Газохимический комплекс производства полиэтилена



Газохимический комплекс производства полиэтилена
Газохимический комплекс производства полиэтилена
B01D53/00 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2710906:

Мнушкин Игорь Анатольевич (RU)

Изобретение относится к газохимической промышленности. Описан газохимический комплекс производства полиэтилена, который состоит, как минимум, из двух или более установок пиролиза, каждая из которых включает секцию печей, секцию компримирования пирогаза и секцию разделения пирогаза, двух или более установок производства полиэтилена, одной или более установок производства линейных альфа-олефинов (ЛАО), одного или более резервуаров хранения жидкого этана, одного или более резервуаров хранения жидкого этилена, одного или более резервуаров хранения ЛАО. Сырьевой этан и/или сырьевой пропан подают на установки пиролиза, после установок пиролиза газообразный этилен направляют на установки производства полиэтилена и/или на установки производства ЛАО. Сдувки этиленсодержащего газа из резервуаров хранения жидкого этилена и с установок производства полиэтилена и/или установок производства ЛАО поступают на блок компримирования сдувочных газов с последующей подачей на установки пиролиза для объединения с пирогазом между секцией печей и секцией компримирования пирогаза или между секцией компримирования пирогаза и секцией разделения пирогаза в зависимости от давления газообразных сдувок этиленсодержащего газа на выходе из блока компримирования сдувочных газов. Изобретение решает задачу разработки газохимического комплекса производства полиэтилена, вырабатывающего широкий ассортимент марок полиэтилена при одновременной экономии олефинового сырья за счет возврата в технологический процесс сдувок этиленсодержащего газа. 3 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение обеспечивает производство широкого ассортимента марок полиэтилена и может быть использовано на предприятиях газохимической промышленности.

В целом, полиэтилен является наиболее крупнотоннажным продуктом газохимической промышленности и имеет широкое применение в народном хозяйстве, что приводит к необходимости производства разнообразных марок полиэтилена. Синтез полиэтилена методами низкого и высокого давления позволяет получать сначала полимеры различной структуры, а затем полимерные продукты с широким диапазоном значений молекулярной массы, пластичности, прочности, диэлектрических характеристик и иных показателей. Кроме того, добавление к полимеру более 100 специфических рецептур позволяет сформировать конечный продукт с необходимым набором свойств. При этом на производстве возникают сложности во время перехода установок с одного технологического режима работы на другой, что связано также с варьированием годовой потребности в конкретных марках полиэтилена в пределах от нескольких тонн до нескольких сот тысяч тонн. Формирование широкого ассортимента марок полиэтилена требует создания заводов с гибким технологическим циклом, позволяющим быстро переходить как с выпуска одной марки на другую, так и выпускать одновременно их большой набор. Параллельно с получением полиэтилена различных марок этилен эффективно может использоваться в процессах олигомеризации для синтеза линейных альфа-олефинов (ЛАО), которые далее используются в качестве сомономеров.

Обеспечение вариативности работы предприятия для выпуска необходимого ассортимента марок полиэтилена в соответствии с количественными и качественными запросами потребителей является серьезной технической проблемой, связанной с частыми переходами установок полимеризации этилена и производства ЛАО с одного режима работы на другой, в ходе которых образуются сдувки этиленсодержащего газа (в общем случае он также может содержать и другие олефины, например, бутен-1), сбрасываемые на факел, что приводит на крупнотоннажном производстве к существенным потерям ценного углеводородного сырья. Кроме того, к сдувкам этиленсодержашего газа относятся потери этилена в результате «дыхания» резервуаров для хранения резервного жидкого этилена. В значительной мере эти проблемы могут быть устранены, если сдувки этиленсодержащего газа использовать в технологических процессах.

