных газов от двигателя с каталитическим изделием по пункту 18.

67. Каталитическое изделие, содержащее основу, содержащую впускное отверстие и выпускное отверстие, первую зону, содержащую первый катализатор селективного каталитического восстановления (SCR), и вторую зону, содержащую катализатор окисления, где первая зона расположена на впускной стороне основы, и вторая зона расположена на выпускной стороне основы.

68. Каталитическое изделие по пункту 67, где первая зона предоставляет очень быстрое реагирование на мочевину или аммиак.

69. Каталитическое изделие по пункту 67, где первая зона имеет очень низкое сохранение NH3.

70. Каталитическое изделие по пункту 67, где основа содержит первую основу и вторую основу, где каждая основа содержит впускной конец и выпускной конец, и по меньшей мере часть первой зоны расположена на первой основе, и часть второй зоны расположена на второй основе, где первая зона расположена на впускной стороне первой основы, и вторая зона расположена на выпускной стороне второй основы.

71. Каталитическое изделие по пункту 67, где основа содержит первую основу и вторую основу, где первая зона расположена на первой основе, и вторая зона расположена на второй основе.

72. Каталитическое изделие по пункту 67, дополнительно содержащее третью зону, содержащую катализатор, предотвращающий проскок аммиака (ASC), содержащий (a) первый катализатор селективного каталитического восстановления (SCR) или второй катализатор селективного каталитического восстановления (SCR) и (b) катализатор окисления аммиака, где третья зона расположена между первой зоной и второй зоной.

73. Каталитическое изделие по пункту 72, где катализатор, предотвращающий проскок аммиака, представляет собой единственный слой, содержащий смесь (a) первого катализатора селективного каталитического восстановления (SCR) или второго катализатора селективного каталитического восстановления (SCR) и (b) катализатора окисления аммиака.

74. Каталитическое изделие по пункту 72, где катализатор, предотвращающий проскок аммиака, является двойным слоем, содержащим нижний слой, содержащий катализатор окисления аммиака, и верхний слой, содержащий первый катализатор селективного каталитического восстановления (SCR) или второй катализатор селективного каталитического восстановления (SCR).

75. Каталитическое изделие по пункту 72, где основа содержит первую основу и вторую основу, каждая основа содержит впускной конец и выпускной конец, и первая зона и третья зона расположены на первой основе, где первая зона расположена на впускной стороне первой основы и третья зона расположена на выпускной стороне первой основы, и вторая зона расположена на второй основе.

76. Каталитическое изделие по пункту 72, где основа содержит первую основу и вторую основу, каждая основа содержит впускной конец и выпускной конец, и первая зона расположен на первой основе, и вторая зона и третья зона расположены на второй основе, где третья зона расположена на впускной стороне второй основы, и вторая зона расположена на выпускной стороне второй основы.

77. Каталитическое изделие по пункту 72, где основа содержит первую основу, вторую основу и третью основу, где первая зона расположена на первой основе, третья зона расположена на второй основе, и вторая зона расположена на третьей основе, где третья зона расположена ниже по потоку от первой зоны, и вторая зона расположена ниже по потоку от третьей зоны.

78. Каталитическое изделие по пункту 67 или 72, где первый катализатор селективного каталитического восстановления (SCR) и второй катализатор селективного каталитического восстановления (SCR) содержат активные компоненты, независимым образом выбранные из группы, состоящей из неблагородного металла, оксида неблагородного металла, молекулярное сито, металлзамещенное молекулярное сито и их смесей.

79. Каталитическое изделие по пункту 78, где неблагородный металл выбран из группы, состоящей из ванадия (V), молибдена (Mo) и вольфрама (W), хрома (Cr), церия (Ce), марганца (Mn), железа (Fe), кобальта (Co), никеля (Ni), меди (Cu) и циркония (Zr), и их смесей.

80. Каталитическое изделие по п. 79, дополнительно содержащее по меньшей мере один промотор на основе неблагородного металла.

81. Каталитическое изделие по пункту 78, где молекулярное сито или металлзамещенное молекулярное сито является молекулярным ситом с малым, средним или большим размером пор или же их смесью.

82. Каталитическое изделие по пункту 78, где молекулярное сито выбрано из группы, состоящей из алюмосиликатных молекулярных сит, алюмосиликатных молекулярных сит с замещенным металлом, алюмофосфатных (AlPO) молекулярных сит, алюмофосфатных молекулярных сит с замещенным металлом (MeAlPO), силикоалюмофосфатных (SAPO) молекулярных сит и силикоалюмофосфатных молекулярных сит с замещенным металлом (MeSAPO), и их смесей.

83. Каталитическое изделие по пункту 78, где молекулярное сито содержит молекулярное сито с малым размером пор, выбранное из группы типов каркасной структуры, состоящей из ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG и ZON, и их смесей и/или сростков.

84. Каталитическое изделие по пункту 78, где молекулярное сито содержит молекулярное сито с малым размером пор, выбранное из группы типов каркасной структуры, состоящей из AEI, AFX, CHA, DDR, ERI, ITE, KFI, LEV и SFW.

84. Каталитическое изделие по пункту 78, где молекулярное сито содержит молекулярное сито со средним размером пор, выбранное из группы типов каркасной структуры, состоящей из AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ITH, ITR, JRY, JSR, JST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, SVR, SZR, TER, TON, TUN, UOS, VSV, WEI и WEN, и их смесей и/или сростков, предпочтительно FRE, MFI и STT.

