Способ предоперационного планирования накостного остеосинтеза длинных трубчатых костей

Изобретение относится к медицине, а именно к травматологии и предназначено для предоперационного планирования накостного остеосинтеза длинных трубчатых костей. Предложен способ предоперационного планирования накостного остеосинтеза длинных трубчатых костей, включающий выполнение пациенту компьютерной томографии поврежденной кости, математическую компьютерную обработку полученных данных, изготовление стереолитографической модели. Дополнительно выполняют компьютерную томографию аналогичной неповрежденной кости противоположной конечности. С помощью программного обеспечения «Автоплан» обрабатывают данные, создавая трехмерные модели интактной кости и отломков поврежденной кости. С помощью программного обеспечения «Meshlab» создают зеркальную модель интактной кости и совмещают ее последовательно с моделями отломков поврежденной кости, сопоставляя их между собой и нанося на зеркальную модель интактной кости контур линии перелома. На основе полученной модели на 3D принтере изготавливают полноразмерный стереолитографический шаблон, соответствующий поврежденной кости, с нанесенной на него линией перелома в виде борозды. До операции моделируют пластину по стереолитографическому шаблону и планируют операционный доступ, учитывая расположение линии перелома и пластины. Изобретение обеспечивает предоперационное планирование накостного остеосинтеза длинных трубчатых костей. 5 ил.

 

Изобретение относится к медицине, а именно к травматологии и предназначено для предоперационного планирования накостного остеосинтеза длинных трубчатых костей.

Известен способ миниинвазивного остеосинтеза длинных трубчатых костей и устройство для его осуществления. После разреза кожи выше перелома кости на 5-7 см и создания надкостного туннеля устанавливают пластину. В широкую часть верхнего отверстия пластины ввинчивают полый стержень до полного закрепления, через который вводят направитель. После создания костного отверстия удаляют направитель и вводят фиксирующий винт. Корригируют пластину вдоль кости и аналогичным образом фиксируют винт в крайнем нижнем отверстии. При выявлении правильности расположения пластины затягивают верхний и нижний винты, на полые стержни размещают шаблон, отмечают положение отверстий, на уровне которых делают проколы, и вводят поочередно необходимое количество винтов [1].

Известен способ накостного остеосинтеза длинных трубчатых костей конечностей. Выбранную пластину моделируют по форме кости. Фиксируют пластину для остеосинтеза на установочном устройстве и выставляют на нем направление сверления кости. Формируют канал для введения пластины и вводят ее при помощи установочного устройства. Устанавливают направители в установочное устройство и по ним через проколы в мягких тканях сверлят кость и осуществляют фиксацию пластины винтами [2].

Недостатками способов является их трудоемкость при репозиции отломков, невозможность пред - и интраоперационного моделирования пластины, заблаговременного подбора размера импланта.

В качестве прототипа выбран способ изготовления стереолитографических моделей и биоимплантатов для применения в черепно-челюстно-лицевой хирургии [3]. Способ состоит в проведении рентгеновской компьютерной томографии необходимого участка скелета, математической компьютерной обработке полученных данных, вычислении объемных параметров исследуемого участка, изготовлении стереолитографического шаблона.

Недостаток известного способа состоит в том, что его сложно использовать для изготовления стереолитографических шаблонов поврежденных костных структур, особенно при многооскольчатых переломах со сложной линией излома - возможны серьезные погрешности, которые не позволят полноценно планировать оперативное вмешательство и моделировать по шаблону металлофиксаторы.

Целью изобретения является разработка способа предоперационного планирования накостного остеосинтеза длинных трубчатых костей.

Эта цель достигается тем, что дополнительно выполняют компьютерную томографию аналогичной неповрежденной кости противоположной конечности; с помощью программного обеспечения «Автоплан» обрабатывают данные, создавая трехмерные модели интактной кости и отломков поврежденной кости; с помощью программного обеспечения «Meshlab» создают зеркальную модель интактной кости и совмещают ее последовательно с моделями отломков поврежденной кости, сопоставляя их между собой и нанося на зеркальную модель интактной кости контур линии перелома; на основе полученной модели на 3D принтере изготавливают полноразмерный стереолитографический шаблон, соответствующий поврежденной кости, с нанесенной на него линией перелома в виде борозды; до операции моделируют пластину по стереолитографическому шаблону и планируют оперативный доступ, учитывая расположение линии перелома.