Известен способ выделения углеводородов из полиолефинового газообразного продукта продувки, включающий следующие стадии: выделение полиолефинового продукта, контактирование полиолефинового продукта и продувочного газа для удаления по меньшей мере части летучих углеводородов с получением полимерного продукта, в котором снижена концентрация летучих углеводородов, и газообразного продукта продувки, обогащенного летучими углеводородами при давлении от примерно 50 до примерно 250 кПа (абс), сжатие газообразного продукта продувки до давления от примерно 2500 до примерно 10000 кПа (абс), по меньшей мере в две стадии, охлаждение сжатого газообразного продукта продувки, разделение охлажденного газообразного продукта продувки на газообразный продукт, включающий по меньшей мере первый продукт, и конденсированный продукт, включающий второй продукт и третий продукт, и возврат по меньшей мере части по меньшей мере одного из продуктов в перечисленные места: первого продукта в виде продувочного газа, второго продукта в реактор полимеризации или третьего продукта в виде газообразного продукта продувки на стадию до сжатия (патент RU 2589055 С2, МПК C08F 6/00, B01D 53/14, C08J 11/02, С07С 7/00, заявлен 17.12.2010 г., опубликован 10.07.2016 г.).

Недостатками этого изобретения являются:

- сложность аппаратурного оформления системы в виде самостоятельной установки;

- чрезмерные энергозатраты, требуемые для конденсации третьего продукта и его введение в газообразный продукт продувки для испарения;

- ограниченное использование системы, функционирующей в стационарном режиме, для извлечения этилена из сдувок этиленсодержащего газа, образующихся эпизодически при переходе основного оборудования с выпуска одной марки полиэтилена на другой.

Известен способ выделения углеводородов из отходящего газа полимеризации, включающий стадии снижения давления потока этилена от давления не менее 3,4 МПа до давления не более 1,4 МП а с получением потока этилена пониженного давления, охлаждения отходящего газа, включающего мономер, путем теплообмена с потоком этилена пониженного давления с получением первого конденсата, включающего по меньшей мере часть мономера, захваченного первым легким газом, выделения первого конденсата и первого легкого газа, отделения первого конденсата от первого легкого газа, компримирования потока этилена пониженного давления до давления не менее 2,4 МПа и пропускания компримированного потока этилена в реактор полимеризации (патент RU 2569085 С2 МПК C08F 6/00, B01D 19/00, B01J 8/00, F25J 1/02, F25J 3/06, C08F 10/00, заявлен 09.07.2010 г., опубликован 20.11.2015 г.).

Недостатками данного изобретения являются:

- сложность аппаратурного оформления системы в виде самостоятельной установки;

- ограниченное использование системы, функционирующей в стационарном режиме, для извлечения этилена из сдувок этиленсодержащего газа, образующихся эпизодически при переходе основного оборудования с выпуска одной марки полиэтилена на другой.

При создании изобретения была поставлена задача разработки газохимического комплекса производства полиэтилена, вырабатывающего широкий ассортимент марок полиэтилена при одновременной экономии олефинового сырья за счет возврата в технологический процесс сдувок этиленсодержащего газа.

Поставленная задача решается за счет того, что газохимический комплекс производства полиэтилена состоит, как минимум, из двух или более установок пиролиза, каждая из которых включает секцию печей, секцию компримирования пирогаза и секцию разделения пирогаза, двух или более установок производства полиэтилена, одной или более установок производства ЛАО, одного или более резервуаров хранения жидкого этана, одного или более резервуаров хранения жидкого этилена, одного или более резервуаров хранения ЛАО, при этом сырьевой этан и/или сырьевой пропан подают на установки пиролиза, после установок пиролиза газообразный этилен направляют на установки производства полиэтилена и/или на установки производства ЛАО, жидкий этилен - в резервуары хранения жидкого этилена, жидкий непрореагировавший рецикловый этан - в резервуары хранения жидкого этана, газообразный непрореагировавший рецикловый этан - на смешение с сырьевым этаном, полученные на установке производства ЛАО бутен-1 и/или гексен-1 направляют на установки производства полиэтилена в качестве сомономеров и/или выводят в качестве товарных продуктов, при этом сдувки этиленсодержащего газа из резервуаров хранения жидкого этилена и с установок производства полиэтилена и/или установок производства ЛАО поступают на блок компримирования сдувочных газов с последующей подачей на установки пиролиза для объединения с пирогазом между секцией печей и секцией компримирования пирогаза или между секцией компримирования пирогаза и секцией разделения пирогаза в зависимости от давления газообразных сдувок этиленсодержащего газа на выходе из блока компримирования сдувочных газов. Подобное решение позволяет практически полностью предотвратить утилизацию сдувок этиленсодержащого газа с установок производства полиэтилена и установок производства ЛАО на факельных системах за исключением аварийных ситуаций путем возврата олефиновых углеводородов в технологический процесс. При этом производственная схема газохимического комплекса дополняется только одним узлом - блоком компримирования сдувочных газов, обеспечивающим многоступенчатое сжатие сдувочных газов, причем для снижения затрат на компримирование и в зависимости от производственной необходимости сжатый сдувочный газ можно отводить от промежуточных ступеней сжатия при давлении, необходимом для ввода в соответствующий трубопровод или аппарат газохимического комплекса.

