Способ получения нанокапсул азофоски

Изобретение относится к способу получения нанокапсул азофоски, которые могут найти применение в области растениеводства. Способ включает стадии введения азофоски в суспензию гуаровой камеди в бутаноле в присутствии в качестве поверхностно-активного вещества препарата Е472с при перемешивании со скоростью 800 об/мин, с обеспечением массового соотношения ядро : оболочка при пересчете на сухое вещество 1:3, или 1:1, или 1:2, или 2:1, далее приливают фторбензол. Полученную суспензию отфильтровывают и сушат при комнатной температуре. Технический результат - упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 4 пр.

 

Изобретение относится к области нанотехнологии и растениеводства.

Ранее были известны способы получения микрокапсул солей.

В пат.2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009. Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999. Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул азофоски, отличающимся тем, что в качестве оболочки нанокапсул используется гуаровая камедь при получении наночастиц методом осаждения нерастворителем с применением фторбензола в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием фторбензола в качестве осадителя, а также использование гуаровой камеди в качестве оболочки частиц.

Результатом предлагаемого метода являются получение нанокапсул азофоски в оболочке из гуаровой камеди.

ПРИМЕР 1 Получение нанокапсул азофоски в гуаровой камеди, соотношение ядро : оболочка 1:3

1 г порошка азофоски медленно прибавляют в суспензию 3 г гуаровой камеди в бутаноле в присутствии 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 6 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул азофоски в гуаровой камеди, соотношение ядро : оболочка 1:1

1 г порошка азофоски медленно добавляют в суспензию 1 г гуаровой камеди в бутаноле в присутствии 0,01 г препарата Е472 с в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 6 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул азофоски в гуаровой камеди, соотношение ядро : оболочка 1:2

1 г порошка азофоски медленно добавляют в суспензию 2 г гуаровой камеди в бутаноле в присутствии 0,01 г препарата Е472 с в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 6 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка. Выход составил 100%.

ПРИМЕР 4 Получение нанокапсул азофоски в гуаровой камеди, соотношение ядро : оболочка 2:1

2 г порошка азофоски медленно добавляют в суспензию 1 г гуаровой камеди в бутаноле в присутствии 0,01 г препарата Е472 с в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 6 мл фторбензола. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка. Выход составил 100%.

Способ получения нанокапсул азофоски, характеризующийся тем, что азофоску медленно добавляют в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 800 об/мин, при этом массовое соотношение ядро : оболочка при пересчете на сухое вещество составляет 1:3, или 1:1, или 1:2, или 2:1, далее приливают 6 мл фторбензола, полученную суспензию отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:
Изобретение относится к производству капсулированных удобрений. Способ получения нанокапсул нитроаммофоски предусматривает добавление нитроаммофоски в суспензию альгината натрия в бутаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества и перемешивание при 1200 об/мин.
Изобретение относится к сельскому хозяйству. Способ получения удобрения для сахарной свеклы, содержащего фосфаты аммония, сульфаты аммония, хлористые калий и натрий, включает смешивание экстракционной фосфорной кислоты с абсорбционными стоками, нейтрализацию аммиаком смеси экстракционной фосфорной и серной кислот до мольного отношения NH3:H3PO4, равного 1,0-1,2 с получением сульфоаммофосной пульпы, подачу ретура и пульпы на грануляцию, смешивание пульпы с натрийсодержащим сырьем и хлористым калием, грануляцию продукта и сушку гранул в сушильном барабане до остаточной влаги в продукте 0,8-1,2%, причем серную кислоту вводят в количестве 2,65-2,9 т в пересчете на моногидрат в 1 т экстракционной фосфорной кислоты в пересчете на Р2О5, калий хлористый вводят в количестве 1,85-2,05 т на 1 т Р2О5, а в качестве натрийсодержащего сырья используют молотый сильвинит, который вводят в массовом соотношении сильвинит:хлористый калий, равном 0,25-0,40:1.
Изобретение относится к технологии получения сложного NPK-удобрения для сахарной свеклы и может быть использовано в сельском хозяйстве. .

