Установка для охлаждения природного газа на компрессорных станциях

Изобретение относится к области транспортировки природного газа и предназначено для снижения температуры транспортируемого газа после сжатия в нагнетателе газоперекачивающего агрегата перед подачей его в магистральный газопровод. Установка для охлаждения природного газа на компрессорных станциях содержит размещенные последовательно на технологическом трубопроводе после нагнетателя газоперекачивающего агрегата делитель потока перекачиваемого газа на две части и газовый эжектор и установленный на отводном участке от технологического трубопровода турбодетандер. Концы отводного участка трубопровода подсоединены, соответственно, к одному их выходов делителя потока непосредственно и через турбодетандер к соплу эжектируемого газа газового эжектора, сопло эжектирующего газа которого подсоединено к другому выходу делителя потока. Целесообразно делитель потока перекачиваемого газа на две части выполнять в виде регулируемого клапана. Технический результат заключается в упрощении процесса снижения температуры газа и снижении затрат на электроэнергию и техническое обслуживание. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области транспортировки природного газа и предназначено для снижения температуры транспортируемого газа после сжатия в нагнетателе газоперекачивающего агрегата перед подачей его в магистральный газопровод.

Известна система охлаждения природного газа на компрессорной станции магистрального газопровода, выполненная на базе теплообменных аппаратов воздушного охлаждения и обеспечивающая снижение температуры газа за счет его теплообмена с атмосферным воздухом (А.Ф. Калинин Технологии промысловой подготовки и магистрального транспорта природного газа. - М.: МПА-Пресс, 2007. - с. 170).

Недостатком известного решения является необходимость использования большого количества электроэнергии для привода вентиляторов аппаратов воздушного охлаждения, невозможность охлаждения газа до температуры ниже температуры атмосферного воздуха, а также трудоемкость и сложность технического обслуживания указанных аппаратов.

Также известно устройство для охлаждения природного газа после компрессорных станций, включающее аппарат воздушного охлаждения, рекуперативный теплообменник, нагнетатель, энергоразделительное устройство и дожимной компрессор (RU 2155303, 1999 г.).

Принцип работы данного устройства основан на охлаждении природного газа атмосферным воздухом в аппаратах воздушного охлаждения, охлаждении прямым потоком в рекуперативном теплообменнике и глубокого охлаждения в холодильных аппаратах в энергоразделительном устройстве, выполненном в виде кожухотрубного теплообменника, имеющего газоходы холодного и нагретого газа, пучок сверхзвуковых каналов с профилированными сверхзвуковыми соплами и диффузорами, где газ делится на два потока, один из которых в сверхзвуковых каналах разгоняется до числа Маха М=2-5 и после этого с помощью дожимного компрессора подается на вход компрессорной станции, а другой охлажденный поток газа из межтрубного пространства - дозвукового канала энергоразделительного устройства - подается в газопровод.

К числу недостатков известного способа охлаждения относятся большое потребление электроэнергии, сложность системы регулирования и технического обслуживания, обусловленная систематичностью очистки трубопроводов от внешних и внутренних загрязнений.

Из известных технических решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является установка для охлаждения природного газа, содержащая теплообменник, турбодетандер и дроссель, установленный на дополнительном участке трубопровода, подсоединенном к магистральному газопроводу после теплообменника (RU 723321, 1978).

Указанное устройство предусматривает разделение потока газа после теплообменника на две части, одна из которых охлаждается посредством турбодетандера, а затем смешивается с другой, проходящей через дроссель, установленный на дополнительном участке трубопровода.

Недостатком указанного устройства является сложность согласования режимов совместной работы парокомпрессорной холодильной машины, теплообменников, турбодетандера и дросселя с целью обеспечения требуемого снижения температуры газа, следствием чего является низкая эффективность и сложность обеспечения равного давления газа после дросселя и турбодетандера для исключения противотока газа.

Технической проблемой, на решение которой направлено настоящее изобретение, является упрощение процесса снижения температуры газа на заданную величину и снижение затрат на электроэнергию и техническое обслуживание.

