Система электроснабжения летательного аппарата

Изобретение относится к области электромашиностроения и может быть использовано в системе электроснабжения гиперзвуковых и детонационных летательных аппаратов. Система электроснабжения летательного аппарата содержит приводной авиационный двигатель, генератор, выводные концы которого электрически соединены с выпрямительным устройством, выходные концы выпрямительного устройства соединены с инвертором. Инвертор подключен к потребителю электрической энергии. Авиационный двигатель выполнен в виде детонационного двигателя, на сопло которого установлен источник магнитного поля и обмотка, которая электрически соединена с выпрямительным устройством. Повышается надежность и энергоэффективность, упрощается конструкция электроснабжения летательного аппарата. 1 ил.

 

Изобретение относится к области электромашиностроения и может быть использовано в системе электроснабжения гиперзвуковых и детонационных летательных аппаратов.

Известен МГД-генератор (см. патент Японии N 2713216, кл. Н02К 44/00, оп.1998), содержащий корпус, выполненный в виде полого цилиндра, открытые торцы которого служат для впуска и выведения жидкостной рабочей среды, электромагнитные обмотки, создающие магнитное поле, направленное перпендикулярно оси цилиндра, и размещенные в цилиндре электроды, установленные параллельно направлению магнитного поля. В качестве рабочей электропроводной среды, перемещающейся вдоль оси цилиндра, используется морская вода, например, в виде морских волн, а электрическая нагрузка подключена к электродам.

Недостатками данного МГД-генератора является его низкая эффективность, обусловленная малой скоростью перемещения жидкости в полом цилиндре и низкой электропроводностью естественной морской воды.

Известен МГД-генератор (см. патент РФ N 2109353, кл. Н02К 44/00, оп. 1998), содержащий корпус из немагнитного материала, имеющий форму тора, с диэлектрическим покрытием на внутренней стенке и электромагнитную систему, состоящую из обмоток возбуждения и силовых обмоток, подключенных к нагрузке В качестве рабочей среды, заполняющей тороидальный канал, используется высокотемпературный газ, который вводится в канал из камер сгорания, снабженных устройствами импульсного введения в них топлива и окислителя. Камеры сгорания распределены по длине тора и встроены в его стенку, при этом в тороидальном канале размещены термоэлектроды, расположенные в соответствующих зонах расположения обмоток возбуждения.

Недостатком данного МГД-генератора является недостаточно высокая эффективность преобразования энергии перемещающейся высокотемпературной электропроводной среды в электрическую энергию вследствие ограниченного объема, занимаемого в тороидальном пространстве ионизированным высокотемпературным газом, и низкой электропроводности рабочей среды. Кроме того, данный МГД-генератор имеет низкую эксплуатационную надежность, поскольку высокотемпературная рабочая среда взаимодействует с внутренними поверхностями камер сгорания и тора и элементами, размещенными в них. Эксплуатационная надежность снижается также вследствие сложности конструкции системы получения высокотемпературной рабочей среды.

Известен МГД-генератор [Бут Д.А. Бесконтактные электрические машины, ст. 375-376, Москва "Высшая школа" 1990], содержащий камеру сгорания, осесимметричный канал, якорную обмотку и источник магнитного поля. При движении газа за фронтом волны, магнитное поле деформируется за счет наведенных в газе тангенциальных токов, потокосцепление якорной обмотки изменяется, возникает ЭДС и ток в цепи якоря и нагрузки.

Недостатком данного МГД-генератора является сложность конструкции, ограниченные функциональные возможности, низкая энергоэффективность и надежность, связанная с технической непроработанностью конструктивной схемы.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является система электроснабжения летательного аппарата (С.А. Грузков, Электрооборудование летательных аппаратов, том 1, рис. 14.3а, стр. 484, Москва, издательство МЭИ 2005), содержащая приводной авиационный двигатель, который приводит в движение ротор генератора, выводные концы генератора, электрически параллельно соединены с выпрямительным устройством и сетью переменного тока, выходные концы выпрямительного устройства соединены с инвертором, а инвертор подключен непосредственно к потребителю электрической энергии.

Недостатком ближайшего аналога является сложность конструкции, механическая нагрузка на приводной авиационный двигатель, низкая надежность и КПД системы, т.к. преобразование энергии имеет механическую составляющую в виде вращения ротора генератора.

Задача изобретения - расширение функциональных возможностей системы электроснабжения летательного аппарата, благодаря отказу от механической составляющей, из-за отсутствия ротора генератора, преобразования энергии и заменой ее на гидродинамическую составляющую магнитогидродинамического генератора.

Техническим результатом является повышение надежности и энергоэффективности, упрощение конструкции электроснабжения летательного аппарата, благодаря отказу от механической составляющей, из-за отсутствия ротора генератора, преобразования энергии и заменой ее на гидродинамическую составляющую магнитогидродинамического генератора.

