Способ повышения безотказности головного многофункционального взрывателя при пробитии прочных преград

Изобретение относится к области вооружений и может быть использовано в многофункциональных взрывателях для повышения безотказности изделия при попадании и пробитии прочных преград. Электронный блок содержит нанокомпозитную заливку на основе полимера «Виксинт ПК-68» с 6% добавлением углеродных трубок «Деалтом». Добавление углеродных нанотрубок повышает модуль упругости нанокомозита до 125 МПа, при этом коэффициент поглощения упругих волн остается практически без изменения. Обеспечивается защита радиоэлектронных элементов от ударных воздействий. 1 ил.

 

Изобретение относится к области вооружений и может быть использовано в многофункциональных взрывателях для повышения безотказности изделия при попадании и пробитии прочных преград, что обеспечивает их функционирование при установках на заданное действие (контактное, контактное замедленное, дистанционное).

Безотказность обеспечивает независимость эффективности действия взрывателя от возможного влияния различных внешних и внутренних факторов (погодных условий, неблагоприятных условий встречи с преградой, случайных отклонений параметров и допусков на изготовление деталей механизмов, условий и срока хранения взрывателя до момента его применения).

Повышенная безотказность достигается за счет высокой унификации отработанных узлов и деталей, идентичных условий отработки, постоянного увеличения статистических данных по безотказности действия в условиях полигонных испытаний и боевого применения, в том числе в составе новых боеприпасов, а также за счет применения современных нанотехнологий.

Элементная база многофункциональных взрывателей осколочно-фугасных снарядов танковых пушек при попадании в преграду (цель) находится под воздействием механического удара одиночного действия с пиковым ударным ускорением 150000 м/с и длительностью действия 0,1-2 мс. Наиболее подвержены пиковым механическим ударам полупроводниковые приборы, входящие в состав электронного блока многофункционального взрывателя. Это приводит к нарушению функционирования и отказам аппаратуры за счет механических деформаций и разрушений [1, 2].

Часто используемым способом защиты взрывателей от ударных воздействий является заливка его электронных компонентов полимерными компаундами.

Из известных наиболее близким по технической сущности является способ защиты аппаратуры от ударных воздействий, реализованный в устройстве для защиты от механических воздействий [3], согласно которому пакет печатных плат устанавливают на амортизирующих прокладках внутри одного корпуса, который заполняют дискретными рабочими средами. Корпус выполняют деформируемым и размещают в другом жестком корпусе, пространство между корпусами заполняют демпфирующим материалом - полимерным компаундом.

Однако этот способ не позволяет обеспечить надежное функционирование электронного блока (2) многофункционального взрывателя при ударных и вибрационных воздействиях при попадании в преграду (цель), так как демпфирующий материал прототипа, имеет невысокую прочность. Применение демпфирующего материала прототипа приводит к тому, что при ударе о преграду происходит разрушение полупроводниковых приборов и электронный блок выходит из строя, не обеспечивая тем самым надежное срабатывание взрывателя при установке на заданное действие.

Техническим результатом заявляемого изобретения является расширение области применения и повышение безотказности многофункционального взрывателя после попадания и пробития прочной преграды с целью поражения укрытой цели.

Сущность предлагаемого способа заключается в том, что радиоэлектронные элементы электронного блока (2) размещаются в корпусе взрывателя (1), внутренний объем которого заполняют демпфирующим материалом, отличным от полимерного компаунда, используемого в настоящее время.

Известна заливка радиоэлектронных элементов полимером «Виксинт ПК-68». Однако «Виксинт ПК-68» имеет малое значение модуля упругости (40 Мпа), что не обеспечивает необходимые значения ударопрочности и удароустойчивости взрывателя при пробитии преграды.

Согласно предлагаемому изобретению в качестве демпфирующего материала применяют композит с высокой прочностью, жесткостью и твердостью, включающий в себя полимер с небольшим процентным добавлением многослойных углеродных нанотрубок (15).

Цель изобретения - создание нанокомпозита для защиты радиоэлектронных элементов от ударных воздействий, обладающего большим коэффициентом поглощения упругих волн и значительным коэффициентом модуля упругости.

Для реализации цели необходимо изготовить композит заливки электронного блока (2) в состав которого входят полимер и многослойные углеродные нанотрубки (15). Углеродные нанотрубки имеют значения модуля упругости на один два порядка выше, чем у стали или иридия. Небольшое процентное добавление углеродных нанотрубок повышает модуль упругости нанокомозита до 125 МПа, при этом коэффициент поглощения упругих волн остается практически без изменения.

