Способ удержания космического аппарата на геостационарной орбите при прерываниях измерений и автономном функционировании

Изобретение относится к управлению движением космического аппарата (КА), к удержанию КА на заданной долготе геостационарной орбиты. Выполняют циклы удержания содержащих измерения орбитальных параметров, расчет и выполнение коррекций. По данным измерений коррекции рассчитывают не только для текущего цикла удержания, но по этим же данным также для группы последующих циклов на интервале автономного функционирования. Уменьшаются отклонения КА от заданной долготы стояния на интервале автономного функционирования. 1 ил.

 

Способ удержания космического аппарата (КА) на геостационарной орбите (ГСО) при прерываниях измерений и автономном функционировании.

Предлагаемое изобретение относится к области космической техники и может быть использовано для КА, удерживаемого относительно рабочей долготы стояния на ГСО с повышенной точностью, т.е. с отклонением 0,1 градуса и менее.

Известен способ поддержания долготы КА на ГСО, описанный в книге Г.М. Чернявский, В.А. Бартенев, В.А. Малышев «Управление орбитой стационарного спутника», М., Машиностроение, 1984 г., на стр. 126-134. В этом способе удерживают долготу КА управлением по т.н. предельному циклу, обеспечивая коррекциями периода сохранение долготы с отклонениями в заданных границах. При таком способе удержания интервал времени между измерениями не должен превышать длительность предельного цикла. Реальная длительность цикла и интервал времени между измерениями при достаточно малых ошибках измерений и исполнения коррекций может быть более одного месяца если допустимые отклонения долготы не менее 0,1 градуса.

В книге Сухой Ю.Г. «Коррекции орбит геостационарных спутников», Часть 1, М., Спутник, 2011 г., на стр. 24-25 описан типовой повторяющийся цикл удержания спутника на ГСО двигателями сверхмалой тяги. Согласно указанному описанию длительность такого цикла может быть от 7 до 14 суток, что много меньше длительности предельного цикла. В таком цикле сокращенной длительности последовательно измеряют орбитальные параметры, выполняют баллистические расчеты, в том числе рассчитывают вектор орбитальных параметров и рассчитывают коррекции орбиты, затем выполняют эти коррекции. Сокращение цикла коррекций по сравнению с предельным циклом в условиях ошибок измерений и исполнения коррекций принципиально позволяет уменьшить отклонения КА от рабочей долготы стояния на ГСО, например, до 0,05 градуса.

Этот способ с сокращенной длительностью цикла удержания КА на ГСО принят в качестве прототипа.

Недостатком прототипа является чрезмерное увеличение отклонений КА от заданной долготы стояния в случае прерывания измерений на время, значительно превышающее длительность цикла, т.е. на т.н. интервале времени автономного функционирования. Этот недостаток связан с тем, что расчет коррекций в прототипе предусмотрен только для тех коррекций, которые должны выполняться по результатам измерений в текущем типовом цикле.

Техническим результатом изобретения является уменьшение отклонений КА от заданной долготы стояния на интервале автономного функционирования. Реализация способа не требует прогнозирования и соответственно повышенных вычислительных ресурсов, что облегчает расчеты на борту КА.

Существо изобретения состоит в том, что после очередных измерений в цикле рассчитывают коррекции для этого цикла и для группы последующих циклов на случай отсутствия в них результатов измерений. Начиная со второго цикла за циклом с измерениями, используют постоянную величину коррекции периода, компенсирующую среднее изменение периода между коррекциями. А необходимое при этом нулевое среднее отклонение периода обеспечивают коррекцией периода в первом из циклов без измерений.

Предложенный способ поясняется на фиг. 1, где схематически показана зависимость во времени t для отклонения ΔT периода орбиты от номинальной величины периода 86164,09 секунд при поддержании долготы. На фиг. 1 показан пример зависимости для долготы, вблизи которой период орбиты увеличивается, если коррекции не выполняются. Циклы удержания имеют постоянную длительность τ. При отсутствии коррекций периода он линейно увеличивается за время, практически равное длительности цикла на величину c×τ, где с - изменение периода за единицу времени под влиянием геопотенциала. Период уменьшают периодическими коррекциями, длительность которых много меньше длительности цикла. В среднем период поддерживают близким к номинальной величине. Максимумы и минимумы периода во времени смещены по отношению к началам и окончаниям циклов.