Поставленная задача решается и указанный результат достигается тем, что система электроснабжения летательного аппарата, содержащая приводной авиационный двигатель, генератор, выводные концы которого электрически соединены с выпрямительным устройством, выходные концы выпрямительного устройства соединены с инвертором, а инвертор подключен непосредственно к потребителю электрической энергии, согласно изобретению авиационный двигатель выполнен в виде детонационного двигателя, на сопло которого установлен источник магнитного поля и обмотка, которая электрически соединена с выпрямительным устройством.

Существо изобретения поясняется чертежом. На чертеже изображена структурная схема системы электроснабжения летательного аппарата.

Предложенная система электроснабжения летательного аппарата содержит камеру сгорания детонационного двигателя 1, сопло детонационного двигателя 2, по верхней части которой расположена обмотка 3 с постоянными магнтами 4, обмотка 3 содержит выводные концы 5, которые электрически соединены с выпрямительным устройством 6, выходные концы выпрямительного устройства соединены с инвертором 7, который подключен непосредственно к потребителю электрической энергии, между соплом детонационного двигателя 2 и обмоткой 3, расположена тепло- и электроизолирующая прокладка 8, позиции камера сгорания детонационного двигателя 1, сопло детонационного двигателя 2, обмотка 3, постоянные магниты 4, выводные концы 5, тепло- и электроизолирующая прокладка 8 системы электроснабжения находятся во внутренней части корпуса 9 детонационного двигателя, с целью охлаждения постоянных магнитов 4 и обмотки 3, корпус 9 имеет отверстия 10.

Предложенная система электроснабжения летательного аппарата с детонационным или гиперзвуковым двигателем работает следующим образом: в камере сгорания детонационного двигателя 1, периодически возбуждается сильная ударная волна, которая распространяется в сопле детонационного двигателя 2. Постоянные магниты 4, расположенные во внешней части сопла детонационного двигателя 2, создают внешнее магнитное поле, которое замыкается через внутреннюю часть сопла детонационного двигателя 2. При движении отработанного, проводящего газа за фронтом волны в сопле детонационного двигателя 2, внешнее магнитное поле деформируется за счет наведенных в газе тангенциальных токов, потокосцепление в обмотке 3 изменяется, следовательно в обмотке 3 наводится ЭДС. При подключении выводных концов 5 обмотки 3 к нагрузке в замкнутой цепи пойдет электрический ток. Под нагрузкой подразумевается потребитель электрической энергии. Электрическая энергия от выводных концов 5 до потребителя электрической энергии доходит следующим образом: по выводным концам 5 импульсы электрической энергии приходят на выпрямительное устройство 6, после выпрямительного устройства 6, электрическая энергия имеет постоянный (выпрямленный) вид, после чего, посредством инвертора 7, электрическая энергия преобразуется в переменный тип нужной (определенной) частоты, которым питается потребитель электрической энергии. В результате энергия движения отработанных газов детонационного двигателя преобразуется в электрическую энергию. Тепло- и электроизолирующей прокладки 8 выполняет функцию теплоизоляции и электроизоляции обмотки 3 и постоянных магнитов 4 с соплом детонационного двигателя 2. Охлаждение постоянных магнитов 4 и обмотки 3 осуществляется набегающим потоком воздуха из отверстий 10, выполненны в корпусе 9.

Итак, заявляемое изобретение позволит расширить функциональные возможности, повысить надежность, энергоэффективность и упростить конструкцию системы электроснабжения летательного аппарата, благодаря отказу от механической составляющей, из-за отсутствия ротора генератора, преобразования энергии и заменой ее на гидродинамическую составляющую, магнитогидродинамического генератора.

Система электроснабжения летательного аппарата, содержащая приводной авиационный двигатель, генератор, выводные концы которого электрически соединены с выпрямительным устройством, выходные концы выпрямительного устройства соединены с инвертором, а инвертор подключен непосредственно к потребителю электрической энергии, отличающаяся тем, что авиационный двигатель выполнен в виде детонационного двигателя, на сопло которого установлен источник магнитного поля и обмотка, которая электрически соединена с выпрямительным устройством.



 

Похожие патенты:

Изобретение относится к электротехнике, к магнитогидродинамическим генераторам. Технический результат состоит в расширении эксплуатационных возможностей.

Изобретение относится к электротехнике. Технический результат состоит в снижении производительности насоса от изменения уровня высоты перекачиваемой жидкости внутри насоса в вертикальном положении и достижении приемлемых массогабаритных показателей.

Изобретение относится к судовым реактивным движителям. Магнитогидродинамический программно-управляемый шаговый двигатель для морских микродронов выполнен в виде двух цилиндрических труб вложенных друг в друга с ортогонально размещёнными электромагнитами.

Изобретение относится к пневмоаккумуляторной станции. Пневмоаккумуляторная электростанция содержит электрический входной/выходной контур, компрессорные и расширительные средства и искусственно изготовленный пневмоаккумулятор.