85. Каталитическое изделие по пункту 78, где катализатор селективного каталитического восстановления (SCR) содержит молекулярное сито с большим размером пор, выбранное из группы типов каркасной структуры, состоящей из AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, IWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OKO, OSI, RON, RWY, SAF, SAO, SBE, SBS, SBT, SEW, SFE, SFO, SFS, SFV, SOF, SOS, STO, SSF, SSY, USI, UWY и VET, и их смесей и/или сростков.

86. Каталитическое изделие по пункту 67, где первый катализатор селективного каталитического восстановления (SCR) содержит Cu-SCR, Fe-SCR, ванадий, смешанный оксид, промотированный Ce-Zr или промотированный MnO2.

87. Каталитическое изделие по пункту 67, где катализатор окисления дизельного топлива (DOC) содержит металл платиновой группы или его смеси.

88. Каталитическое изделие по пункту 67, в котором катализатор окисления дизельного топлива (DOC) содержит платину, палладий или комбинацию платины и палладия.

89. Каталитическое изделие по пункту 67, в котором катализатор окисления дизельного топлива (DOC) присутствует при загрузке от примерно 5 до примерно 75 г/фут3 (177-2649 г/м3), предпочтительно от примерно 8 г/фут3 (283 г/м3) до примерно 50 г/фут3 (1766 г/м3).

90. Каталитическое изделие по пункту 67, в котором катализатор окисления дизельного топлива (DOC) содержит платину и палладий, и Pt и Pd присутствуют при соотношении от 10:1 до 1:100 по массе, предпочтительно от 5:1 до 1:10 по массе.

91. Каталитическое изделие по пункту 72, где катализатор окисления аммиака содержит металл платиновой группы.

92. Каталитическое изделие по пункту 72, где катализатор окисления аммиака содержит платину, палладий, рутений или их смесь.

93. Каталитическое изделие по пункту 91, где загрузка металла платиновой группы в катализаторе окисления аммиака находится в интервале от 0,1 г/фут3 (3,53 г/м3) до 20 г/фут3 (706 г/м3), предпочтительно от 1 г/фут3 (35 г/м3) до 10 г/фут3 (353 г/м3).

94. Каталитическое изделие по пункту 73, где смесь дополнительно содержит Pd, Nb-Ce-Zr или Nb на MnO2.

95. Каталитическое изделие по пункту 72, где катализатор окисления аммиака содержит платину на носителе с низким накоплением аммиака.

96. Каталитическое изделие по пункту 95, где носитель с низким накоплением аммиака является кремнийсодержащим носителем.

97. Каталитическое изделие по пункту 96, где кремнийсодержащий носитель содержит кремнезем или цеолит с по меньшей мере одним из следующих соотношений кремнезема к глинозему: (a) по меньшей мере 100, (b) по меньшей мере 200, (c) по меньшей мере 250, (d) по меньшей мере 300, (e) по меньшей мере 400, (f) по меньшей мере 500, (g) по меньшей мере 750 и (h) по меньшей мере 1000.

98. Каталитическое изделие по пункту 96, где кремнийсодержащий носитель содержит молекулярное сито, имеющее тип каркасной структуры BEA, CDO, CON, FAU, MEL, MFI или MWW.

99. Каталитическое изделие по пункту 95, где отношение количества катализатора селективного каталитического восстановления (SCR) к количеству платины на носителе с низким накоплением аммиака находится по меньшей мере в одном из следующих интервалов: (a) 0:1 до 300:1, (b) 3:1 до 300:1, (c) 7:1 до 100:1 и (d) 10:1 до 50:1, включая каждое из предельных значений в отношении, в расчете на массу этих компонентов.

100. Каталитическое изделие по любому из пунктов 67-99, где основой является кордиерит, высокопористый кордиерит, металлическая основа, экструдированный SCR, фильтр с проточными стенками, фильтр или фильтр селективного каталитического восстановления (SCRF).

101. Каталитическое изделие по пункту 72, где изделие содержит первую часть и вторую часть, где первая часть содержит первую зону и вторую зону, и вторая часть содержит третью зону.

102. Каталитическое изделие по пункту 72, где изделие содержит первую часть и вторую часть, где первая часть содержит первую зону, и вторая часть содержит вторую зону и третью зону.

103. Каталитическое изделие по пункту 72, где изделие содержит первую часть, вторую часть и третью часть, где первая часть содержит первую зону, вторая часть содержит третью зону, и третья часть содержит вторую зону.

104. Система выпуска отработавших газов, содержащая каталитическое изделие по любому из пунктов 67-103 и первое средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах, где первое средство для введения NH3 или образования NH3 в выхлопных газах расположено перед каталитическим изделием.

105. Система выпуска отработавших газов по пункту 104, дополнительно содержащая катализированный сажевый фильтр (CSF) или фильтр селективного каталитического восстановления (SCRF), где катализированный сажевый фильтр (CSF) или фильтр селективного каталитического восстановления (SCRF) расположены ниже по потоку от каталитического изделия, и, когда система содержит фильтр селективного каталитического восстановления (SCRF), второе средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах расположено между каталитическим изделием и фильтром селективного каталитического восстановления (SCRF).

106. Двигатель, содержащий систему выпуска отработавших газов, содержащую каталитическое изделие по пунктам 67-103 и средство для введения NH3 в выхлопные газы или образования NH3 в выхлопных газах.

107. Способ уменьшения образования N2O от NH3 в выхлопных газах, данный способ включает контактирование выхлопных газов, содержащих аммиак, с каталитическим изделием по пунктам 67-103.