Преимуществом способа является возможность изготовления стереолитографического шаблона даже серьезно поврежденной кости с нанесенной на него линией перелома. Это позволяет наглядно определиться с характером перелома, возможными особенностями остеосинтеза, непосредственно отмоделировать пластину по шаблону, заметив особенности расположения ее и винтов. Зная локализацию расположения пластины на шаблоне, можно планировать длину и форму оптимального оперативного доступа, что снижает риски и травматичность операции.

Для доказательства возможности использования при планировании оперативного лечения зеркального изображения интактных костей нами было отобрано 20 человек, от 18 до 45 лет, правшей. Добровольцы относились к различным классам условий труда по показателям тяжести трудового процесса. Необходимость наличия в исследовании индивидов, занимающихся тяжелым трудом, особенно с нагрузкой на преобладающую руку, объясняется возможным наличием у них рабочей гипертрофии преобладающей руки, а значит, и плечевой кости. Добровольцы прошли исследование КТ скелета, в частности, длинных трубчатых костей, которые были загружены и обработаны в системе «Автоплан». Были созданы трехмерные модели симметричных костей конечностей. С помощью программного обеспечения «Meshlab» изображение кости правой конечности «отзеркаливали» и накладывали на изображение аналогичной кости левой конечности.

Вычисляли расстояния между всеми точками поверхностей двух наложенных изображений костей. Выполняли цветное картирование расстояний для их визуальной оценки - чем ближе цвет был к красному, тем меньшим было расстояние между поверхностями костей в этой точке и тем большим было сходство геометрии их поверхностей. Наибольшую разницу расстояний зафиксировали в области эпифизов - до 5,5 мм. В то же время на уровне диафизов, вплоть до мыщелков, у всех 20 человек разница расстояний составила не более 1,5 мм. Такой разницей при моделировании по поверхности кости пластин можно пренебречь. На фигуре 1 показан результат подобного исследования при совмещении и цветном картировании плечевых костей.

Исследование позволило сделать вывод о том, что «отзеркаленная» модель кости противоположной конечности может служить идеальным прототипом для изготовления стереолитографического шаблона кости, например, серьезно поврежденной травматическим воздействием - с большим количеством отломков и сложной линией перелома. Постепенное совмещение «отзеркаленной» модели интактной кости с моделями отломков поврежденной кости при их сопоставлении между собой позволяет четко выявить контур линии перелома. Воспроизведенная в последующем на стереолитографической модели в виде борозды, линия перелома позволяет оценить характер перелома, правильно расположить и индивидуально отмоделировать пластину, учесть особенности операции остеосинтеза в целом.

Пластина при открытом остеосинтезе, благодаря предварительному персонифицированному моделированию на шаблоне, служит своеобразной матрицей для выполнения репозиции костных фрагментов, которые фактически «собираются» на ней, тем самым обеспечивая полное анатомическое восстановление целостности кости. Время оперативного вмешательства при этом уменьшается в среднем на 20-25 минут, не повреждаются ткани в зоне перелома, снижается травмирование надкостницы, что может привести к снижению интенсивности репаративного остеогенеза.

Способ предоперационного планирования накостного остеосинтеза длинных трубчатых костей осуществляют следующим образом. Пациенту выполняют компьютерную томографию поврежденной и аналогичной неповрежденной кости противоположной конечности; с помощью программного обеспечения «Автоплан» обрабатывают данные, создавая трехмерные модели интактной кости и отломков поврежденной кости; с помощью программного обеспечения «Meshlab» создают зеркальную модель интактной кости и совмещают ее последовательно с моделями отломков поврежденной кости, сопоставляя их между собой и нанося на зеркальную модель интактной кости контур линии перелома; на основе полученной модели на 3D принтере изготавливают полноразмерный стереолитографический шаблон, соответствующий поврежденной кости, с нанесенной на него линией перелома в виде борозды; до операции моделируют пластину по стереолитографическому шаблону и планируют операционный доступ, учитывая расположение линии перелома и пластины.

Способ предоперационного планирования остеосинтеза длинных трубчатых костей иллюстрируется клиническим примером.

Пациент О., 24-х лет, обратился в травматологическое отделение с жалобами на боли в средней трети левой плечевой кости после падения на улице. При осмотре больному был поставлен следующий диагноз: Закрытый перелом левой плечевой кости на границе средней и нижней третей со смещением отломков. Рентгенограмма плечевой кости пациента представлена на фигуре 2.