На фиг. 1 показано отклонение периода ΔТ0 в момент t0 по результатам измерений. По данным измерений рассчитывают и изменяют период коррекцией на величину ΔT1 в момент t1. Длительность t1-t0 отличается в разных циклах. Ее возможное отклонение от среднего значения может быть до нескольких процентов от постоянной длительности цикла τ. При расчете коррекции вместо величины t1-t0 можно использовать ее среднее значение k×τ, где k является средней величиной отношения задержки коррекции от момента времени, соответствующего отклонению ΔТ0, к длительности цикла τ. Величина k зависит от алгоритма удержания, для конкретного алгоритма она известна и постоянна. После расчета величины ΔT1 в цикле рассчитывают также коррекции для последующих n - 1 циклов, предусмотренных для поддержания на случай прерывания измерений. Согласно изобретению, величину корректирующего изменения периода устанавливают равной - c×τ, начиная со второго цикла после цикла с измерениями. Среднее отклонение периода должно быть близким к нулю, а максимальные абсолютные отклонения должны быть равны 0,5×с×τ, что на фиг. 1 показано для минимумов периода. Чтобы это обеспечить, после коррекции периода в первом цикле без измерений в момент t2 отклонение должно быть таким же, как в последующих циклах. Величину ΔТ2 такого изменения периода можно определить из баланса отклонений от момента t0 до окончания этой коррекции:

Отсюда величина изменения периода коррекцией в первом цикле без измерений:

При этом величина изменения периода коррекцией во втором и следующих циклах без измерений:

Обозначения в формулах (1-3):

n - число циклов, предусмотренных для удержания в случае прерывания измерений, плюс 1;

ΔТ0 - отклонение периода по данным измерений;

ΔT1 - величина изменения периода коррекцией в последнем цикле с измерениями;

ΔТ2 - величина изменения периода коррекцией в первом цикле без измерений;

ΔTm - величина изменения периода коррекцией во втором и следующих циклах без измерений,

τ - длительность цикла коррекций;

k - средняя величина отношения задержки коррекции от момента времени, соответствующего отклонению ΔТ0, к длительности цикла τ;

с - изменение периода за единицу времени под влиянием геопотенциала на поддерживаемой долготе.

Технический результат изобретения достигается тем, что в способе удержания космического аппарата на геостационарной орбите при прерываниях измерений и автономном функционировании, в котором выполняют циклы удержания, содержащие измерения орбиты, расчет вектора орбитальных параметров, расчет коррекций орбиты и исполнение коррекций, выполняют следующие действия, отличающие изобретение. При отсутствии результатов измерений орбитальных параметров в цикле после цикла с измерениями изменяют период орбиты коррекцией на величину

а при отсутствии результатов измерений орбитальных параметров в последующих циклах в них изменяют период орбиты на величину

Предложенный способ реализуется следующим образом.

Как в известном способе, после получения от средств измерений и определения орбиты орбитальных параметров, в том числе сидерического периода орбиты, относящихся к моменту времени t0, вычисляют величину отклонения ΔТ0 сидерического периода от номинального значения для ГСО, равного 86164,09 секунды.

Как в известном способе, вычисляют величину требуемого изменения периода ΔT1 коррекцией.

Далее вычисляют требуемые величины изменения периода ΔТ2, …, ΔTn коррекциями в n циклах после цикла с измерениями по формулам (2, 3) или по формулам, полученным из (2, 3) математическими преобразованиями. При практическом применении формулы (2, 3) может быть дополнены поправочными членами, учитывающими особенности расчета и выполнения коррекций в конкретной системе. Расчеты для циклов без измерений могут быть выполнены как в цикле с измерениями после расчета ΔТ1, так и в циклах без измерений до выполнения в них соответствующих коррекций.

При полете КА, в случае отсутствия данных измерений в очередном цикле, исполняют коррекции по результатам расчетов, выполненных по формулам (2, 3).

В случае необходимости поддержания при прерываниях измерений и автономном функционировании кроме долготы и периода также наклонения и эксцентриситета, это поддержание в циклах без измерений может обеспечиваться различными способами с учетом особенностей космической системы. Например, в циклах без измерений величина уменьшения наклонения коррекцией может быть одинаковой, компенсирующей среднее естественное увеличение наклонения. Величина коррекции эксцентриситета в первом цикле без измерений может быть такой же, как в последнем с измерениями. В остальных циклах без измерений коррекция эксцентриситета может не выполняться, т.к. эксцентриситет увеличивается незначительно за предусмотренное время удержания при прерывании измерений.

Предложенный способ проверен имитационным моделированием. При использовании с алгоритмом, который в условиях характерных ошибок измерений и исполнения коррекций обеспечивает поддержание с отклонениями долготы менее 0,05 градусов, предложенный способ при семисуточном цикле на интервале 35 суток без измерений обеспечил отклонения не более 0,1 и 0,17 градусов с вероятностями 0,75 и 1,0 соответственно. При отсутствии ошибок отклонения не превысили 0,08 градусов.