108. Способ уменьшения образования NOx в выхлопных газах, данный способ включает контактирование выхлопных газов, содержащих аммиак, с каталитическим изделием по любому из пунктов 67-103.

109. Способ уменьшения образования углеводородов в выхлопных газах, данный способ включает контактирование выхлопных газов, содержащих углеводороды, с каталитическим изделием по любому из пунктов 67-103.

Представленные ниже примеры лишь иллюстрируют данное изобретение; специалистам в данной области техники будут понятны многочисленные вариации, которые находятся в пределах сущности данного изобретения и объема формулы изобретения.

ПРИМЕРЫ

Приведенные ниже примеры описывают различные каталитические изделия, которые могут быть изготовлены при практическом осуществлении данного изобретения, описанного в данном документе. Среднему специалисту в данной области техники будут понятны различные модификации и/или замены, которые могут быть сделаны в примерах, описанных в данном документе.

Пример 1

Каталитическое изделие приготавливают посредством первоначального формирования слоя, содержащего катализатор окисления аммиака, посредством размещения покрытия из пористого оксида, содержащего один из катализаторов окисления аммиака, указанных ниже, на экструдированной основе с сотовой структурой от выпускного конца к впускному концу, где покрытие из пористого оксида покрывает 50% от длины основы. Количество катализатора окисления аммиака является таким, как описано ниже.

Пример Катализатор окисления аммиака
a 12% SiO2-TiO2-0,94 г/дюйм3 (0,057 г/см3), Бемитный глинозем - 0,06 г/дюйм3 (0,0037 г/см3)
b Нитрат Pt - 3 г/фут3 (106 г/м3)
c цеолит FER - 0,5 г/дюйм3 (0,031 г/см3), нитрат Pt - 3 г/фут3 (106 г/м3)
d Цеолит Fe-BEA - 0,5 г/дюйм3 (0,031 г/см3)

Слой затем сушат при повышенной температуре.

Слой, содержащий катализатор окисления дизельного топлива (DOC), затем размещают поверх части слоя, содержащего катализатор окисления аммиака, посредством размещения покрытия из пористого оксида, содержащего один из катализаторов окисления дизельного топлива (DOC), указанных ниже, поверх слоя, содержащего катализатор окисления аммиака от выпускного конца к впускному концу.

Пример Катализатор окисления дизельного топлива (DOC)
e Pt - 3 г/фут3 (106 г/м3)
f Pt и Pd - 3 г/фут3 (106 г/м3) и 10 г/фут3 (353 г/м3)

Слой затем сушат при повышенной температуре.

Слой, содержащий катализатор селективного каталитического восстановления (SCR), затем размещают поверх оставшейся непокрытой части основы и непокрытой части слоя, содержащего катализатор окисления аммиака, посредством размещения покрытия из пористого оксида, содержащего 3,3 масс.% Cu/CHA, при загрузке 2,07 г/дюйм3 (0,126 г/см3), на основе от впускного конца к выпускному концу. Покрытие из пористого оксида затем сушат при повышенной температуре и после этого подвергают обжигу.

Результирующее изделие имеет три зоны: зону селективного каталитического восстановления (SCR), содержащую первый катализатор селективного каталитического восстановления (SCR), последующую зону катализатора, предотвращающего проскок аммиака (ASC), содержащую двойной слой с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим первый катализатор селективного каталитического восстановления (SCR), и затем зону окисления, содержащую двойной слой с нижним слоем, содержащим катализатор окисления аммиака, и верхним слоем, содержащим катализатор окисления дизельного топлива (DOC).

Пример 2

Каталитическое изделие приготавливают посредством формирования первого слоя, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), посредством размещения покрытия из пористого оксида, содержащего один из катализаторов окисления аммиака, приведенных в Примере 1, вместе с катализатором окисления дизельного топлива (DOC), описанным в Примере 1, на экструдированной основе с сотовой структурой от выпускного конца к впускному концу, где покрытие из пористого оксида покрывает 50% от длины основы. Слой затем сушат при повышенной температуре. Второй слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) затем формируют посредством нанесения покрытия из пористого оксида, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), поверх части, но не всего, первого слоя. Это приводит к образованию смеси катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) в виде двухступенчатой структуры, где вторая ступень, расположенная ближе всего к выпускному отверстию, толще, чем первая ступень. Слой затем сушат при повышенной температуре.

Слой, содержащий катализатор селективного каталитического восстановления (SCR), затем размещают поверх оставшейся непокрытой части основы и непокрытой части слоя, содержащего катализатор окисления аммиака, посредством размещения покрытия из пористого оксида, содержащего 3,3 масс.% Cu/CHA, при загрузке 2,07 г/дюйм3 (0,126 г/см3), на основе от впускного конца к выпускному концу. Покрытие из пористого оксида затем сушат при повышенной температуре и после этого подвергают обжигу, как описано в Примере 1.

Результирующее изделие имеет три зоны: зону селективного каталитического восстановления (SCR), содержащую первый катализатор селективного каталитического восстановления (SCR), последующую зону катализатора, предотвращающего проскок аммиака (ASC), содержащую двойной слой с нижним слоем, содержащим смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и верхним слоем, содержащим первый катализатор селективного каталитического восстановления (SCR), и затем зону окисления, содержащую смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC).