В качестве альтернативного варианта можно также дополнительно сдувки этиленсодержащего газа из блока компримирования сдувочных газов направлять на установки производства полиэтилена и/или установки производства ЛАО.

Полезно в состав газохимического комплекса производства полиэтилена дополнительно включить установку дегидрирования пропана, с которой сдувки этиленсодержащего газа также поступают в блок компримирования сдувочных газов для увеличения ресурсов олефинового сырья.

Целесообразно в качестве резервуаров хранения жидкого этилена использовать изотермические резервуары криогенного типа, поскольку за счет эффективной экранно-вакуумной изоляции минимизируются потери этилена уменьшая количество сдувок этиленсодержащего газа.

Один из возможных вариантов реализации газохимического комплекса производства полиэтилена представлен на фигуре в виде общей схемы с использованием следующих обозначений:

1-38 - трубопроводы;

100 - блок установок пиролиза;

101, 102 - установка пиролиза;

101/1, 102/1 - секция печей;

101/2, 102/2 - секция компримирования пирогаза;

101/3, 102/3 - секция разделения пирогаза

200 - установка производства полиэтилена (технология с использованием высокого давления);

300 - установка производства полиэтилена (суспензионная технология);

400 - установка производства полиэтилена (газофазная технология);

500 - установка производства ЛАО;

600 - резервуар хранения жидкого этилена;

700 - резервуар хранения жидкого этана;

800 - резервуар хранения ЛАО;

900 - блок компримирования сдувочных газов.

Сырьевой этан по трубопроводу 1 вместе с сырьевым пропаном, подаваемым по трубопроводу 2, поступает в блок установок пиролиза 100, разделяясь между установками пиролиза 101 и 102 блока установок пиролиза 100 на трубопроводы 3 и 4, соответственно. Каждая из установок пиролиза 101 и 102 включает, соответственно: секцию печей 101/1 и 102/1, секцию компримирования пирогаза 101/2 и 102/2, а также секцию разделения пирогаза 101/3 и 102/3. Полученный из смеси сырьевого этана и сырьевого пропана в секциях печей 101/1 и 102/1 пирогаз направляют, соответственно, по трубопровадам 5 и 6 в секции компримирования пирогаза 101/2 и 102/2, а после сжатия - по трубопроводам 7 и 8 в секции разделения пирогаза 101/3 и 102/3. После разделения пирогаза газообразный непрореагировавший рецикловый этан по трубопроводам 9 и 10 объединяют со смесью сырьевых этана и пропана перед разделением для подачи на установки пиролиза 101 и 102, а жидкий непрореагировавший рецикловый этан по трубопроводам 11 и 12 выводят в резервуар хранения жидкого этана 700, чтобы при недостатке сырьевого этана направить по трубопроводу 13 дополнительный этан на установки пиролиза 101 и 102.

Выделенный из пирогаза жидкий этилен из секций разделения пирогаза 101/3 и 102/3 установок пиролиза 101 и 102 по трубопроводам 14 и 15, соответственно, отводят в резервуар хранения жидкого этилена 600. Жидкий этилен из резервуара хранения жидкого этилена 600 по трубопроводу 36 поступает на отгрузку в качестве товарной продукции, а также может подвергаться регазификации с последующим направлением по трубопроводу 35 для объединения с газообразным этиленом, выводимым из секций разделения пирогаза 101/3 и 102/3 установок пиролиза 101 и 102.

Выделенный из пирогаза газообразный этилен выводят из секций разделения пирогаза 101/3 и 102/3 установок пиролиза 101 и 102 по трубопроводам 16 и 17, соответственно, объединяют и распределяют между установками производства полиэтилена 200, 300, 400 и установкой производства ЛАО 500. Полученный на установке производства ЛАО 500 олигомер, например бутен-1, по трубопроводу 18 направляют в резервуар хранения ЛАО 800 для последующей отгрузки по трубопроводу 20 потребителям или по трубопроводу 19 - на установки производства полиэтилена 300 и 400 в качестве сомономеров для производства полиэтилена. Товарный полиэтилен различных марок отводят с установок производства полиэтилена 200, 300, 400 по трубопроводам 21, 22, 23, 24, 25, 26 для последующих формования и отгрузки потребителям.