Указанная техническая проблема решается тем, что установка для охлаждения природного газа на компрессорных станциях содержит размещенные последовательно на технологическом трубопроводе после нагнетателя газоперекачивающего агрегата делитель потока перекачиваемого газа на две части и газовый эжектор и установленный на отводном участке от технологического трубопровода турбодетандер, при этом концы отводного участка трубопровода подсоединены, соответственно, к одному их выходов делителя потока непосредственно и через турбодетандер к соплу эжектируемого газа газового эжектора, сопло эжектирующего газа которого подсоединено к другому выходу делителя потока.

Целесообразно делитель потока перекачиваемого газа на две части выполнять в виде регулируемого клапана.

Достигаемый технический результат заключается в оптимизации степени повышения давления газа в нагнетателе газоперекачивающего агрегата, величины потока газа на отводной участок трубопровода и значения температуры газа подаваемого на сопло эжектируемого газа эжектора после турбодетандера с учетом технического состояния трубопровода и климатического периода эксплуатации компрессорной станции.

Сущность предлагаемого устройства поясняется чертежом, на котором приведена принципиальная схема предлагаемой установки.

Установка включает газоперекачивающий агрегат 1, технологический трубопровод 2, регулируемый клапан 3, отводной участок трубопровода 4, турбодетандер 5, нагрузку 6, газовый эжектор 7, сопло эжектируещего газа 8, сопло эжектируемого газа 9, камеру смешения 10.

Предлагаемая установка работает следующим образом.

Нагретый после сжатия в нагнетателе газоперекачивающего агрегата 1 газ по технологическому трубопроводу 2 подается на делитель потока в виде регулируемого клапана 3, где разделяется на два потока, один из которых по отводному участку трубопровода 4 подается на вход турбодетандера 5, к которому присоединена нагрузка 6, где он охлаждается и по трубопроводу 4 направляется в сопло эжектируемого газа 9 газового эжектора 7, а второй поток по технологическому трубопроводу 2 поступает в сопло эжектируещего газа 8 газового эжектора 7, которое засасывает эжектируемый газ в зону смешения 10, где за счет турбулентного смешивания оба потока газов объединяются, давление и температура потоков выравниваются и происходит переход режима течения газа из турбулентного в ламинарное.

Сущность работы по предлагаемому способу иллюстрируется нижеследующим примером его реализации.

Нагретый после сжатия в нагнетателе газоперекачивающего агрегата газ с расходом G0 кг/с, давлением Р0 МПа и температурой Т0 К поступает на управляемый регулирующий кран, где разделяется на два потока, направляемые на турбодетандер с расходом Gt кг/с и на сопло эжектора с расходом G=G0-Gt кг/с. В камеру смешения эжектора подается газ после турбодетандера Gt=Gкэ.

Значение температуры газа после эжектора Т1 К обеспечивается совместной работой управляемого регулирующего крана, турбодетандера и эжектора:

Т1=F (G0; Р0; Т0; Gt; Gсэ).

Выбор параметров работы турбодетандера и эжектора для конкретных режимов работы нагнетателей газа производится следующим образом.

Выбирают температуру Т1 подачи газа в магистральный газопровод с учетом свойств изоляционного покрытия трубопровода, схемы прокладки газопровода, среднегодовой температуры наружного воздуха и среднегодовой температуры грунта, в котором проложен газопровод.

В зависимости от требуемого расхода перекачиваемого газа G0, кг/с и давления газа Р0, МПа на выходе из системы охлаждения выбирают режим работы нагнетателя, по характеристикам которого определяют температуру газа на выходе из нагнетателя Т0.

Определяют необходимую величину уменьшения температуры газа в системе охлаждения газа на компрессорной станции ΔT.

ΔТ=Т01,

где Т1 - требуемая температура газа для подачи в магистральный газопровод, К.

Выбирают произвольное значение расхода газа Gt кг/с, направляемого на турбодетандер, и с учетом принятой величины перепада давления газа на турбодетандере ΔPt0-Pt, где Pt, МПа рассчитывают давление на выходе из турбодетандера. Производится расчет температуры газа Tt,К на выходе из турбодетандера:

где z1, z2 - коэффициенты сжимаемости природного газа до и после турбодетандера;

pt - давление газа после турбодетандера, МПа;

k - показатель адиабаты;

ηпол - политропный КПД процесса расширения в турбодетандере. При этом мощность Wt, Вт, вырабатываемая турбодетандером, определяется перепадом энтальпий и расходом газа:

Wt=Gt⋅(h2-h1),

где h1 - начальная энтальпия процесса расширения газа в турбодетандере, Дж/кг;

h2 - конечная энтальпия процесса расширения, Дж/кг.