Пример 3

Каталитическое изделие приготавливают посредством формирования первого слоя, содержащего катализатор окисления аммиака, посредством размещения покрытия из пористого оксида, содержащего один из катализаторов окисления аммиака, приведенных в Примере 1, на экструдированной основе с сотовой структурой от выпускного конца к впускному концу, где покрытие из пористого оксида покрывает 50% от длины основы. Слой затем сушат при повышенной температуре. Второй слой, содержащий катализатор окисления дизельного топлива (DOC), затем формируют посредством нанесения покрытия из пористого оксида, содержащего катализатор окисления дизельного топлива (DOC), поверх части, но не всего, первого слоя. Слой затем сушат при повышенной температуре.

Слой, содержащий первый катализатор селективного каталитического восстановления (SCR), затем размещают поверх оставшейся непокрытой части основы и непокрытой части слоя, содержащего катализатор окисления аммиака, посредством размещения покрытия из пористого оксида, содержащего 3,3 масс.% Cu/CHA, при загрузке 2,07 г/дюйм3 (0,126 г/см3), на основе от впускного конца к выпускному концу. Покрытие из пористого оксида располагают поверх слоя, содержащего катализатор окисления аммиака, таким образом, что часть покрытия из пористого оксида только покрывает катализатор окисления аммиака, где катализатор окисления дизельного топлива (DOC) соприкасается с катализатором окисления аммиака на впускной стороне катализатора окисления дизельного топлива (DOC). Толщина слоя первого катализатора селективного каталитического восстановления (SCR) поверх катализатора окисления аммиака уменьшается от места приблизительно поверх впускного конца катализатора окисления аммиака до места, где катализатор окисления дизельного топлива (DOC) соприкасается с катализатором окисления аммиака на впускной стороне катализатора окисления дизельного топлива (DOC). Покрытие из пористого оксида затем сушат при повышенной температуре и после этого подвергают обжигу, как описано в Примере 1.

Слой, содержащий второй катализатор селективного каталитического восстановления (SCR), формируют посредством размещения покрытия из пористого оксида, содержащего второй катализатор селективного каталитического восстановления (SCR), поверх катализатора окисления дизельного топлива (DOC) и части первого катализатора селективного каталитического восстановления (SCR) до примерно расположения поверх слоя первого катализатора селективного каталитического восстановления (SCR), где катализатор окисления аммиака протянут дальше всего к впускному концу.

Результирующее изделие имеет три зоны: зону селективного каталитического восстановления (SCR), содержащую часть первого катализатора селективного каталитического восстановления (SCR), пока первый катализатор селективного каталитического восстановления (SCR) соприкасается с катализатором окисления аммиака на основе, последующую зону катализатора, предотвращающего проскок аммиака (ASC), содержащую тройной слой с нижним слоем, содержащим катализатор окисления аммиака, средним слоем, содержащим первый катализатор селективного каталитического восстановления (SCR), и верхним слоем, содержащим второй катализатор селективного каталитического восстановления (SCR).

Пример 4

Каталитическое изделие приготавливают посредством формирования первого слоя, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), посредством размещения покрытия из пористого оксида, содержащего один из катализаторов окисления аммиака, приведенных в Примере 1, вместе с катализатором окисления дизельного топлива (DOC), описанным в Примере 1, на экструдированной основе с сотовой структурой от выпускного конца к впускному концу, где покрытие из пористого оксида покрывает 50% от длины основы. Слой затем сушат при повышенной температуре. Второй слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) затем формируют посредством нанесения покрытия из пористого оксида, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), поверх части, но не всего, первого слоя. Это приводит к образованию смеси катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), имеющей двухступенчатую структуру, где вторая ступень, расположенная ближе всего к выпускному отверстию, толще, чем первая ступень. Слой затем сушат при повышенной температуре.

Слой, содержащий первый катализатор селективного каталитического восстановления (SCR), затем размещают поверх оставшейся непокрытой части основы и непокрытой части слоя, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), посредством размещения покрытия из пористого оксида, содержащего 3,3 масс.% Cu/CHA, при загрузке 2,07 г/дюйм3 (0,126 г/см3), на основе от впускного конца к выпускному концу. Покрытие из пористого оксида располагают поверх слоя, содержащего катализатор окисления аммиака, таким образом, что часть покрытия из пористого оксида только покрывает первую ступень смеси катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и катализатор окисления дизельного топлива (DOC) соприкасается с началом второй ступени смеси катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC). Толщина слоя первого катализатора селективного каталитического восстановления (SCR) поверх катализатора окисления аммиака уменьшается от места приблизительно поверх впускного конца катализатора окисления аммиака до места, где катализатор окисления дизельного топлива (DOC) соприкасается с катализатором окисления аммиака на впускной стороне катализатора окисления дизельного топлива (DOC). Покрытие из пористого оксида затем сушат при повышенной температуре и после этого подвергают обжигу, как описано в Примере 1.

Слой, содержащий второй катализатор селективного каталитического восстановления (SCR), формируют посредством размещения покрытия из пористого оксида, содержащего второй катализатор селективного каталитического восстановления (SCR), поверх смеси катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) и части первого катализатора селективного каталитического восстановления (SCR) до примерно расположения поверх слоя первого катализатора селективного каталитического восстановления (SCR), где смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) протянута дальше всего к впускному концу.

Результирующее изделие имеет три зоны: зону селективного каталитического восстановления (SCR), содержащую часть первого катализатора селективного каталитического восстановления (SCR), пока первый катализатор селективного каталитического восстановления (SCR) соприкасается со смесью катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) на основе, последующую зону катализатора, предотвращающего проскок аммиака (ASC), содержащую тройной слой с нижним слоем, содержащим смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), средним слоем, содержащим первый катализатор селективного каталитического восстановления (SCR), и верхним слоем, содержащим второй катализатор селективного каталитического восстановления (SCR).