Сдувки этиленсодержащего газа с установок производства полиэтилена 200, 300, 400, установки производства ЛАО 500 и из резервуара хранения жидкого этилена 600 по трубопроводам 27, 28, 29, 30 и 31, соответственно, поступают на блок компримирования сдувочных газов 900. В период пусковых работ, при отсутствии возможности подачи этилена на установки производства полиэтилена 200, 300, 400 и установку производства ЛАО 500, сжатый сдувочный газ конденсируют и возвращают в жидком состоянии в резервуар хранения жидкого этилена 600 по трубопроводу 32. Сжатый сдувочный газ с блока компримирования сдувочных газов 900 выводят по трубопроводу 33 и в зависимости от требований, предъявляемых к сырью установок производства полиэтилена 200, 300, 400 и установки производства ЛАО 500, распределяют следующим образом: в зависимости от давления сжатого сдувочного газа его подают по трубопроводам 37 и 38 для объединения с пирогазом трубопроводов 5 и 6, соответственно, или по трубопроводам 39 и 40 для объединения со сжатым пирогазом в трубопроводах 7 и 8, соответственно, и/или по трубопроводу 34 направляют для объединения с газообразным этиленом установок пиролиза 101 и 102 перед установками производства полиэтилена 200, 300, 400 и установкой производства ЛАО 500.

Проведено математическое моделирование газохимического комплекса производства полиэтилена, схема которого приведена на фигуре. Согласно расчетам, при выпуске нескольких различных марок полиэтилена и ЛАО в течение года формируется в среднем 13130 т сдувок этиленсодержащего газа, отводимого по трубопроводам 27, 28, 29 и 30, соответственно, на блок компримирования сдувочных газов 900 и содержащих от 76,040% мол. до 99,900% мол. олефиновых углеводородов (таблица 1). После их объединения со сдувками этиленсодержащего газа из резервуара хранения жидкого этилена 600, поступающими по трубопроводу 31 в количестве 75000 т/год, и последующего сжатия в блоке компримирования сдувочных газов 900 формируется объединенный поток сдувочного газа, отводимый по трубопроводу 33, в количестве 88130 т/год с чистотой по содержанию этилена 99,320% мол. Таким образом за год можно вернуть в производственный цикл вместо сжигания в факельных системах 87178,2 т этилена.

Таким образом, заявляемое изобретение решает поставленную задачу разработки газохимического комплекса производства полиэтилена, вырабатывающего широкий ассортимент марок полиэтилена при одновременной экономии олефинового сырья за счет возврата в технологический процесс сдувок этиленсодержащего газа.

1. Газохимический комплекс производства полиэтилена, состоящий, как минимум, из двух или более установок пиролиза, каждая из которых включает секцию печей, секцию компримирования пирогаза и секцию разделения пирогаза, двух или более установок производства полиэтилена, одной или более установок производства линейных альфа-олефинов (ЛАО), одного или более резервуаров хранения жидкого этана, одного или более резервуаров хранения жидкого этилена, одного или более резервуаров хранения ЛАО, при этом сырьевой этан и/или сырьевой пропан подают на установки пиролиза, после установок пиролиза газообразный этилен направляют на установки производства полиэтилена и/или на установки производства ЛАО, жидкий этилен - в резервуары хранения жидкого этилена, жидкий непрореагировавший рецикловый этан - в резервуары хранения жидкого этана, газообразный непрореагировавший рецикловый этан - на смешение с сырьевым этаном, полученные на установке производства ЛАО бутен-1 и/или гексен-1 направляют на установки производства полиэтилена в качестве сомономеров и/или выводят в качестве товарных продуктов, сдувки этиленсодержащего газа из резервуаров хранения жидкого этилена и с установок производства полиэтилена и/или установок производства ЛАО поступают на блок компримирования сдувочных газов с последующей подачей на установки пиролиза для объединения с пирогазом между секцией печей и секцией компримирования пирогаза или между секцией компримирования пирогаза и секцией разделения пирогаза в зависимости от давления газообразных сдувок этиленсодержащего газа на выходе из блока компримирования сдувочных газов.