Выбор параметров эжектора проводится исходя из условия, что расход газа на выходе из эжектора Gэ кг/с равен G0 кг/с - расходу газа на выходе из нагнетателя газоперекачивающего агрегата Gэ=G0 и равен сумме расходов газа, подаваемых в сопло и камеру смешения эжектора

Gэ=G0=G+Gкэ,

где: Gсэ- расход газа, подаваемого на сопло эжектора, кг/с;

Gкэ - расход газа, подаваемого в камеру смешения эжектора, кг/с.

В смесительную камеру эжектора направляют поток газа после турбодетандера. Расход газа, подаваемого в смесительную камеру эжектора, составит Gкэ=Gt, с температурой Tt К и давлением Pt МПа, а расход газа, подаваемого в этом случае на сопло эжектора, составит Gсэ=G0-Gt с температурой T0 К и давлением Р0 МПа.

Температура объединенных потоков газа Тэ, К на выходе из эжектора составит:

где К - коэффициент эжекции,

срн - удельная теплоемкость газа после нагнетателя, Дж/(кг⋅К);

cpt - удельная теплоемкость газа после турбодетандера, Дж/(кг⋅К).

Давление газа на выходе из эжектора Рэ МПа составит:

где α=F1/F2 - отношение площадей выходных сечений сопел для эжектирующего (после нагнетателя) и эжектируемого (после турбодетандера) газов.

Сравнивают температуры Т1 и Тэ и с учетом обеспечения требуемых расхода и давления газа для подачи в магистральный газопровод изменяют параметры работы нагнетателя, регулируемого клапана, турбодетандера и эжектора, добиваясь выполнения равенства Тэ1.

Таким образом, предлагаемая установка при работе газоперекачивающего агрегата на необходимом режиме сжатия газа обеспечивает достижение значений температуры и давления газа до требуемых величин подачи газа в магистральный газопровод, исключает потребление электроэнергии на аппараты воздушного охлаждения и позволяет снизить затраты на эксплуатацию системы охлаждения газа.

Таким образом, предлагаемая установка обеспечивает достижение значений температуры и давления газа до требуемых величин подачи газа в магистральный газопровод, исключает потребление электроэнергии на аппараты воздушного охлаждения и позволяет снизить затраты на эксплуатацию системы охлаждения газа.

1. Установка для охлаждения природного газа на компрессорных станциях, характеризующаяся тем, что она содержит размещенные последовательно на технологическом трубопроводе после нагнетателя газоперекачивающего агрегата делитель потока перекачиваемого газа на две части и газовый эжектор и установленный на отводном участке от технологического трубопровода турбодетандер, при этом концы отводного участка трубопровода подсоединены, соответственно, к одному их выходов делителя потока непосредственно и через турбодетандер к соплу эжектируемого газа газового эжектора, сопло эжектирующего газа которого подсоединено к другому выходу делителя потока.

2. Установка по п. 1, отличающаяся тем, что делитель потока перекачиваемого газа на две части выполнен в виде регулируемого клапана.



 

Похожие патенты:

Изобретение относится к детандер-генераторным агрегатам для производства электроэнергии и устройствам для производства тепла и холода за счет разделения газового потока.

Изобретение относится к области энергетики, в частности теплоэлектрогенерации. Сущность изобретения заключается в том, что устройство предусматривает когенерацию тепловой и электрической мощности за счет низкотемпературных источников - вода, воздух, грунт, солнечное излучение, для чего в теплонасосе дополнительно предусмотрены регулятор подачи тепловой энергии, контроллер и электромотор-генератор, вход которого подключен к источнику электрической энергии, а выход подключен к потребителю электрической энергии, управляющий канал мотор-генератора подключен к контроллеру, второй управляющий канал которого подключен к регулятору подачи тепловой энергии, вход которого подключен к конденсатору, а выход подключен к потребителю тепловой энергии, при этом дроссель выполнен в виде сопла турбины, вал которой соединен с валом компрессора, вал которого соединен с валом электромотор-генератора.