Пример 5

Каталитическое изделие приготавливают посредством формирования первого слоя, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), посредством размещения покрытия из пористого оксида, содержащего один из катализаторов окисления аммиака, приведенных в Примере 1, вместе с катализатором окисления дизельного топлива (DOC), описанным в Примере 1, на экструдированной основе с сотовой структурой от выпускного конца к впускному концу, где покрытие из пористого оксида покрывает 50% от длины основы. Слой затем сушат при повышенной температуре.

Слой, содержащий катализатор селективного каталитического восстановления (SCR), затем размещают поверх оставшейся непокрытой части основы и части, однако не всей поверхности, первого слоя, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), посредством размещения покрытия из пористого оксида, содержащего 3 масс.% Cu/CHA, при загрузке 2,07 г/дюйм3 (0,126 г/см3), на основе от впускного конца к выпускному концу. Покрытие из пористого оксида затем сушат при повышенной температуре и после этого подвергают обжигу, как описано в Примере 1.

Результирующее изделие имеет три зоны: зону селективного каталитического восстановления (SCR), содержащую первый катализатор селективного каталитического восстановления (SCR), последующую зону катализатора, предотвращающего проскок аммиака (ASC), содержащую двойной слой с нижним слоем, содержащим смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и верхним слоем, содержащим первый катализатор селективного каталитического восстановления (SCR), и затем зону окисления, содержащую смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC).

Пример 6

Каталитическое изделие приготавливают посредством формирования первого слоя, содержащего смесь катализатора окисления аммиака и дизельного экзотермического катализатора (DEC), посредством размещения покрытия из пористого оксида, содержащего один из катализаторов окисления аммиака, приведенных в Примере 1, вместе с дизельным экзотермическим катализатором (DEC), содержащим Pt и Pd при загрузке 3 г/фут3 (106 г/м3) и 10 г/фут3 (353 г/м3), соответственно, на экструдированной основе с сотовой структурой от выпускного конца к впускному концу, где покрытие из пористого оксида покрывает 40% от длины основы. Слой затем сушат при повышенной температуре.

Слой, содержащий первый катализатор селективного каталитического восстановления (SCR), затем размещают поверх оставшейся непокрытой части основы и поверх первого слоя, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), посредством размещения покрытия из пористого оксида, содержащего 3,3 масс.% Cu/CHA, при загрузке 2,07 г/дюйм3 (0,126 г/см3), на основе от впускного конца к выпускному концу. Покрытие из пористого оксида, содержащее первый катализатор селективного каталитического восстановления (SCR) уменьшается в толщине от максимальной толщины в месте перед первым слоем, содержащим смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), до толщины, которая является приблизительно такой же, что и толщина первого слоя, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), когда слой с первым катализатором каталитического восстановления (SCR) соприкасается с первым слоем. Покрытие из пористого оксида затем сушат при повышенной температуре.

Покрытие из пористого оксида, содержащее второй катализатор селективного каталитического восстановления (SCR), наносят поверх первого слоя, содержащего смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), и также размещают поверх части слоя, содержащего первый катализатор селективного каталитического восстановления (SCR), предпочтительно до места, где толщина слоя, содержащего первый катализатор селективного каталитического восстановления (SCR), начинает уменьшаться, когда он приближается к первому слою, содержащему смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC). Второй катализатор селективного каталитического восстановления (SCR) может быть любым из первых катализаторов селективного каталитического восстановления (SCR), описанных в Примере 1, и предпочтительно дополнительно содержит Pd на глиноземе.

Результирующее изделие имеет две зоны: зону селективного каталитического восстановления (SCR), содержащую первый катализатор селективного каталитического восстановления (SCR), с последующей смешанной зоной ASC/DOC из катализатора, предотвращающего проскок аммиака (ASC), и катализатора окисления дизельного топлива (DOC), содержащую двойной слой с нижним слоем, содержащим смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) или дизельным экзотермическим катализатором (DEC), и верхним слоем, содержащим второй катализатор селективного каталитического восстановления (SCR).

Пример 7

Каталитическое изделие приготавливают посредством формирования первого слоя, содержащего смесь катализатора окисления аммиака и дизельного экзотермического катализатора (DEC), посредством размещения покрытия из пористого оксида, содержащего один из катализаторов окисления аммиака, приведенных в Примере 1, вместе с дизельным экзотермическим катализатором (DEC), содержащим Pt и Pd при загрузке 3 г/фут3 (106 г/м3) и 10 г/фут3 (353 г/м3), соответственно, на экструдированной основе с сотовой структурой от выпускного конца к впускному концу, где покрытие из пористого оксида покрывает 40% от длины основы. Слой затем сушат при повышенной температуре.

Слой, содержащий первый катализатор селективного каталитического восстановления (SCR), затем размещают поверх оставшейся непокрытой части основы, и он полностью покрывает первый слой, содержащий смесь катализатора окисления аммиака и дизельного экзотермического катализатора (DEC), посредством размещения покрытия из пористого оксида, содержащего 3,3 масс.% Cu/CHA, при загрузке 2,07 г/дюйм3 (0,126 г/см3), на основе от впускного конца к выпускному концу. Покрытие из пористого оксида, содержащее первый катализатор селективного каталитического восстановления (SCR), уменьшается в толщине, когда оно покрывает первый слой, содержащий смесь катализатора окисления аммиака и дизельного экзотермического катализатора (DEC). Покрытие из пористого оксида затем сушат при повышенной температуре.