2. Комплекс по п. 1, в котором дополнительно сдувки этиленсодержащего газа из блока компримирования сдувочных газов направляют на установки производства полиэтилена и/или установки производства ЛАО.

3. Комплекс по п. 1, в котором в состав газохимического комплекса производства полиэтилена дополнительно включают установку дегидрирования пропана, с которой сдувки этиленсодержащего газа поступают в блок компримирования сдувочных газов.

4. Комплекс по п. 1, в котором в качестве резервуаров хранения жидкого этилена используют изотермические резервуары криогенного типа.



 

Похожие патенты:

Изобретение относится к способу полимеризации олефинов и каталитической композиции для получения олефинов. Описана каталитическая композиция, содержащая подложку-активатор, алюминийорганический сокатализатор и полуметаллоценовое титановое соединение с фосфинимидным лигандом.

Изобретение относится к способу получения полимера этилена, включающему гомополимеризацию этилена или сополимеризацию этилена с одним или несколькими сомономерами в реакторе газофазной полимеризации.

Изобретение относится к способу получения катализатора полимеризации. Описан способ для получения катализатора полимеризации с низкими выбросами высокоактивных летучих органических соединений (HRVOC), включающий следующие этапы:(a) обжиг кремнеземного носителя при температурах в диапазоне от около 100°C до около 500°C для формирования предварительно обожженного кремнеземного носителя;(b) приведение в контакт предварительно обожженного кремнеземного носителя с изопропилатом титана для формирования титанированного носителя; (c) после окончания этапа b) приведение в контакт титанированного носителя с полиолом для формирования связанного с полиолом титанированного носителя (PATS);(d) приведение в контакт упомянутого связанного с полиолом титанированного носителя с ацетиацетонатом хрома (III) для формирования прекурсора катализатора полимеризации;(e) высушивание прекурсора катализатора полимеризации для формирования высушенного прекурсора катализатора полимеризации; и (f) обжиг высушенного предшественника катализатора полимеризации для получения катализатора полимеризации, причем в течение обжига высушенного прекурсора катализатора полимеризации выбросы HRVOC составляют менее 0,1 мас.%.

Изобретение относится к способу и установке для производства α-олефинового низкомолекулярного полимера путем подвергания α-олефина низкомолекулярной полимеризации в присутствии катализатора в жидкофазной части в реакторе.

Полимеризация полиолефина, осуществляемая посредством приведения в контакт в реакторе олефинового мономера и необязательно сомономера с каталитической системой в присутствии индуцированных конденсирующих агентов (ICA) и необязательно водорода.

Изобретение относится к композиции полиэтилена для литья под давлением, хорошо поддающейся обработке. Композиция полиэтилена является мультимодальной и обладает плотностью от 0,950 до 0,970 г/см3, MIЕ от 1 до 30 г/10 мин, отношением MIF/MIЕ от 15 до 30 и значениями реологической полидисперсности ER от 0,40 до 0,52.

Изобретение относится к полиэтилену низкой плотности для покрытия наносимого методом экструзии. Полиэтилен имеет плотность 0,910-0,924 г/см3, определенной в соответствии с ISO 1183 при 23°C, значение продольного упрочнения при 150°C и скорости растяжения 1 s-1 4,2-10, соотношение Mw/Mn 18-30, значения Mw 230000-400000 г/моль.

Изобретение относится к непрерывному способу получения гомополимеров или сополимеров этилена, содержащих полимеризующийся этилен или сополимеризующийся этилен и один или несколько олефинов.

Изобретение относится к полиэтиленовым смолам. Полиэтиленовая смола содержит звенья, полученные из этилена и необязательно одного или более других олефинов.

Изобретение относится к способу получения полиэтилена. Способ включает полимеризацию этилена в присутствии каталитической системы в реакторе с получением полиэтилена и регулирование условий в реакторе и количества второго катализатора, подаваемого в реактор, для регулирования индекса расплава (MI), плотности и индекса текучести расплава (MFR) полиэтилена.

Газоперерабатывающий и газохимический комплекс относится к области переработки природных углеводородных газов с повышенным содержанием азота и может быть использован в газовой промышленности в условиях ее интенсивного развития.