На фиг. 1 показана конструкция многофункционального взрывателя, радиоэлектронные элементы которого залиты нанокомпозитной заливкой на основе полимера «Виксинт ПК-68» с 6% добавлением многослойных углеродных нанотрубок «Деалтом» (15).

Многофункциональный взрыватель включает в себя следующие основные элементы:

1 - корпус;

2 - электронный блок с нанокомпозитной заливкой;

3 - приемная катушка;

4 - металлический защитный кожух;

5 - гайка;

6 - колодка;

7 - предохранительно-детонирующее устройство;

8 - детонатор;

9 - поддон;

10 - гильза;

11 - жало с пружиной;

12 - поворотная втулка;

13 - резиновая прокладка;

14 - полимерный кожух;

15 - углеродные нанотрубки.

Электронный блок с нанокомпозитной заливкой на основе полимера «Виксинт ПК-68» с 6% добавлением углеродных нанотрубок «Деалтом» имеет большой коэффициент поглощения волновой энергии и значительный модуль упругости, обеспечивая тем самым необходимые значения ударопрочности и удароустойчивости электронного блока при попадании и пробитии прочной преграды и безотказность взрывателя в целом.

Список использованных источников:

1. Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование / под ред. А.И. Коробова. - Москва: Радио и связь, 2002. - 272 с.

2. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств - Техносфера, 2005. - 504 с.

3. Иванов А.В., Ильин С.Л. Устройство для защиты от механических воздействий. - ФИПС. Патент на изобретение №2302091 от 27.06.2007 Бюл. №18.

Способ повышения безотказности головного многофункционального взрывателя при пробитии прочных преград, отличающийся тем, что электронный блок многофункционального взрывателя содержит нанокомпозитную заливку на основе полимера «Виксинт ПК-68» с 6% добавлением углеродных нанотрубок «Деалтом», имеет большой коэффициент поглощения волновой энергии и модуль упругости до 125 МПа, обеспечивая тем самым необходимые значения ударопрочности и удароустойчивости электронного блока при попадании и пробитии прочной преграды и безотказность взрывателя в целом.



 

Похожие патенты:

Изобретение относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам с использованием вторичных (бризантных) взрывчатых веществ (ВВ), и может быть применено в качестве малогабаритного средства инициирования зарядов ВВ промышленного назначения, используемым в горнорудной, угледобывающей и других отраслях промышленности, а также в военной отрасли.

Изобретение относится к управляемым артиллерийским снарядам с комбинированным, контактным и бесконтактным срабатыванием взрывателя для дистанционного инициирования взрыва от воздействия излучения внешнего источника.

Изобретение относится к вооружению и военной технике и может быть использовано во взрывателях к боеприпасам для поражения воздушных целей. Способ поражения воздушной цели боеприпасом с неконтактным датчиком цели заключается в том, что боеприпас выстреливают в зону его встречи с целью.
Изобретение относится к военной технике и может быть использовано при создании помехозащищенных взрывателей, применяемых в различных боеприпасах. Во взрыватель снаряда устанавливают датчик, позволяющий непрерывно в процессе полета снаряда измерять давление в зоне снаряда.

Изобретение относится к неконтактным взрывателям и может быть использовано для повышения помехозащищенности радиовзрывателей от воздействия различных помех. Предлагаемый способ защиты радиовзрывателя на основе автодина от радиопомех осуществляется следующим образом.

Изобретение относится к области взрывной техники, к взрывателям зарядов взрывчатого вещества (ВВ) с неконтактной функцией срабатывания, и может быть использовано в автоматических и подствольных гранатометах.

Изобретение относится к области вооружения, в частности к взрывателям реактивных снарядов. Сущность изобретения заключается в построении многорежимного взрывателя на основе универсальной конструктивной платформы и модульном исполнении функциональных узлов.

Изобретение относится к сейсмическим противопехотным неконтактным взрывательным устройствам, применяемым в инженерных боеприпасах при устройстве минно-взрывных заграждений.

Изобретение относится к области вооружения, в частности к взрывателям реактивных снарядов. Комбинаторный взрыватель для реактивных снарядов содержит корпус, внутри которого размещены соединенные между собой источник питания, инерционный замыкатель, блок дистанционной установки режима действия взрывателя, электронный блок измерения параметров активного участка траектории, электронный блок управления подрывом взрывателя, предохранительно-исполнительный механизм, включающий электродетонатор, предохранительную заслонку, предотвращающую передачу детонации от электродетонатора к детонатору в служебном обращении, привод перемещения заслонки с электровоспламенителем, неконтактный датчик цели, контактный датчик цели, электронно-временное устройство, детонатор.