Результирующее изделие имеет две зоны: зону селективного каталитического восстановления (SCR), содержащую первый катализатор селективного каталитического восстановления (SCR), с последующей смешанной зоной ASC/DOC, содержащую двойной слой с нижним слоем, содержащим смесь катализатора окисления аммиака и дизельного экзотермического катализатора (DEC), и верхним слоем, содержащим первый катализатор селективного каталитического восстановления (SCR).

Слои, содержащие смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC) или дизельного экзотермического катализатора (DEC), могут содержать смесь Pt и Pd в качестве катализатор окисления дизельного топлива (DOC), где Pt и Pd присутствуют в покрытии из пористого оксида в виде нитратов каждого из металлов, и нитраты металлов присутствуют при загрузке нитрата Pt 3 г/фут3 (106 г/м3) и нитрата Pd 15 г/фут3 (530 г/м3) или нитрата Pt 12 г/фут3 (424 г/м3) нитрата Pd 6 г/фут3 (212 г/м3).

Пример 8. Поглощение аммиака посредством катализаторов

Три катализатора селективного каталитического восстановления (SCR) анализировали, чтобы определить величину конверсии NOx в зависимости от уровня заполнения аммиаком. Данными тремя катализаторами селективного каталитического восстановления (SCR) являлись цеолит с металлом (Cu-CHA), смешанный оксид (Ce-Zr (1:1)) и ванадий на диоксиде титана, легированном W.

Образцы цеолита с металлом приготавливали посредством размещения покрытия из пористого оксида, содержащего 3,3 масс.% Cu на шабазите на керамической основе с 400 ячеек/кв.дюйм. Загрузка шабазита на носитель составляла 2 г/дюйм3 (0,122 г/см3). Образцы с ванадием приготавливали посредством размещения покрытия из пористого оксида, содержащего оксид титана, легированный W, с активной фазой ванадия на керамической основе с 400 ячеек/кв.дюйм. Загрузка оксида титана, легированного W, с ванадием на носителе составляла 4,86 г/дюйм3 (0,297 г/см3). Образцы смешанного оксида приготавливали посредством экструдирования смеси Ce и Zr в молярном соотношении 1:1. Оксид металла составлял 55% от общего экструдата. Образцы подвергали обжигу, и образец размером 1 дюйм х 3 дюйма от каждого из катализаторов применяли для оценки поглощения аммиака катализатором.

Образец сердцевины катализатора размером 1 дюйм х 3 дюйма поддерживали при установившемся состоянии при 250°C с применением газа, содержащего 500 млн-1 NO, 12% O2, 5% CO2, 300 млн-1 CO, 4,5% H2O и остаток, являющийся азотом, протекающего поверх образца при объемной скорости SV 60000 ч-1. 750 млн-1 NH3 вводили в газовый поток, и газ, выходящий из системы, анализировали инфракрасным спектрометром с преобразованием Фурье (FTIR) до тех пор, пока проскакивание NH3 не составляло 20 млн-1. Уровень заполнения NH3 рассчитывали при применении следующего уравнения:

Результирующее поглощение NH3=[NH3 на входе] - [NH3 проскакиваемый] - [NH3 прореагировавший (NOx+2*N2O)]

Результаты показаны на Фиг. 10 вместе с максимальным заполнением, уровнем при 90% от максимального заполнения и временем, требующимся для достижения 90% от максимального заполнения. Медьсодержащий цеолит имел 90% от его максимального заполнения при примерно 0,6 г/л, наряду с тем, что как смешанный оксид, так и ванадий-диоксид титана имели их максимальное заполнение при примерно 0,2 г/л. Это демонстрирует, что некоторые катализаторы селективного каталитического восстановления (SCR) обладают быстрым переходным реагированием по сравнению с другими катализаторами селективного каталитического восстановления (SCR). Как описано выше, это свойство может быть применено в каталитических изделиях, описанных выше.

Предшествующие примеры предназначены лишь для иллюстративных целей; представленная ниже формула изобретения определяет объем данного изобретения.

1. Каталитическое изделие, содержащее:

i. проточную основу, содержащую впускное отверстие, выпускное отверстие и имеющую длину вдоль оси;

ii. зону селективного каталитического восстановления (SCR), имеющую первый катализатор селективного каталитического восстановления (SCR) и расположенную на основе начиная от впускного отверстия и до расстояния, меньшего, чем длина основы вдоль оси; и

iii. и зону окисления, содержащую катализатор окисления аммиака, содержащий металл платиновой группы (МПГ), и катализатор окисления дизельного топлива (DOC), содержащий металл платиновой группы (МПГ), в которой катализатор окисления аммиака, содержащий металл платиновой группы (МПГ), и катализатор окисления дизельного топлива (DOC), содержащий металл платиновой группы (МПГ), расположены в зоне катализатора, предотвращающего проскок аммиака (ASC), и отдельной зоне катализатора окисления дизельного топлива (DOC), где зона катализатора окисления дизельного топлива (DOC) расположена на основе начиная от выпускного конца и до расстояния, меньшего, чем осевая длина основы вдоль оси, и зона катализатора, предотвращающего проскок аммиака (ASC), расположена между зоной селективного каталитического восстановления (SCR) и зоной катализатора окисления дизельного топлива (DOC),

при условии, что катализатор окисления дизельного топлива (DOC) имеет более высокую концентрацию (масс./об.) металла платиновой группы (МПГ) по сравнению с катализатором окисления аммиака.

