Установка комплексной очистки природного газа

Изобретение относится к технике распределения газов и может быть использовано для очистки природных газов от вредных примесей в газораспределительных станциях (ГРС) и газораспределительных пунктах (ГРП). Установка комплексной очистки природного газа содержит входной газопровод с отсекающей запорной арматурой, Y–образный центробежный очиститель, фильтр, причем Y–образный центробежный очиститель представляет собой три Y–образно соединенные трубы, снабженные снаружи оребрением, на входе внутри входной наклонной трубы устроен винтовой завихритель, в месте соединения входной и выходной наклонных труб и на выходе из выходной наклонной трубы размещены каплеотбойники, вертикальная труба очистителя соединена снизу с конденсатосборником–отстойником, выполненным в виде вертикального трубчатого теплообменника, состоящего из верхнего коллектора и пирамидального днища, соединенных между собой вертикальными трубами, образующими зону нагрева, а пирамидальное днище через трубопровод с запорной арматурой соединено с емкостью сбора конденсата, расположенной за пределами помещения ГРС. Техническим результатом является повышение надежности и эффективности установки комплексной очистки природного газа. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к технике распределения газов и может быть использовано для очистки природных газов от вредных примесей: капель конденсата, кристаллогидратов углеводородов и механических частиц в газораспределительных станциях (ГРС) и газораспределительных пунктах (ГРП).

Известен узел очистки ГРС, снабженной дополнительным технологическим блоком, содержащим последовательно расположенные узлы переключения (запорную арматуру), расширительную камеру с завихрителем, конденсатосборник и собственно узел очистки (фильтр), при этом исключение гидратообразования в газопроводе обеспечивается подогревом газа перед редуцированием и подогревом внутреннего пространства технологического блока [Патент РФ №2079040, МПК F 17 D 1/04, 1997].

Основным недостатком известного устройства является наличие в его конструкции расширительного бака с завихрителем, выполненным в форме направляющих лопаток, который занимает значительный объем помещения ГРС, не обеспечивая в тоже время требуемую степень очистки, отсутствие подогрева самого конденсатосборника, приводящее к повышению концентрации остаточных газов (метана и др.) в конденсате, что снижает экономическую и экологическую эффективность очистки газа.

Более близким к предлагаемому изобретению является узел комплексной очистки природного газа, содержащий входной газопровод с отсекающим запорным устройством (арматурой), соединенные с ним через отводные газопроводы и запорную арматуру, циклон (очистное устройство) или батарею циклонов, фильтр, конденсатосборник–отстойник, выполненный в виде вертикального прямоугольного корпуса с пирамидальным днищем, средняя зона корпуса которого снабжена продольными щелевыми воздушными каналами, образуя зону нагрева, коническое днище циклона соединено через трубопровод, снабженный запорной арматурой, гидрозатвором и дросселем, с боковой стенкой корпуса конденсатосборника–отстойника ниже зоны нагрева, крышка конденсатосборника–отстойника соединена через выхлопной газопровод, снабженный обратным клапаном и запорной арматурой с выходным газопроводом, а его пирамидальное днище соединено через трубопровод и запорную арматуру с емкостью сбора конденсата, расположенной за пределами помещения ГРС [Патент РФ №2657671, МПК F 17 D 1/04, B 04 C 5/10, 2018].

Основным недостатком известного устройства является необходимость использования дополнительного фильтра, значительное количество дополнительной запорно–регулирующей арматуры, что требует дополнительной площади ГРС, усложняет конструкцию, снижая таким образом его надежность и эффективность.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является повышение надежности и эффективности установки комплексной очистки природного газа.

Технический результат достигается тем, что предлагаемая установка комплексной очистки природного газа содержит входной газопровод с отсекающим запорным устройством (арматурой), соединенные с ним через отводные газопроводы и запорную арматуру, Y–образный центробежный очиститель (вариант – батарея Y–образных центробежных очистителей), фильтр, соединенный через другую аппаратуру с выходным газопроводом, причем Y–образный центробежный очиститель представляет собой три Y–образно соединенные трубы, снабженные снаружи оребрением, уклоны двух наклонных труб Y–образного центробежного очистителя больше углов наклона естественного откоса воды, на входе внутри входной наклонной трубы устроен винтовой завихритель, в месте соединения входной и выходной наклонных труб и на выходе из выходной наклонной трубы размещены каплеотбойники, вертикальная труба вышеупомянутого очистителя соединена снизу с конденсатосборником–отстойником, выполненным в виде вертикального трубчатого теплообменника, состоящего из верхнего коллектора и пирамидального днища, соединенных между собой вертикальными трубами, образующими зону нагрева, а пирамидальное днище через трубопровод с запорной арматурой соединено с емкостью сбора конденсата, расположенной за пределами помещения ГРС.

Принципиальная схема установки комплексной очистки природного газа (УКОПГ) приведена на фиг.1.