Изобретение относится к области вооружения, в частности к взрывателям реактивных снарядов. Платформа для модульной конструкции взрывателей реактивных снарядов содержит корпус, внутри которого размещены соединенные между собой источник питания, инерционный замыкатель, блок дистанционной установки режима действия взрывателя, электронный блок измерения параметров активного участка траектории, электронный блок управления подрывом взрывателя, предохранительно-исполнительный механизм, включающий электродетонатор, предохранительную заслонку, предотвращающую передачу детонации от электродетонатора к детонатору в служебном обращении, привод перемещения заслонки с электровоспламенителем, неконтактный датчик цели, контактный датчик цели, электронно-временное устройство, детонатор.

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSi2 со структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением PGd (от 0,1 до менее 1)⋅10-8 Торр или PGd (от более 1 до 10)⋅10-8 Торр на предварительно очищенную поверхность подложки Si(111), нагретую до Ts=350 ÷ менее 400°С или Ts=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм.

Настоящее изобретение относится к режущему инструменту с покрытием. Режущий инструмент с покрытием содержит корпус из твердого сплава и покрытие, нанесенное осаждением из газовой фазы (PVD).

Изобретение относится к области оптического материаловедения, в частности к способу записи информации на носитель из нанопористого кварцоидного стекла под действием лазерного излучения.

Изобретение относится к области машиностроения, а именно к способам получения покрытия на поверхности стальных деталей путем переноса высокотемпературным газовым потоком наночастиц.

Изобретение относится к области машиностроения, а именно к способам получения покрытия на поверхности деталей из цветных металлов путем переноса высокотемпературным газовым потоком наночастиц.

Изобретение относится к способам обработки дисперсных углеродных материалов и конкретно касается получения деагломерированных недеформированных однослойных углеродных нанотрубок для хроматографического разделения по хиральности.

Изобретение относится к области порошковой металлургии, в частности к способу получения композиционного материала бор-углерод. Способ включает механическую обработку в планетарной мельнице смеси порошков аморфного бора с размерами частиц менее 2 мкм и фуллерита С60 с размерами частиц менее 200 мкм, которые берут в соотношении от 1:5 до 5:1, с добавлением метилового или этилового спирта в количестве 1 мл на 1 г смеси в режиме 900-1200 оборотов в минуту в течение 10-30 мин с получением гомогенного состояния, извлечение смеси из мельницы, сушку смеси на воздухе при температуре 100°С в течение 2 ч и воздействие на смесь давлением в пределах 1,5-2,5 ГПа и температурой в пределах от 900 до 1100°С в течение 60-120 мин.

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов.

Изобретение относится к химической промышленности и нанотехнологии. Сначала графит обрабатывают раствором перекиси водорода в серной кислоте, причем количество перекиси водорода берут от 0,15 до 0,30 масс.ч.

Изобретение относится к водоочистке. Способ очистки загрязненных грунтовых вод включает введение суспензии наноразмерного нуль-валентного железа в пробуренную скважину 1 под повышенным давлением, превышающим давление очищаемого горизонта.

Изобретение относится к керамическому материаловедению, получению композиционного материала с матрицей диоксида циркония, стабилизированного в тетрагональной форме, и оксида алюминия. Материал может быть использован для изготовления изделий конструкционного и медицинского назначения, в частности ортопедической стоматологии. Техническим результатом изобретения является повышение параметров трещиностойкости и прочности при снижении величины микротвердости керамического композиционного материала с матрицей диоксида циркония. Керамический композиционный материал на основе шихты, имеющей химический состав (мас.%): 68,5≤ZrO2≤77,5; 14≤CeO2≤16; 6≤Al2O3≤16,5; 0,5≤СаО≤1,0, содержит тетрагональный диоксид циркония, стабилизированный катионами церия (Ce)-TZP, оксид алюминия (корунд) и [СаСе]Al12O19 (гексаалюминат кальция - церия), при следующем соотношении фаз (об.%): 78÷87 (Ce)-TZP, 7÷17 [CeCa]Al12O19, остальное - корунд. Керамический материал имеет прочность при статическом изгибе не менее 900 МПа, микротвердость 7,5-8,5 ГПа и сохраняет величины прочностных характеристик после теста гидротермальной обработки согласно ISO 13356 (4.8 Accelerated Aging Test). 4 ил., 1 табл., 3 пр.
Наверх