Предложена установка для извлечения этана из природного газа с применением каскадного охлаждения, которая содержит холодильник, низкотемпературный сепаратор, деметанизатор, деэтанизатор, систему теплообмена с пропаном или пропиленом и систему теплообмена с этиленом, при этом выпускной элемент для природного газа холодильника связан с низкотемпературным сепаратором; с выпускным элементом для жидкой фазы низкотемпературного сепаратора последовательно связаны деметанизатор, деэтанизатор, конденсатор деэтанизатора, емкость орошения деэтанизатора, система теплообмена с пропаном или пропиленом и система теплообмена с этиленом; газовая фаза из верхней части деметанизатора последовательно проходит через холодильник, детандер и компрессор получаемого газа; выпускной элемент для природного газа системы теплообмена с этиленом связан с впускным элементом в верхней части деметанизатора; компрессор пропана или пропилена, конденсатор пропана или пропилена и система теплообмена с пропаном или пропиленом соединены с образованием циркуляционного контура; компрессор этилена, система теплообмена с пропаном или пропиленом и система теплообмена с этиленом соединены с образованием циркуляционного контура.

Изобретение относится к способу получения потока ароматических соединений C8 с выбранным количеством ароматических соединений C9, содержащему этапы: фракционирования потока углеводородов, включающего ароматические соединения C8 и ароматические соединения C9, на боковую фракцию, содержащую часть ароматических соединений C8 и часть ароматических соединений C9, и нижнюю фракцию, содержащую остальные ароматические соединения C8 и углеводороды C8+; фракционирования нижней фракции и получения тяжелой головной фракции, содержащей остальные ароматические соединения C8, объединения боковой фракции и тяжелой головной фракции для получения объединенного потока, имеющего содержание ароматических соединений C9 от 0,5 мас.% до 5 мас.%; подачу объединенного потока, содержащего ароматические соединения C8 и ароматические соединения C9, к установке разделения; введение объединенного потока в контакт с адсорбентом в установке разделения и адсорбирование выбранного изомера ксилола из объединенного потока для получения потока экстракта и потока рафината, где поток экстракта содержит адсорбированный изомер ксилола и часть ароматических соединений C9, а поток рафината содержит невыбранные изомеры ксилола и остальную часть ароматических соединений C9; введение адсорбированного изомера ксилола в контакт с десорбентом и отделение выбранного изомера ксилола от адсорбента для получения потока десорбента и выбранного изомера ксилола и разделение десорбента и выбранного изомера ксилола.

Изобретение относится к способу удаления соединений фосфора из жидких углеводородов. Способ включает стадии: (а) взаимодействия жидкого углеводорода с водным раствором, содержащим оксидант, выбранный из трет-бутилгидропероксида, с образованием реакционной смеси, содержащей водный компонент и углеводородный компонент, где жидкий углеводород содержит, по меньшей мере, алкен C4-30 и триалкилфосфин C≤30; (b) реакции оксиданта, выбранного из трет-бутилгидропероксида, с триалкилфосфином C≤30 с образованием соответствующей окиси фосфина C≤30; (с) удаления водного компонента из углеводородного компонента с одновременным удалением окиси триалкилфосфина C≤30 из жидкого углеводорода.

Предложен способ производства 1,3-бутадиена, включающий подачу смеси, содержащей 1,3-бутандиол и воду, в выпарной аппарат, причем указанная вода присутствует в количестве большем или равном 5 мас.% относительно общей массы указанной смеси, с получением: газового потока, содержащего 1,3-бутандиол, выходящего сверху из указанного выпарного аппарата; подачу указанного газового потока в первый реактор, содержащий по меньшей мере один первый катализатор дегидратации, с получением алкенольного потока, содержащего алкенолы и воду, выходящего из указанного первого реактора; подачу указанного алкенольного потока во второй реактор, содержащий по меньшей мере один второй катализатор дегидратации, с получением бутадиенового потока, содержащего 1,3-бутадиен и воду, выходящего из указанного второго реактора; подачу указанного бутадиенового потока во вторую секцию очистки, с получением: потока, содержащего чистый 1,3-бутадиен; и (i) потока, содержащего воду.