Источники информации.

1. Г.М. Чернявский, В.А. Бартенев, В.А. Малышев «Управление орбитой стационарного спутника», М., Машиностроение, 1984 г., стр. 126-134.

2. Ю.Г. Сухой «Коррекции орбит геостационарных спутников», Часть 1, М., Спутник, 2011 г., стр. 24-25.

Способ удержания космического аппарата на геостационарной орбите при прерываниях измерений и автономном функционировании, в котором выполняют циклы удержания, содержащие измерения орбиты, расчет вектора орбитальных параметров, расчет коррекций орбиты и исполнение коррекций, отличающийся тем, что при отсутствии результатов измерений орбитальных параметров в цикле после цикла с измерениями изменяют период орбиты коррекцией на величину

а при отсутствии результатов измерений орбитальных параметров в последующих циклах в них изменяют период орбиты на величину

где:

n - число циклов плюс 1, предусмотренных для удержания в случае прерывания измерений;

ΔТ0 - отклонение периода орбиты по данным измерений;

ΔT1 - величина изменения периода орбиты коррекцией в последнем цикле с измерениями;

ΔТ2 - величина изменения периода орбиты коррекцией в первом цикле без измерений;

ΔTm - величина изменения периода орбиты коррекцией во втором и следующих циклах без измерений,

τ - длительность цикла коррекций;

k - средняя величина отношения задержки коррекции от момента времени, соответствующего отклонению ΔТ0, к длительности цикла τ;

с - изменение периода за единицу времени под влиянием геопотенциала на поддерживаемой долготе.



 

Похожие патенты:

Изобретение относится к космической технике. В способе удержания космического аппарата (КА) в заданном диапазоне долгот и широт рабочей позиции на орбите рассчитывают коррекции наклонения на двух номинально противоположных активных участках (АУ), рассчитывают текущие векторы эксцентриситета на один и тот же момент - момент окончания второго АУ так, что в первом варианте учитывают тягу двигателя только на первом АУ, во втором варианте учитывают тягу двигателя только на втором АУ, по минимальному отклонению одного и другого векторов эксцентриситета от целевого вектора выбирают рабочий АУ и соответствующий ему двигатель.
При управлении космическим аппаратом с использованием исправного бортового компьютера при входе в теневой участок запускают таймер, предусмотренный в блоке управления космического аппарата, с продолжительностью, равной максимальной продолжительности теневого участка; после выхода из теневого участка при неисправном бортовом компьютере, по сигналу таймера космический аппарат переводят в режим работы с использованием автономного контура управления, а при исправном бортовом компьютере по информации от бортового баллистического программного обеспечения отключают таймер, и управление космического аппарата осуществляют по информации исправного бортового компьютера.
При управлении космическим аппаратом с использованием исправного бортового компьютера при входе в теневой участок запускают таймер, предусмотренный в блоке управления космического аппарата, с продолжительностью, равной максимальной продолжительности теневого участка; после выхода из теневого участка при неисправном бортовом компьютере, по сигналу таймера космический аппарат переводят в режим работы с использованием автономного контура управления, а при исправном бортовом компьютере по информации от бортового баллистического программного обеспечения отключают таймер, и управление космического аппарата осуществляют по информации исправного бортового компьютера.

Изобретение относится к области космической техники. Способ определения ориентации космического аппарата по сигналам навигационных спутников содержит этапы, на которых: включают излучение радиосигналов навигационными спутниками с известными параметрами орбиты; формируют и выдают команды на прием сигналов выбранных навигационных спутников на каналы приемного устройства, установленного на космическом аппарате; выделяют каждым каналом приемного устройства из суммарного сигнала всех навигационных спутников сигналы спутников, соответствующих выданным командам; принимают эти сигналы при условии нахождения соответствующих спутников в поле зрения одной из антенн приемного устройства; определяют текущие координаты космического аппарата по принимаемым сигналам навигационных спутников; по координатам навигационных спутников и координатам космического аппарата определяют единичные векторы направлений от космического аппарата на навигационные спутники; определяют углы между найденным средним направлениями на все навигационные спутники; выбирают спутник, для которого эти углы минимальны; выдают команду на прием сигнала выбранного навигационного спутника; ориентацию космического аппарата в гринвичской системе координат определяют в соответствии с определенной матрицей.

Изобретение относится к космической технике, к управлению движением космических аппаратов (КА). Изобретение может быть использовано для изменения (уменьшения) величины отклонения направления импульса коррекции от фактического центра масс КА.

Изобретение относится к управлению движением группы (двух) космических аппаратов (КА) для удержания их в одной и той же узкой (по долготе) области в окрестности точки стояния.