2. Каталитическое изделие по п. 1, в котором первый катализатор селективного каталитического восстановления (SCR) покрывает часть зоны катализатора, предотвращающего проскок аммиака (ASC).

3. Каталитическое изделие по п. 1 или 2, в котором (a) зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий катализатор окисления аммиака, и верхний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) покрывает всю часть катализатора окисления аммиака в зоне катализатора, предотвращающего проскок аммиака (ASC), и (b) зона катализатора окисления дизельного топлива (DOC) содержит нижний слой, содержащий катализатор окисления аммиака, и верхний слой, содержащий катализатор окисления дизельного топлива (DOC), где катализатор окисления дизельного топлива (DOC) покрывает всю часть катализатора окисления аммиака в зоне катализатора окисления дизельного топлива (DOC).

4. Каталитическое изделие по любому из предшествующих пунктов, дополнительно содержащее второй катализатор селективного каталитического восстановления (SCR), где второй катализатор селективного каталитического восстановления (SCR) покрывает часть первого катализатора селективного каталитического восстановления (SCR).

5. Каталитическое изделие по любому из пп. 1-3, дополнительно содержащее второй катализатор селективного каталитического восстановления (SCR), где первый катализатор селективного каталитического восстановления (SCR) покрывает часть второго катализатора селективного каталитического восстановления (SCR).

6. Каталитическое изделие по п. 4 или 5, в котором второй катализатор селективного каталитического восстановления (SCR) содержит активный катализатор, иной, чем первый катализатор селективного каталитического восстановления (SCR).

7. Каталитическое изделие по п. 4 или 5, в котором второй катализатор селективного каталитического восстановления (SCR) имеет иную загрузку, чем первый катализатор селективного каталитического восстановления (SCR).

8. Каталитическое изделие по пп. 4-6 или 7, в котором зона катализатора, предотвращающего проскок аммиака (ASC), содержит первый катализатор селективного каталитического восстановления (SCR), второй катализатор селективного каталитического восстановления (SCR) и катализатор окисления аммиака.

9. Каталитическое изделие по любому пп. 4-8, в котором зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий катализатор окисления аммиака, средний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), и третий слой, содержащий второй катализатор селективного каталитического восстановления (SCR).

10. Каталитическое изделие по любому пп. 4-8, в котором зона катализатора, предотвращающего проскок аммиака (ASC), содержит нижний слой, содержащий смесь катализатора окисления аммиака и катализатора окисления дизельного топлива (DOC), средний слой, содержащий первый катализатор селективного каталитического восстановления (SCR), и третий слой, содержащий второй катализатор селективного каталитического восстановления (SCR).

11. Каталитическое изделие по любому из предшествующих пунктов, в котором катализатор, предотвращающий проскок аммиака (ASC), содержит двойной слой, имеющий нижний слой, содержащий катализатор окисления аммиака, и верхний слой, содержащий катализатор селективного каталитического восстановления (SCR).

12. Система выпуска отработавших газов, содержащая каталитическое изделие по любому из пп. 1-11 и средство для образования NH3 в выхлопных газах или введения NH3 в выхлопные газы.

13. Способ обеспечения низкотемпературного регулирования NOx, включающий осуществление контакта выхлопных газов от двигателя с каталитическим изделием по любому из пп. 1-11.



 

Похожие патенты:

Изобретение относится к материалам накопления оксидов азота, которые могут быть частью каталитической ловушки, применяемой для обработки потоков выхлопных газов, а также системам и способам их применения.

Изобретение относится к композиции, содержащей смешанный оксид на основе церия и циркония. Описан смешанный оксид на основе церия и циркония для применения при обработке выхлопных газов от двигателей внутреннего сгорания, содержащий цирконий, церий, лантан и необязательно по меньшей мере один редкоземельный элемент, иной, чем церий и лантан, со следующим составом: 5-70% по массе оксида церия; 20-80% по массе оксида циркония; 1-15% по массе оксида лантана и 0-20% по массе по меньшей мере одного оксида редкоземельного элемента, иного, чем оксид церия и оксид лантана, при этом указанный смешанный оксид проявляет удельную поверхность (удельную поверхность, определенную по методу Брунауэра-Эммета-Теллера (SBET)) в интервале между 35 и 50 м2/г после обжига при 1100°C в течение 4 часов в воздушной атмосфере и удельную поверхность (SBET) в интервале между 55 и 70 м2/г после обжига при 1000°C в течение 4 часов в воздушной атмосфере.

Изобретение относится к устройствам для обработки выхлопных газов. Предложен катализированный сажевый фильтр, содержащий пористую подложку с проточными стенками, катализатор для селективного каталитического восстановления (SCR), компонент палладия и компонент платины.

Изобретение относится к устройствам для обработки выхлопных газов. Предложен катализированный сажевый фильтр, содержащий пористую подложку с проточными стенками, катализатор для селективного каталитического восстановления (SCR), компонент палладия и компонент платины.

Изобретение относится к каталитическому монолиту с проточными стенками и способу его изготовления, пригодному для использования в способе и системе обработки потока выхлопного газа сгорания.

Изобретение может быть использовано при получении катализаторов для обработки выхлопных газов двигателей. Способ получения улавливающего NOx материала носителя катализатора включает получение первой суспензии, содержащей предшественник гомогенного смешанного оксида Mg/Al, и сушку первой суспензии.