Изобретение относится к двум вариантам способа получения изопрена путем взаимодействия изобутилена и формальдегида и/или веществ являющихся их источниками. Один из вариантов включает синтез триметилкарбинола, синтез диметилдиоксана с выделением побочных продуктов, синтез изопрена при температуре 150-200°С и давлении 0,6-1,7 МПа в присутствии кислотного катализатора, с последующим разложением побочных продуктов и выделением и очисткой изопрена, отличающийся тем, что в качестве источника изобутилена используют С4 фракцию пиролиза и/или крекинга, содержащую до 30 мас.% бутена-1 и до 10 мас.% бутена-2, полученный изопрен дополнительно очищают от пипериленов известным способом.

Способ переработки жидких углеводородов. .

Изобретение относится к способу разделения углеводородов с рекуперацией тепла во фракционной колонне. Поток, содержащий углеводороды, подают в первую зону разделения на головной поток и кубовый поток.

Изобретение относится к газохимическому производству этилена и пропилена, использующему углеводородное сырье в газовой и/или жидкой фазе, и включает соединенные прямыми и обратными связями, в частности, в виде трубопроводов следующие блоки: блок подготовки сырья, блок смешения, блок термического расщепления, блок первичного фракционирования и водной промывки, блок компримирования, блок щелочной очистки, блок осушки, блок газоразделения, блок метатезиса, при этом все виды углеводородного сырья перерабатывают на унифицированных технологических линиях, которые адаптируют для переработки конкретного вида углеводородного сырья в индивидуальные технологические линии согласно его пиролитическим свойствам путем байпасирования неспецифических блоков и/или звеньев.

Изобретение относится к способу рециркуляции нафтенов в реактор, а также к устройству. Способ предусматривает: проведение в реакторе реакции сырьевого потока реактора, содержащего изомеры ксилола, этилбензол, С8-нафтены и водород, на катализаторе изомеризации этилбензола при условиях в реакторе, причем по меньшей мере часть этилбензола в сырьевом потоке реактора превращается в изомеры ксилола так, что образуется выходящий поток реактора, содержащий изомеры ксилола и С8-нафтены; охлаждение и разделение выходящего потока реактора с образованием первого сконденсированного жидкого потока и первого парообразного потока; охлаждение и разделение первого парообразного потока с образованием второго сконденсированного жидкого потока и второго парообразного потока; подачу первого сконденсированного жидкого потока и второго сконденсированного жидкого потока в колонну с отбором бокового погона с получением потока бокового погона, содержащего С8-ароматические вещества и С8-нафтены; извлечение параксилола из потока бокового погона в секции извлечения параксилола, получая обедненный по параксилолу поток, причем обедненный по параксилолу поток содержит часть С8-нафтенов; и рециркуляцию обедненного по параксилолу потока в реактор.

Настоящее изобретение относится к устройству для гидроконверсии тяжелых нефтепродуктов, которые составляют свежую загрузку, причем указанное устройство содержит: барботажный колонный суспензионный реактор гидроконверсии, который содержит питающий трубопровод, в котором транспортируют свежую загрузку и рециркулируемую фазу суспензии, впускной трубопровод для гидрирующего потока и выход для выходящего потока реакции через выпускной патрубок, отпарную колонну при высоком давлении и высокой температуре, размещенную ниже по потоку от реактора и непосредственно соединенную с головной частью реактора посредством трубопровода, в котором течет выходящий поток реакции, причем указанная колонна имеет впускной трубопровод для отпарного газа, вход для выходящего из реактора потока, выход в головной части для пара и выход для фазы суспензии, трубопроводы и средства для рециркуляции суспензии, выходящей из отпарной колонны, трубопроводы и средства для отбора сливного потока, который имеет функцию предотвращения накопления твердых веществ в реакторе, при этом указанная отпарная колонна содержит одно или более контактных устройств, которые обеспечивают физический контакт, создаваемый между различными фазами; и при этом трубопровод, соединяющий головную часть реактора с отпарной колонной, состоит из вертикальной части, соединенной с выходом, расположенным на головной части реактора, и последующей части трубопровода, которая соединена с входом в отпарную колонну, причем указанная часть наклонена вниз с наклоном, составляющим от 2% до 10% в расчете по отношению к горизонтальной плоскости, перпендикулярной оси реактора и оси отпарной колонны.
Наверх