На основе предлагаемого способа, обработки данных компьютерной томографии поврежденной и интактной плечевых костей был создан индивидуальный стереолитографический шаблон (фигура 3А) с нанесенной на него линией перелома в виде борозды (фигура 3Б, указана стрелкой). По этому шаблону с учетом хода линии перелома было выбрано оптимальное расположение пластины. Она была отмоделирована по шаблону (фигура 4 А, Б). С учетом расположения пластины на шаблоне был запланирован оперативный доступ определенной формы и длины с учетом расположенных в проекции линии перелома и пластины анатомических образований.

Интраоперационно никаких осложнений, травм анатомических структур, сложностей с установкой пластины и остеосинтезом костных отломков не было - была восстановлена целостность кости (фигура 5 А), что подтвердила и контрольная рентгенограмма плечевой кости в послеоперационном периоде (фигура 5 Б). Пациента осматривали в динамике. Спустя 3 месяца после операции, отмечали консолидацию перелома.

Способ предоперационного планирования остеосинтеза длинных трубчатых костей обеспечивает точное персонализированное моделирование металлофиксатора по шаблону, планирование оперативного доступа с учетом линии перелома и расположения пластины, что снижает трудоемкость, инвазивность, время оперативного вмешательства, повышает его эффективность. Способ может широко применяться в травматолого-ортопедических стационарах.

ИСТОЧНИКИ ИНФОРМАЦИИ:

1. Способ миниинвазивного остеосинтеза длинных костей и устройство для его осуществления: М.В. Казарезов, A.M. Королева, Г.И. Королева, А.А. Казарезов. Патент РФ на изобретение №2551618, приоритет от 30.07.2013 г.

2. Способ накостного остеосинтеза длинных трубчатых костей конечностей: Е.Ш. Ломтатидзе, В.Е. Ломтатидзе, Д.В. Волченко, С.В. Антипенков, О.А. Поцепня, И.И. Зайченко, О.В. Зайцев. Патент РФ на изобретение №2438611, приоритет от 06.07.2010 г.

3. Патент РФ на изобретение №2196543 С1 Способ изготовления стереолитографических моделей и биоимплантатов для применения в черепно-челюстно-лицевой хирургии.

Способ предоперационного планирования накостного остеосинтеза длинных трубчатых костей, включающий выполнение пациенту компьютерной томографии поврежденной кости, математическую компьютерную обработку полученных данных, изготовление стереолитографической модели, отличающийся тем, что дополнительно выполняют компьютерную томографию аналогичной неповрежденной кости противоположной конечности; с помощью программного обеспечения «Автоплан» обрабатывают данные, создавая трехмерные модели интактной кости и отломков поврежденной кости; с помощью программного обеспечения «Meshlab» создают зеркальную модель интактной кости и совмещают ее последовательно с моделями отломков поврежденной кости, сопоставляя их между собой и нанося на зеркальную модель интактной кости контур линии перелома; на основе полученной модели на 3D принтере изготавливают полноразмерный стереолитографический шаблон, соответствующий поврежденной кости, с нанесенной на него линией перелома в виде борозды; до операции моделируют пластину по стереолитографическому шаблону и планируют операционный доступ, учитывая расположение линии перелома и пластины.



 

Похожие патенты:

Изобретение относится к медицине. Гибридная металлополимерная конструкция для замещения костных дефектов трубчатых костей содержит сплошной внешний слой из сверхвысокомолекулярного полиэтилена и пористый слой из сверхвысокомолекулярного полиэтилена с размером пор 50-1000 мкм.

Изобретение относится к области химии высокомолекулярных соединений, конкретно к биосовместимым биоразлагаемым остеокондуктивным композиционным материалам на основе сложных полиэфиров и химически модифицированной наноцеллюлозы.

Изобретение относится к способу получения костного имплантата и может быть использовано в медицине. Предложен способ получения костного имплантата на основе стерильного деорганифицированного костного матрикса, включающий механическую обработку кости фрезерованием с учетом направления остеонных структур кости в среде охлажденного до 4°С стерильного раствора, удаление органической фазы из костной заготовки, инкубацию деминерализованного костного матрикса в растворе сангвиритрина для его иммобилизации с последующей 2-этапной комбинированной стерилизацией озоно-кислородной смесью с концентрацией озона 6-8 мг/л, продолжительностью 10-20 мин в проточном режиме на первом этапе и радиационным облучением потоком быстрых электронов с величиной поглощенной дозы 11-15 кГр герметично упакованных образцов на втором этапе.