УКОПГ содержит входной газопровод 1 с отсекающей запорной арматурой 2, соединенный с ним через отводные газопроводы 3, 4 и запорную арматуру 5, Y–образный центробежный очиститель 6 (вариант – батарея Y–образных центробежных очистителей 6), фильтр 7, соединенный через другую аппаратуру (на фиг. 1 не показана) с выходным газопроводом 8, причем Y–образный центробежный очиститель 6 представляет собой три Y–образно соединенные трубы 9, 10, 11, соответственно, снабженные снаружи оребрением 12, уклоны наклонных труб 9 и 10 больше углов наклона естественного откоса воды, на входе внутри трубы 9 устроен винтовой завихритель 13, в месте соединения наклонных труб 9 и 10 и на выходе из трубы 10 размещены каплеотбойники 14 и 15, вертикальная труба 11 соединена снизу с конденсатосборником–отстойником 16, выполненным в виде вертикального трубчатого теплообменника, состоящего из верхнего коллектора 17 и пирамидального днища 18, соединенных между собой вертикальными трубами 19, образующими зону нагрева, а пирамидальное днище 18 через трубопровод 20 с запорной арматурой 21соединено с емкостью сбора конденсата (на фиг.1 не показана), расположенной за пределами помещения ГРС.

В основу работы предлагаемого УКОПГ положены: состав природных газов, состоящих из углеводородов (СН4, С2Н6, С3Н8 и др.,) [Роддатис К.Ф., Соколовский Я.Б. Справочник по котельным установкам малой производительности.-М.: Энергия, 1975, С. 31, 32], которые способны при зимних температурах образовывать с водой, присутствующей в недостаточно осушенных газах кристаллогидраты, скорость образования которых многократно возрастает при интенсивном перемешивании и понижении температуры газа [Стаскевич Н.А., Северинец Г.Н., Вигдорчик Д.Я.- Л.: Недра, 1990, С. 39], а плотность на порядки превышает плотность самого газа [Справочник химика, т. VI.-Л.: 1967, . 21], а также возникновение центробежной силы при закручивании потока.

Установка используется в зимний период, когда наиболее возможно образование кристаллогидратных пробок, а расход природного газа максимальный .

УКОПГ работает следующим образом. Газ, содержащий капли конденсата, частицы кристаллогидратов углеводородов и механических примесей с давлением Р1 из входного газопровод 1 при закрытой запорной арматуре 2 и открытых запорных арматурах 5 через отводной газопровод 3, поступает в Y–образный центробежный очиститель 6 или батарею Y–образных центробежных очистителей 6 (количество очистителей 6 зависит от производительности ГРС и диапазона изменения ее нагрузок), где в винтовом завихрителе 13 происходит закручивание газового потока с созданием его устойчивого винтового движения по длине трубы 9, которое обеспечивает создание центробежных сил, в результате воздействия которых и значительной разности плотностей газовой фазы и примесей во входной наклонной трубе 9 происходит отделение газа от большей части вышеупомянутых примесей. Отброшенные к стенке трубы 9, примеси стекают за счет силы тяжести вниз в трубу 11 и далее в конденсатосборник– отстойник 16, а газ проходит каплеотбойник 14, где освобождается от значительной части оставшихся капель конденсата, частиц кристаллогидратов углеводородов и механических примесей и поступает в выходную наклонную трубу 10, где происходит дальнейшее его отделение от жидких и твердых примесей, проходит каплеотбойник 15, где также происходит его очистка от твердых и жидких примесей, после чего при давлении Р2, которое меньше Р1 за счет сопротивления очистителя 6, через отводной газопровод 4 поступает во входной газопровод 1 и фильтр 7, где происходит его окончательная очистка. Отброшенные к стенке выходной наклонной трубы 10 капли конденсата, частицы кристаллогидратов углеводородов и механических примесей, под действием сил тяжести стекают вниз в вертикальную трубу 11 и далее в конденсатосборник– отстойник 16. Одновременно с процессом очистки в Y–образном центробежном очистителе 6 осуществляется некоторый подогрев стенок его труб окружающим воздухом ГРС за счет наличия на их поверхности оребрения 12, которое многократно увеличивает площадь теплопередачи. При этом, в результате этого подогрева на внутренней поверхности труб очистителя 6 происходит частичное разрушение кристаллогидратов с выделение углеводородных газов, которые смешиваются с потоком очищаемого газа. В конденсатосборнике–отстойнике 16 происходит разделение жидкой смеси, состоящей из конденсата, частиц кристаллогидратов углеводородов и механических примесей за счет разности их плотностей под действием сил тяжести, в результате чего в верхнем слое собираются углеводороды, а нижний состоит из смеси водного конденсата и механических примесей. В тоже время, в результате подогрева углеводородного слоя в трубах 19 зоны нагрева, обеспечивающих большую площадь теплопередачи коденсатосборника– отстойника 16, воздухом, циркулирующим в помещении ГРС в углеводородном слое происходит интенсивное разрушение кристаллогидратов с выделение углеводородных газов, которые через вертикальную трубу 11 смешиваются с основным газовым потоком.