Изобретение может быть использовано при получении катализаторов для обработки выхлопных газов двигателей. Способ получения улавливающего NOx материала носителя катализатора включает получение первой суспензии, содержащей предшественник гомогенного смешанного оксида Mg/Al, и сушку первой суспензии.

Изобретение относится к области очищающих выхлопные газы катализаторов, в частности к каталитическому изделию, содержащему субстрат, имеющий покрытие типа "washcoat", к способу получения покрытия типа "washcoat", а также к способу очистки выхлопных газов, включающему контакт выхлопных газов с каталитическим изделием.

Описаны окислительный катализатор для обработки выхлопного газа из дизельного двигателя, выхлопная система, включающая окислительный катализатор, транспортное средство, содержащее дизельный двигатель и окислительный катализатор, устройство, содержащее дизельный двигатель и окислительный катализатор, способ обработки выхлопного газа из дизельного двигателя, который включает либо осуществление контакта отходящего газа с окислительным катализатором, или прохождение выхлопного газа через выхлопную систему.

Описан катализатор селективного каталитического восстановления, содержащий промотированное железом 8-кольцевое молекулярное сито с малыми порами. Также описан способ применения указанных промотированных железом 8-кольцевых молекулярных сит с малыми порами в качестве катализаторов.

Изобретение относится к газовой и нефтяной промышленности, в частности к установкам для очистки газов от серосодержащих соединений, и может быть использовано при подготовке попутного нефтяного газа (далее ПНГ) и природного газа к потреблению.

Изобретение относится к абсорбционно-десорбционной технике сепарации многокомпонентных газовых смесей, а именно, к устройствам сепарации гелия из природного газа.

Изобретение может быть использовано в нефтеперерабатывающих и нефтехимических производствах. Сернисто-щелочные стоки (СЩС) подают в отпарную колонну 3, работающую в режиме ректификации, для испарения аммиака, части сероводорода и воды, которые отводят последовательно в холодильник 7 и сепаратор 8.

Изобретение может быть использовано в нефтеперерабатывающих и нефтехимических производствах. Сернисто-щелочные стоки (СЩС) подают в среднюю часть отпарной колонны 3, в которой происходит испарение аммиака, части сероводорода, а также воды, которые отводят с верхней части отпарной колонны 3 последовательно в холодильник 7 и сепаратор 8.

Настоящее изобретение относится к производству и обработке воздушного потока, пропускаемого через объем жидкости. Устройство для производства и обработки газового потока содержит сосуд, нижняя часть которого погружена в средство подачи жидкости и включающий в себя, с одной стороны, впускное отверстие для жидкости, обеспечивающее сообщение нижней части сосуда со средством подачи жидкости таким образом, что нижняя погружная часть сосуда содержит объем указанной жидкости, а с другой стороны, включающий в себя выпускное отверстие для газового потока, расположенное выше поверхности содержащегося в сосуде объема жидкости; кроме того, устройство содержит средство производства и инжектирования газового потока, включающее в себя инжекционный трубопровод, нижняя часть которого погружена в содержащийся в нижней погружной части сосуда объем жидкости и переходит в верхнюю часть внутри сосуда за пределами указанного объема жидкости; при этом в своей нижней погружной части указанный инжекционный трубопровод содержит выпускное отверстие, расположенное ниже поверхности указанного объема жидкости; причем указанное средство производства и инжектирования газового потока включает в себя компрессор, соединенный с непогружной частью инжекционного трубопровода или с выпускным отверстием сосуда, и позволяет в ходе работы создавать и вводить поступающий снаружи сосуда входящий газовый поток в непогружную часть инжекционного трубопровода таким образом, что обеспечено прохождение указанного входящего газового потока через выпускное отверстие в нижней погружной части инжекционного трубопровода и его введение в указанный содержащийся в нижней погружной части сосуда объем жидкости ниже поверхности указанного объема жидкости с обеспечением подъема обработанного в результате прямого контакта с указанным объемом жидкости выходящего газового потока внутрь сосуда за пределами инжекционного трубопровода и его выпуска за пределы указанного сосуда с прохождением через выпускное отверстие сосуда.

Изобретение относится к биотехнологии. Способ получения ботулотоксина, включает: (а) обработку культуры продуцирующего ботулотоксин штамма кислотой с образованием осадка, содержащего ботулотоксин с последующей нейтрализацией рН осадка, (b) получение раствора для анионообменной хроматографии, содержащего буфер с использованием методов мембранной фильтрации и мембранной хроматографии и (c) очистку ботулотоксина с помощью анионообменной хроматографии, при этом ДНКазу и РНКазу не используют в указанном способе.

Изобретение относится к устройствам для обработки выхлопных газов. Предложен катализированный сажевый фильтр, содержащий пористую подложку с проточными стенками, катализатор для селективного каталитического восстановления (SCR), компонент палладия и компонент платины.
Изобретение может быть использовано в химической промышленности. Способ получения цианидов щелочных металлов в твердой форме включает абсорбцию цианистого водорода из реакционного газа водным раствором гидроксида щелочного металла при температуре 35-75°С непосредственно после места подачи реакционного газа при давлении 1120-1600 мбар с получением водного раствора цианида щелочного металла.

Изобретение относится к оборудованию для пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.

Изобретение относится к способу получения адсорбента для осушки содержащих влагу газов. Для получения адсорбента продукт центробежной термической активации гидраргиллита (ЦТА ГГ) в щелочном растворе, сушат, размалывают, пептизируют и пластифицируют в растворе азотной кислоты, формуют полученную пасту методом экструзии, сушат и прокаливают в токе осушенного воздуха.
Наверх