Холодильник включает охлаждающую часть для охлаждения объекта посредством теплообмена с хладагентом, детандер-компрессор и линию циркуляции хладагента для циркуляции хладагента через компрессор, детандер и охлаждающую часть.

Изобретение относится к области теплоэнергетики. Бестопливная тригенерационная установка включена между газопроводом высокого давления и газопроводом низкого давления, разделенными первым дросселем.

Изобретение относится к теплоэнергетике. Между газопроводами высокого и низкого давления включены первый дроссель, детандер с электрогенератором, соединенным с потребителем и двигателем компрессора, первый теплообменник на линии подачи газа, компрессор, вход которого соединен с выходом испарителя, низкопотенциальный источник тепла.

Изобретение предназначено для выработки электроэнергии на энергетических установках газораспределительных станций и на газорегуляторных пунктах. Природный газ высокого давления расширяют в турбодетандере и снижают его давление до уровня, требуемого конкретному потребителю, поддерживая его температуру не менее 278 К.

Изобретение относится к способам сжатия рабочей жидкости, используемым для переноса теплоты от теплоносителя с более низкой (Е) температурой к теплоносителю с более высокой температурой (Al), и может быть использовано в тепловом насосе.

Газотурбодетандерная энергетическая установка газораспределительной станции содержит турбодетандер с регулируемым сопловым аппаратом, газотурбинную установку с компрессором низкого давления, камерой сгорания и газовой турбиной, электрогенератор, газопровод топливного газа, выходную газовую магистраль, обводную магистраль с редукционной установкой, систему управления, теплообменник предварительного подогрева газа высокого давления, теплообменник подогрева газа выходной газовой магистрали.

Изобретение относится к энергетике. Система для снижения давления в находящейся под давлением текучей среде в трубопроводе содержит по меньшей мере одно устройство для снижения давления для расширения текучей среды в трубопроводе для получения более низкого давления; и транскритический тепловой насос для обеспечения циркуляции сверхкритической текучей среды, причем сверхкритическая текучая среда подвергается охлаждению, чтобы выделить тепло для передачи к находящейся под давлением текучей среде в трубопроводе перед по меньшей мере одним расширением указанной находящейся под давлением текучей среды.

Способ предназначен для раздачи природного газа потребителям газа низкого давления с получением сжиженного газа. Способ заключается в отводе потока газа из магистрального трубопровода высокого давления, расширении его в многоступенчатой турбине с получением в ней механической энергии, теплообмене в теплообменнике и раздаче полученного газа низкого давления потребителю, при этом газ из магистрального трубопровода высокого давления направляют на вход тракта горячего теплоносителя теплообменного устройства и охлаждают, а на выходе из тракта его направляют в многоступенчатую турбину, где охлажденный поток газа расширяют до давления меньше заданного давления подачи потребителю в трубопроводе низкого давления, при котором подаваемый поток сжатого природного газа меняет свои параметры и свое агрегатное состояние, переходя из однофазного на входе в многоступенчатую турбину в двухфазный поток на выходе из нее, при этом из последнего отделяют в сепараторе жидкую фазу и направляют для раздачи в трубопровод сжиженного газа, а оставшуюся после отделения часть потока направляют на вход тракта холодного теплоносителя теплообменного устройства для подогрева при теплообмене с подаваемым потоком сжатого природного газа из магистрального трубопровода высокого давления и далее сжимают эту часть в дожимающем компрессоре до давления, равного давлению в трубопроводе низкого давления, одновременно нагревая ее до положительных температур, а затем направляют для раздачи в трубопровод низкого давления, причем на сжатие этой части природного газа в компрессоре используют механическую энергию расширения, полученную в многоступенчатой турбине, при этом отделение сжиженной части природного газа осуществляют после каждой ступени турбины.

Изобретение относится к газораспределительным станциям для снижения давления газа в газопроводе. Газораспределительная станция содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, эжектор, вихревую трубу, теплообменник.