Удаление конденсата с механическими примесями из конденсатосборника–отстойника 16 осуществляется в зависимости от производительности ГРС постоянно или периодически через трубопровод 20 в емкость сбора конденсата (на фиг.1 не показана), расположенную за пределами помещения ГРС.

Таким образом, установка комплексной очистки природного газа, занимая минимальную площадь помещения и обладая простотой конструкции, обеспечивает надежную и эффективную очистку газа от водного конденсата, частиц кристаллогидратов и механических примесей, что предотвращает образование кристаллогидратной пробки в регуляторе давления (на фиг.1 не показан) внутри ГРС (ГРП) и в выходном газопроводе 8 на выходе из ГРС (ГРП), повышая тем самым надежность газоснабжения потребителей в зимний период.

1. Установка комплексной очистки природного газа, содержащая входной газопровод с отсекающей запорной арматурой, фильтр, соединенный через другую аппаратуру с выходным газопроводом, соединенные с входным газопроводом через отводные газопроводы и запорную арматуру центробежное очистительное устройство, завихритель, конденсатосборник–отстойник с зоной нагрева, соединенный через трубопровод с запорной арматурой с емкостью сбора конденсата, отличающаяся тем, что очистительное устройство выполнено в виде Y–образного центробежного очистителя, который представляет собой три Y–образно соединенные трубы, снабженные снаружи оребрением, уклоны двух, входной и выходной, наклонных труб Y–образного центробежного очистителя больше углов наклона естественного откоса воды, на входе внутри входной наклонной трубы устроен винтовой завихритель, в месте соединения входной и выходной наклонных труб и на выходе из выходной наклонной трубы размещены каплеотбойники, вертикальная труба вышеупомянутого очистителя соединена снизу с конденсатосборником–отстойником, выполненным в виде вертикального трубчатого теплообменника, вертикальные трубы которого образуют зону нагрева.

2. Установка комплексной очистки природных газов по п. 1, отличающаяся тем, что входной газопровод соединен через отводной газопровод и запорную арматуру с батареей Y–образных центробежных очистителей.



 

Похожие патенты:

Изобретение относится к области подготовки газообразного топлива к процессу эффективного сжигания и может быть использовано в системах газоснабжения на промышленных предприятиях и объектах ЖКХ.

Изобретение относится к газовой технике, в частности к газораспределительным станциям для снижения давления газа в газопроводе. Технической задачей предлагаемого изобретения является обеспечение эффективной эксплуатации газораспределительной станции при поддержании нормированных параметров по степени очистки природного газа от твердых частиц загрязнений, поступающих через эжектор к потребителю.

Газотурбодетандерная энергетическая установка содержит турбодетандер с регулирующим сопловым аппаратом, дожимной газовый компрессор, газотурбинную установку с регенеративным воздухоподогревателем, подогреватели газа высокого и низкого давления, воздухоохладитель, подогреватель теплоносителя, подводящий газопровод высокого давления (1,0-0,6 МПа), газопровод низкого давления, трубопроводы промежуточного теплоносителя (воды), котельные агрегаты ТЭС, систему управления давлением газа.

Изобретение относится к газораспределительным станциям для снижения давления газа в газопроводе. Газораспределительная станция содержит блок управления, технологический блок с газопроводом высокого и низкого давления, емкость сбора конденсата, соединенную с газопроводом высокого давления и через запорный орган с газопроводом низкого давления, эжектор, вихревую трубу, установленную на газопроводе высокого давления, теплообменник, соединенный с выходом горячего потока вихревой трубы, а выход ее холодного потока соединен с конденсатоотводчиком.

Изобретение относится к области газодобывающей промышленности и может быть использовано для перекачки газа при проведении ремонтных и профилактических работ на газопроводах-шлейфах и газосборных коллекторах в системах сбора скважинной продукции на газовых и газоконденсатных месторождениях.

Изобретение относится к способам транспортировки материалов по трубопроводу с помощью пневмогидравлического носителя в газодобывающей промышленности и может применяться для обеспечения стабильного протекания технологического процесса работы установки мембранного выделения гелиевого концентрата.

Изобретение относится к области машиностроения, а именно к средствам подготовки топливного газа в системе трубопроводного транспорта природного газа, и может найти применение в газовой промышленности, конкретнее в системах, обеспечивающих работу газоперекачивающих агрегатов (ГПА), установленных на компрессорных станциях (КС) магистральных газопроводов.

Группа изобретений относится к газовой промышленности и может быть использована для снабжения как природным, так и сжиженным углеводородным газом (СУГ) отдаленных от централизованной системы газоснабжения районов.

Изобретение относится к технике турбостроения, а именно к устройствам регулирования давления в газовой магистрали с помощью турбодетандеров, и может быть использовано на газораспределительных станциях для выработки электрической энергии.

Группа изобретений относится к системам распределения газов, которые могут быть использованы в газораспределительных станциях для подачи газа к потребителям. Автоматическая газораспределительная станция в первом варианте содержит модуль подготовки газа высокого давления и модуль редуцирования.
Наверх