Изобретение относится к управлению движением группы (двух) космических аппаратов (КА) для удержания их в одной и той же узкой (по долготе) области в окрестности точки стояния.

Группа изобретений относится к области ракетно-космической техники и может быть использована при проектно-конструкторской разработке высотных ступеней, предназначенных для выведения космических аппаратов - КА на околоземные орбиты.

Изобретение относится к космической технике, а более конкретно к ЖРД. Электротермический жидкостной реактивный двигатель включает электромагнитный топливный клапан, термическое сопротивление, камеру нагревания (КН) с катализатором, электронагревателем-газообразователем (ЭГ), сопло и теплоизоляцию.

Изобретение относится к области наблюдения и слежения за полётом космических аппаратов (КА) при их движении вокруг тяготеющего небесного тела (Земли, Луны, Солнца и т.д.).

Изобретение относится к космической технике, а более конкретно развертываемым на орбите системам. Развертываемая орбитальная система состоит из космического корабля (1) и спутника (2).

Изобретение относится к построению и преобразованию многоярусных спутниковых систем (СС) обзора околоземного пространства, имеющего вид сферического слоя, с заданными кратностью и периодичностью.

Изобретение относится к построению и преобразованию спутниковых систем (СС) обзора околоземного пространства, имеющего вид сферического слоя, с заданными кратностью и периодичностью.

Изобретение относится к построению многоярусных спутниковых систем (СС) непрерывного глобального обзора околоземного космического пространства с заданными кратностью и периодичностью.

Изобретение относится к космической технике, а более конкретно к торможению спутников. Модульный космический аппарат (КА) выполнен в виде пакета последовательно установленных одноразмерных кубических модулей со служебной и целевой аппаратурой.

Изобретение относится к управлению движением группы (двух) космических аппаратов (КА) для удержания их в одной и той же узкой (по долготе) области в окрестности точки стояния.

Изобретение относится к космической технике, а более конкретно к оборудованию для уборки космического мусора. Космический аппарат для уборки космического мусора состоит из негерметичного корпуса, маршевого жидкостного ракетного двигателя, системы ориентации и причаливания с двигательной установкой малой тяги, системы энергоснабжения и системы управления полетом.

Изобретение относится к области космической техники, а именно к системам двойного запуска космических аппаратов и опорному узлу этой системы. Система двойного запуска характеризуется ее выполнением в виде трехъярусной фермы, включающей нижний, средний, верхний ярусы, отделенные друг от друга верхним и нижним поясами, содержащими соединенными поперечными стержнями опорные узлы.

Изобретение относится к конструкции и оборудованию малых спутников модульного типа (формата CubeSat) и их моделям, используемым в учебных целях. Спутник-конструктор (СК) содержит базовую модульную платформу для формирования узлов и систем СК, бортовую сеть, не менее одного центрального процессора (одноплатного компьютера), работающего на библиотеках высокого уровня, модуль управления и связанные с ним модуль УКВ-канала связи и модуль Wi-Fi канала связи, а также служебные системы, допускающие выбор и/или замену элементов.

Изобретение относится к архитектуре информационных спутниковых систем (СС). Каждый космический аппарат (КА) СС связан межспутниковыми радиолиниями (МРЛ) с четырьмя соседними КА и радиолинией с наземным комплексом управления.

Изобретение относится к межпланетным перелётам, например при доставке космических объектов (КО) на станцию, расположенную на высокой окололунной орбите. Способ включает перелет от Земли к Луне по траектории с пролетом Луны на заданной высоте, где выполняют первый тормозной импульс для перевода КО на начальную окололунную орбиту. Апоселений этой орбиты находится в окрестности грависферы Луны (60-75 тыс. км). За счет гравитационных возмущений, главным образом от Земли, через виток высота периселения данной орбиты изменяется до значения высоты периселения целевой орбиты. В этом периселении выполняют второй тормозной импульс для формирования целевой эллиптической (или круговой) орбиты вокруг Луны. Техническим результатом изобретения является снижение суммарной характеристической скорости на выведение КО с пролётной траектории на целевую, преимущественно высокую окололунную орбиту. 6 ил.

Изобретение относится к управлению движением космического аппарата, к удержанию КА на заданной долготе геостационарной орбиты. Выполняют циклы удержания содержащих измерения орбитальных параметров, расчет и выполнение коррекций. По данным измерений коррекции рассчитывают не только для текущего цикла удержания, но по этим же данным также для группы последующих циклов на интервале автономного функционирования. Уменьшаются отклонения КА от заданной долготы стояния на интервале автономного функционирования. 1 ил.

Наверх