Изобретение относится к получению азотно-фосфорных удобрений типа сульфоаммофоса. .

Изобретение относится к получению комплексных минеральных удобрений, содержащих, кроме азота и фосфора, другие полезные элементы. .

Изобретение относится к способу получения минеральных удобрений, содержащих азот, фосфор, калий и серу, которые широко используются в сельском хозяйстве. .

Изобретение относится к производству сложных минеральных удобрений, содержащих азот, фосфор, калий и серу и используемых в сельском хозяйстве. .
Изобретение относится к производству сложных минеральных удобрений, используемых в сельском хозяйстве. .

Изобретение относится к получению сложных удобрений, содержащих азот, фосфор и серу и используемых в сельском хозяйстве, например, при производстве сульфоаммофосов.

Изобретение относится к получению сложных удобрений, содержащих азот, фосфор и серу, используемых в сельском хозяйстве. .

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSi2 со структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением PGd (от 0,1 до менее 1)⋅10-8 Торр или PGd (от более 1 до 10)⋅10-8 Торр на предварительно очищенную поверхность подложки Si(111), нагретую до Ts=350 ÷ менее 400°С или Ts=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм.
Изобретение относится к области нанотехнологий, медицины и пищевой промышленности, а именно к способу получения нанокапсул сухого экстракта девясила, характеризующемуся тем, что сухой экстракт девясила добавляют в суспензию каппа-каррагинана в бутаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 800 об/мин, далее приливают 6 мл фторбензола, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.

Изобретение относится к способам обработки дисперсных углеродных материалов и конкретно касается получения деагломерированных недеформированных однослойных углеродных нанотрубок для хроматографического разделения по хиральности.

Изобретение относится к области порошковой металлургии, в частности к способу получения композиционного материала бор-углерод. Способ включает механическую обработку в планетарной мельнице смеси порошков аморфного бора с размерами частиц менее 2 мкм и фуллерита С60 с размерами частиц менее 200 мкм, которые берут в соотношении от 1:5 до 5:1, с добавлением метилового или этилового спирта в количестве 1 мл на 1 г смеси в режиме 900-1200 оборотов в минуту в течение 10-30 мин с получением гомогенного состояния, извлечение смеси из мельницы, сушку смеси на воздухе при температуре 100°С в течение 2 ч и воздействие на смесь давлением в пределах 1,5-2,5 ГПа и температурой в пределах от 900 до 1100°С в течение 60-120 мин.

Изобретение относится к способу получения композиционного материала для изготовления функциональных покрытий из сплава алюминия и углеродного нановолокна и может быть использовано в авиационной, космической, судостроительной и других областях промышленности.

Изобретение относится к области электротехники, а именно к технологиям хранения, транспортировки легковоспламеняющихся и горючих жидкостей. Способ включает введение антистатических присадок с содержанием многослойных углеродных нанотрубок (MWCNT), диспергированных в базовых жидкостях и затем стабилизированных путем электрофизического воздействия при заполнении, опорожнении емкостей, перекачке жидких углеводородов из стационарных и мобильных резервуаров.

Изобретение относится к химической промышленности и нанотехнологии. Сначала графит обрабатывают раствором перекиси водорода в серной кислоте, причем количество перекиси водорода берут от 0,15 до 0,30 масс.ч.

Изобретение относится к области получения наноструктурного технически чистого титана с повышенными механическими и коррозионными свойствами и способу его обработки и может быть использовано в различных областях техники, в том числе в химической промышленности.
Изобретение относится к области нанотехнологии, конкретно к способу получения нанокапсул 2,4-динитроанизола. Способ характеризуется тем, что в качестве оболочки нанокапсул используют гуаровую камедь, а в качестве ядра - 2,4-динитроанизол.

Изобретение относится к устройствам для получения высоких импульсных давлений, а именно, взрывным камерам, предназначенным для локализации взрыва при проведении синтеза материалов и проведении исследовательских работ.
Изобретение относится к области нанотехнологии и производства взрывчатых веществ, непосредственно к получению нанокапсул тринитротолуола в качестве ядра в оболочке из натрий карбоксиметилцеллюлозы.
Наверх