Изобретение относится к холодильной технике и может быть использовано в системах кондиционирования воздуха, холодильниках и т.д. Воздушная турбохолодильная установка содержит компрессор, расположенный на одном валу с турбодетандером, электродвигатель, двухполостной теплообменник, рекуператор, влагоотделитель, холодильную камеру с охладителем и вентилятором.

Способ работы газотурбодетандерной энергетической установки тепловой электрической станции заключается в том, что атмосферный воздух сжимают в компрессоре, подают в камеру сгорания, сжигают топливо, продукты сгорания расширяют в газовой турбине, полезную работу газовой турбины используют для выработки электроэнергии, полезную работу турбодетандера используют для привода компрессора.

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Газораспределительная станция содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, эжектор, вихревую трубу, теплообменник, блок управления снабжен датчиком температуры наружного воздуха и регулятором расхода горячего потока вихревой трубы, наружная поверхность емкости сбора конденсата покрыта теплоизолирующим и теплоаккумулирующим материалом, при этом конденсатоотводчик включает корпус с крышкой и коническое днище, соединенное с емкостью сбора конденсата, и снабжен отражательной перегородкой, которая выполнена с покрытием, полученным ионно-плазменным методом, стеклоподобной нанообразной пленкой из оксида тантала со стороны патрубка ввода холодного потока из вихревой трубы, кроме того, отражательная перегородка соединена с крышкой и расположена между патрубками ввода и вывода холодного потока.

Поршневой бесклапанный детандер содержит цилиндр, в открытой части которого расположены окна для восполнения утечек газа из полости сжатия и сообщены с охлаждаемым объемом газа.

Изобретение может использоваться для утилизации избыточной энергии газа. Газотурбогенератор содержит турбину, асинхронный генератор, датчик частоты вращения турбины, проходные изоляторы, трехфазное устройство подогрева газа, датчик температуры, блок управления, контактор.

Изобретение относится к технологии раздельного извлечения компонент газовых смесей, в частности очистки гексафторида урана от легколетучих примесей. Способ охлаждения газовой смеси включает предварительную очистку сжатого атмосферного воздуха, предварительное захолаживание сжатого атмосферного воздуха, охлаждение сжатого атмосферного воздуха в турбодетандере до заданной температуры, отвод работы, затраченной на расширение, регулирование холодопроизводительности.

Использование: энергетические газотурбодетандерные установки с использованием избыточного давления топливного газа могут быть применены для электроснабжения компрессорных станций (КС) магистральных газопроводов.

Изобретение относится к газоредуцирующему оборудованию. Пневматический детандер-генераторный агрегат включает приводной пневмодвигатель.

Изобретение относится к области криогенной техники. Способ включает сжатие атмосферного воздуха до давления ниже критического, предварительное охлаждение сжатого воздуха, комплексную очистку, разделение сжатого очищенного воздуха на прямые детандерный и технологический потоки, охлаждение сжатых прямых потоков холодом обратных потоков, адиабатическое расширение прямого детандерного потока воздуха, ожижение, дросселирование прямого технологического потока воздуха.

Настоящее изобретение представляет способ получения энергии при снятии давления с технологического природного газа (P) перед подачей этого газа в установку синтеза ацетилена (H), который включает в себя этапы: а) подачи технологического природного газа (P) из трубопровода снабжения технологическим природным газом с температурой от -10°C до 25°C и под давлением от 30 бар до 70 бар на первую ступень нагрева (WT1) и разогрев технологического природного газа (P) на первой ступени нагрева (WT1) до температуры от 20°C до 40°C, b) подачи разогретого на первой ступени нагрева (WT1) технологического природного газа (P) на вторую ступень нагрева (WT2) и разогрев технологического природного газа (P) на второй ступени нагрева (WT2) до температуры от 70°C до 140°C, c) подачи разогретого на второй ступени нагрева (WT2) технологического природного газа (P) на устройство для снятия давления (E) и снятие давления с технологического природного газа (P) в устройстве снятия давления (E) до величины 2-8 бар, причем устройство для снятия давления (E) представляет собой поршневую расширительную машину, которая работает от снятия давления с технологического природного газа (P) и вырабатывает энергию.
Наверх