Изобретение относится к области медицины, а именно травматологии и ортопедии, а именно к антимикробной композиции для формирования спейсера. Антимикробная композиция для формирования спейсера на основе костного цемента с гентамицином также содержит пластификатор, антисептики повиаргол, диоксидин, а также высокомолекулярный поливинилпирролидон медицинский с молекулярной массой 1000000 Да, при определенном соотношении компонентов.

Изобретение относится к области медицины, а именно к вертебропластической или кифопластической хирургии, и раскрывает гранулы, изготовленные из титана или титановых сплавов.

Изобретение относится к области медицины, в частности к нейрохирургии, травматологии, ортопедии, и может быть использовано для пластики дефекта после ламинэктомии в поясничном отделе позвоночника с фиксацией позвонков для предотвращения развития болезни ламинэктомированного позвоночника.

Изобретение относится к области медицины и касается композиционных материалов для пластической реконструкции поврежденных костных тканей. Предлагаемый способ изготовления матриксов на основе низкотемпературных модификаций фосфатов кальция (ФК) для костной инженерии включает 3 этапа.

Изобретение относится к медицине, а именно к ветеринарии и хирургической ортопедии, и может быть использовано для имплантации остеинтегрируемого протеза у животных.

Изобретение относится к медицине. Модуль для каркасной реконструкции грудной клетки выполнен из сверхэластичного никелида титана.

Группа изобретений относится к медицине. Имплантат для регенерации костной ткани состоит из композитных микрочастиц, характеризующихся пористой структурой с размером пор от 10 до 85 мкм, содержанием фиброина шелка от 65 до 75 мас.%, содержанием желатина от 25 до 35 мас.%, а также показателем модуля Юнга на сжатие в дегидратированном состоянии 83±1 МПа, во влажном - 590±60 кПа.

Изобретение относится к медицине и предназначено для использования при изготовлении зубной реставрации из заготовки, имеющей участки или слои керамических материалов из различных композиций, при изготовлении зубной реставрации загружают керамические материалы в форму, спрессовывают керамические материалы с образованием заготовки, удаляют заготовку из формы, подвергают заготовку температурной обработке, при этом керамические материалы загружают в форму так, что слои и/или участки после температурной обработки имеют профиль, который может быть доступен в виде набора цифровых данных.

Изобретение относится к медицине, а именно к стоматологии, и предназначено для непосредственного замещения зубных рядов после тотального удаления зубов. Непосредственный съемный зубной протез состоит из базиса толщиной в 2 мм и искусственных зубов зубного ряда.

Изобретение относится к медицине, а именно к хирургической и ортопедической стоматологии, и предназначено для использования при лечении зубов с сохраненной и частично разрушенной коронковой частью и наличием воспалительного процесса в периапикальных тканях зуба.
Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначено для использования при изготовлении перекрывающих, каркасных протезов с опорой на литые культевые штифтовые вкладки, дентальные имплантаты с замковыми креплениями, телескопической фиксацией.
Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования при восстановлении жевательных функций. Для изготовления по меньшей мере одного протеза засыпают гранулы материала, совместимого с тканями человека, где их расплавляют в однородную массу, выталкивают порцию расплавленного материала в закрытую разъемную пресс-форму для изготовления зубного протеза для зуба, имеющего несколько корней.

Изобретение относится к области медицины, а именно к ортопедической стоматологии, челюстно-лицевому протезированию и может быть использовано для снятия оттиска и отлития модели при изготовлении пострезекционного протеза верхней челюсти.

Изобретение относится к стоматологии, а именно к ортодонтии, и предназначено для использования при лечении зубочелюстных аномалий у пациентов с вынужденным положением нижней челюсти.

Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначен для использования при лечении пациентов с включенными дефектами зубных рядов.

Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначено для использования при лечении пациентов с включенными дефектами зубных рядов.

Изобретение относится к медицине, а именно к ортопедической и хирургической стоматологии, и предназначено для использования при временном зубном протезировании пациента на период остеоинтеграции двухэтапных дентальных имплантатов.
Наверх