Изобретение относится к пневмоаккумуляторной станции. Пневмоаккумуляторная электростанция содержит электрический входной/выходной контур, компрессорные и расширительные средства и искусственно изготовленный пневмоаккумулятор.

Изобретение относится к электротехнике и может быть использовано в магнитогидродинамических генераторах. Технический результат заключается в повышении КПД, надежности и долговечности.

Изобретение относится к электротехнике, а именно к магнитной гидродинамике, и может быть использовано в металлургии, в ядерной и нетрадиционной энергетике, машиностроении, химической промышленности, а также в космической технике.

Изобретение относится к электротехнике, а именно к прямому преобразованию потоков жидкостей и газов в трубопроводах в электрическую энергию, и может быть использовано для питания датчиков и приборов, установленных на трубопроводах в труднодоступных для централизованного энергоснабжения и удаленных районах нефтедобычи и нефте-газоперекачки и передачи информации по измеряемым параметрам.

Изобретение относится к средствам питания скважинной аппаратуры. Техническим результатом является повышение надежности и ресурса работы устройства, а также упрощение конструкции и его эксплуатации.

Изобретение относится к области гиперзвуковых летательных аппаратов (ГЛА). Способ управления аэродинамическими характеристиками гиперзвукового летательного аппарата включает установку плоских МГД-генераторов попарно симметрично относительно плоскости симметрии элементов оперения ГЛА, а между ними располагают магнитоэкранирующие пластины, выполненные из ферромагнитного материала с точкой Кюри, превышающей рабочую температуру элементов ГЛА, обеспечивающих устойчивость, управляемость и балансировку.

Изобретение относится к области авиационной техники. Малозаметный самолет короткого взлета и посадки (МСКВП) содержит стреловидное крыло, составную силовую установку (СУ) с подъемными реактивными двигателями в обтекателях по бортам фюзеляжа и маршевыми реактивными двигателями на подкрыльных пилонах, хвостовое оперение и трехопорное убирающееся колесное шасси.

Изобретение относится к воздушно-космической технике. Летательный аппарат состоит из жестко связанных с корпусом блока управления и двух реактивных двигателей, изогнутых и повернутых в разные стороны выхлопных труб для выхода воспламененного топлива, выходящего также и через выхлопное сопло, размещенного впереди этого сопла и жестко связанной с ним конусообразной камеры сгорания с конусообразным выступом впереди, жестко связанной также с вышеупомянутыми выхлопными трубами и имеющей гидравлическую связь с блоком управления.

Изобретение относится к области авиации. Технический результат заключается в осуществлении взлета и посадки самолета с любой взлетно-посадочной полосы.

Изобретение относится к области бесконтактных способов ведения боевых действий. Способ бесконтактного ведения боевых действий включает этап осуществления разведывательных действий, этап подготовки сил и средств для нанесения поражения разведанных объектов противника и этап доставки с использованием ракетоносцев-доставщиков в зону поражающего радиуса действия вооружения для уничтожения разведанных целей противника.

Изобретение относится к летательным аппаратам (ЛА), предназначенным для борьбы с защищенными целями, обладающими высокоэффективными средствами противоракетной и противовоздушной обороны (ПРО/ПВО).

Изобретение относится к способу управления скоростью полета самолета с учетом стабилизации скорости. Для управления скоростью полета самолета используют основной управляющий сигнал, поступающий на привод тяги двигателей, а также дополнительный управляющий сигнал, поступающий на привод секций интерцепторов, условие подключения которого определяется заданной величиной разницы между текущей и заданной приборной скоростью, которая может задаваться пилотом с пульта управления или автоматически при решении оптимизационных задач и выбирается из условия потребной величины долевого участия интерцепторов в решении задачи стабилизации и отслеживания заданной приборной скорости совместно с управлением тягой двигателей определенным образом.

Изобретение относится к ракетной технике. В способе контроля поражения цели крылатой ракетой (КР) после выполнения пуска и полета КР по индивидуальной траектории, выбора цели и захода на цель, снятия ступеней предохранения боевого оснащения на заданном расстоянии до цели, задаваемом из условий неминуемого поражения цели, в бортовой аппаратуре КР производится по заданному алгоритму формирование массива данных.

Настоящее изобретение относится к авиации. Способ вертикального перемещения и зависания самолета в воздухе заключается в том, что воздушный поток от винтовых двигателей (3,4) обдувает крыло.

Изобретение относится к области электроэнергетики, в частности к способам управления стабилизацией устройств для диагностики состояния воздушных линий электропередач.

Дистанционная резервированная система автоматизированного модального управления в продольном канале маневренных пилотируемых и беспилотных летательных аппаратов содержит ручку пилота/задатчик тангажа, вычислитель автопилота угла тангажа, сервопривод, датчик угла тангажа, ограничитель предельных режимов, датчик угловой скорости тангажа, блок балансировки, вычислитель алгоритма модального управления (ВАМУ), систему воздушных сигналов, датчик линейных ускорений, идентификатор угла атаки, соединенные определенным образом.
Наверх