Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач

Изобретение относится к диагностике систем автоматического управления. В способе поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач, фиксируют число блоков системы, определяют время контроля и параметр интегрального преобразования сигналов. Фиксируют число контрольных точек системы, регистрируют реакцию объекта диагностирования и реакцию исправной системы в этих точках. Определяют интегральные оценки выходных сигналов исправной системы. Определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для контрольных точек от номинальных значений. Вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы. Определяют знаки отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков. Определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков. Вычисляют признаки наличия неисправного блока. Улучшается помехоустойчивость способа. 1 ил.

 

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.

Известен способ поиска неисправного блока в непрерывной динамической системе (Способ поиска неисправного блока в непрерывной динамической системе: пат. 2439647 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2011100409/08; заявл. 11.01.2011; опубл. 10.01.2012, Бюл. №1).

Недостатком этого способа является то, что он использует вычисление знаков передач сигналов от выходов блоков до контрольных точек.

Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в динамической системе (Способ поиска неисправного блока в динамической системе: пат. 2435189 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2009123999/08; заявл. 23.06.2009; опубл. 27.11.2011, Бюл. №33).

Недостатком этого способа является то, что он обеспечивает определение дефектов с невысокой различимостью, то есть обладает невысокой помехоустойчивостью.

Технической задачей, на решение которой направлено данное изобретение, является улучшение помехоустойчивости способа диагностирования непрерывных систем автоматического управления путем увеличения различимости дефектов.

Поставленная задача достигается тем, что предварительно регистрируют реакцию заведомо исправной системы ƒjном(t), j=1, …, k на интервале t∈[0,TК] в k контрольных точках, и определяют интегральные оценки выходных сигналов Fjном(α), j=1, …, k системы, для чего в момент подачи входного сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из k контрольных точек с весами e-αt, где путем подачи на первые входы k блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fjном(α), j=1, …, k регистрируют, фиксируют число m блоков системы, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученных в результате пробных отклонений для m дефектов блоков, для чего поочередно в каждый блок динамической системы вводят пробное отклонение параметра передаточной функции и находят интегральные оценки выходных сигналов системы для параметра интегрирования α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого из m пробных отклонений Pji(α), j=1, …, k; i=1, …, m регистрируют, определяют отклонения интегральных оценок выходных сигналов модели, полученных в результате пробных отклонений параметров разных структурных блоков ΔPji(α)=Pji(α)-Fjном(α), j=1, …, k; i=1, …, m, определяют знаки отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров соответствующих блоков ΔPji=sign(ΔPji(α)), j=1, …, k; i=1, …, m, определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученных в результате пробных отклонений параметров соответствующих блоков j=1, …, k; i=1, …, m замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k для параметра интегрирования α, определяют отклонения интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fjα)-Fjном(α), j=1, …, k, j=1, …, k, j=1, …, k определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=sigbn(ΔFj(α)), j=1, …, k, j=1, …, определяют нормированные значения знаков отклонений интегральных оценок сигналов контролируемой системы из соотношения j=1, …, k, определяют диагностические признаки из соотношения i=1, …, m, по минимуму значения диагностического признака определяют неисправный блок.

Таким образом, предлагаемый способ поиска неисправного блока сводится к выполнению следующих операций:

1. В качестве динамической системы рассматривают систему, состоящую из произвольно соединенных m динамических блоков.

2. Предварительно определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.

3. Определяют параметр интегрального преобразования сигналов из соотношения

4. Фиксируют число контрольных точек k.

5. Предварительно определяют нормированные векторы знаков отклонений интегральных оценок выходных сигналов модели, полученных в результате пробных отклонений параметров i-го блока каждого из m блоков и определенного выше параметра интегрального преобразования α для чего выполняют пункты 6-11.

6. Подают тестовый сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками. Принципиальных ограничений на вид входного тестового воздействия предлагаемый способ не предусматривает.

7. Регистрируют реакцию системы ƒjном(t), j=1, …, k на интервале t∈[0,TK] в k контрольных точках и определяют интегральные оценки выходных сигналов Fjном(α), j=1, …, k системы. Для этого в момент подачи тестового сигнала на вход системы управления с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек с весами e-αt, где для чего сигналы системы управления подают на первые входы k блоков перемножения, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fjном(α), j=1, …, k регистрируют.

8. Определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате пробных отклонений параметров каждого из m блоков, для чего поочередно для каждого структурного блока динамической системы вводят пробное отклонение параметра передаточной функции и выполняют пункты 6 и 7 для одного и того же тестового сигнала x(t). Полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого из m пробных отклонений Pji(α), j=1, …, k; i=1, …, m регистрируют.

9. Определяют отклонения интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров структурных блоков ΔPji(α)=Pji(α)-Fjном(α), j=1, …, k; i=1, …, m.

10. Определяют знаки отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков по формуле: ΔPji=sign(ΔPji(α)), j=1, …, k; i=1, …, m,

11. Определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков по формуле: j=1, …, k; i=1, …, m.

12. Замещают систему с номинальными характеристиками контролируемой. На вход системы подают аналогичный тестовый сигнал x(t).

13. Определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k, осуществляя операции, описанные в пунктах 6 и 7 применительно к контролируемой системе.

14. Определяют отклонения интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fjα)-Fjном(α), j=1, …, k, j=1, …, k, j=1, …, k.

15. Определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=sigbn(ΔFj(α)), j=1, …, k, j=1, … k.

16. Вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы по формуле: j=1, …, k.

17. Вычисляют диагностические признаки наличия неисправного структурного блока по формуле: i=1, …, m.

18. По минимуму значения диагностического признака определяют дефектный блок.

Рассмотрим реализацию предлагаемого способа поиска дефекта для системы, структурная схема которой представлена на рисунке (см. фиг.Структурная схема объекта диагностирования).

Передаточные функции блоков:

номинальные значения параметров: K1=1; Т1=5 с; K2=1; Т2=1 с; К3=1; Т3=5 с.

При поиске одиночного дефекта в виде отклонения постоянной времени T1=4c (дефект №1) в первом звене путем подачи ступенчатого тестового входного сигнала единичной амплитуды и интегральных оценок сигналов для параметра α=0.5 и Тк=10 с получены значения диагностических признаков на основе введения пробных отклонений и анализа знаков передач при использовании трех контрольных точек, расположенных на выходах блоков: J1=0; J2=0.8889; J3=0.8889. Минимальное значение признака J1 однозначно указывает на наличие дефекта в первом блоке, а разность между третьим и первым, а также вторым и первым признаками может количественно характеризовать практическую (апостериорную) различимость этого дефекта. Тот же дефект, найденный путем введения пробных отклонений в прототипе (Способ поиска неисправного блока в динамической системе: пат. 2435189 Рос. Федерация: МПК7 G05B23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2009123999/08; заявл. 23.06.2009; опубл. 27.11.2011, Бюл. №33), дает следующие значения диагностических признаков: J1=0; J2=0.7829; J3=0.07399. Анализ значений диагностических признаков показывает, что разность между третьим и первым признаками может количественно характеризовать практическую (апостериорную) различимость этого дефекта. Это позволяет сделать вывод, что практическая различимость дефекта первого блока (прототипа) ниже, чем различимость дефекта при использовании заявляемого способа. Различимости дефектов второго и третьего блоков при поиске их заявляемым способом тоже выше, чем в прототипе.

Моделирование процессов поиска дефектов во втором и третьем блоках для данного объекта диагностирования, при том же параметре интегрирования α и при единичном ступенчатом входном сигнале для способа из прототипа (Способ поиска неисправного блока в динамической системе: пат. 2435189 Рос.Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2009123999/08; заявл. 23.06.2009; опубл. 27.11.2011, Бюл. №33):

При наличии дефекта в блоке №2 (в виде уменьшения параметра Т2 на 20%, дефект №2): J1=0.7829; J2=0; J3=0.7462.

При наличии дефекта в блоке №3 (в виде уменьшения параметра Т3 на 20%, дефект №3) J1=0.07404; J2=0.7464; J3=0.

Моделирование процессов поиска дефектов заявляемым способом во втором и третьем блоках для данного объекта диагностирования, при том же параметре интегрирования α и при единичном ступенчатом входном сигнале дает следующие значения диагностических признаков:

При наличии дефекта в блоке №2 (в виде уменьшения параметра Т2 на 20%, дефект №2): J1=0.8889; J2=0; J3=0.8889.

При наличии дефекта в блоке №3 (в виде уменьшения параметра Т3 на 20%, дефект №3) J1=0.8889; J2=0.8889; J3=0.

Минимальное значение диагностического признака во всех случаях правильно указывает на дефектный блок.

Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач, основанный на том, что фиксируют число блоков m, входящих в состав системы, определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы, определяют параметр интегрального преобразования сигналов из соотношения используют тестовый сигнал на интервале t∈[0,TК], в качестве динамических характеристик системы используют интегральные оценки сигналов, полученные для вещественных значений параметра α, фиксируют число k контрольных точек системы, регистрируют реакцию объекта диагностирования и реакцию заведомо исправной системы ƒj ном(t), j=1, …, k на интервале t∈[0,TK] в k контрольных точках, определяют интегральные оценки выходных сигналов Fj ном(α), j=1, …, k исправной системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек с весами e-αt, где путем подачи на первые входы k блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fj ном(α), j=1, …, k регистрируют, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k для параметра α, определяют отклонения интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fj(α)-Fj ном(α), j=1, …, k, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате пробных отклонений параметров блоков, для чего поочередно для каждого блока динамической системы вводят пробное отклонение параметра его передаточной функции и находят интегральные оценки выходных сигналов системы для параметра α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого из m пробных отклонений Pji(α), j=1, …, k; i=1, …, m регистрируют, определяют отклонения интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров соответствующих блоков ΔPji(α)=Pji(α)-Fj ном(α), j=1, …, k; i=1, …, m, определяют диагностические признаки, по минимуму значения диагностического признака определяют дефектный блок, отличающийся тем, что определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj=sign(ΔFj(α)), j=1, …, k, вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы j=1, …, k определяют знаки отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков ΔPji=sign(ΔPji(α)), j=1, …, k; i=1, …, m, определяют нормированные значения знаков отклонений интегральных оценок выходных сигналов модели, полученные в результате пробных отклонений параметров блоков j=1, …, k; i=1, …, m, вычисляют диагностические признаки наличия неисправного структурного блока i=1, …, m.



 

Похожие патенты:

Изобретение относится к тестовым генераторам. Технический результат заключается в обеспечении возможности тестирования тестового приемника для подтверждения того, что тестовый приемник распознает типы ошибок.

Изобретение относится к вычислительной технике. Технический результат заключается в предотвращении потери данных.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах контроля и управления подвижными объектами. Техническим результатом является повышение надежности преобразователя за счет использования метода граничного сканирования для выявления дефектов монтажа основного микроконтроллера на уровне отдельных контактов, а также реализация диагностики измерительных каналов ОЦПУ на уровне отдельных функциональных элементов.

Изобретение относится к средствам мониторинга технического состояния POS-терминалов. Система мониторинга технического состояния сети POS-терминалов, содержащая множество POS-терминалов, объединенных сетью передачи данных с системой обработки транзакций, клиентских вычислительных устройств и подсистемой хранения данных, которая предназначена для хранения данных в структурах, нацеленных на принятие решений в части обеспечения технического состояния POS-терминалов; подсистемой сбора, обработки и загрузки данных, которая предназначена для реализации процессов сбора данных из систем источников, обработки указанных данных для преобразования в вид, необходимый для наполнения подсистемы хранения данных, причем данные из систем источников представляют собой по меньшей мере параметры POS-терминала, транзакционную активность терминала и тип канала связи терминала с системой обработки транзакций; подсистемой мониторинга данных, предназначенной для осуществления контроля технического состояния по меньшей мере POS-терминалов и связанных с ними узлов сети, обеспечивающих передачу данных от упомянутых терминалов, а также генерирования сигналов в ответ на изменение функционирования POS-терминалов; подсистемой формирования и визуализации отчетности, которая предназначена для формирования бизнес-ориентированных витрин данных и отчетности; подсистемой аутентификации пользователей, которая предназначена для авторизации пользователей системы и ограничения прав доступа.

Изобретение относится к области электроники. Технический результат заключается в повышении быстродействия и повышении надежности.

Группа изобретений относится к технической поддержке пользователей. Технический результат – повышение качества технической поддержки пользователей.

Изобретение относится к способам проведения испытаний на надежность и устройствам для их реализации. В изобретении предложен способ проведения неразрушающих испытаний на отказоустойчивость, при котором имитируются отказы элементов, а схема сохраняет работоспособность.

Система (1) содержит беспроводное устройство бортовой диагностики (OBD) (20), множество компьютеров контроля (30), которые поддерживают беспроводную связь с беспроводным устройством OBD (20) и предусматриваются для каждого соответствующего этапа контроля, и устройство считывания штрихового кода (40), которое может предусматриваться в компьютере контроля (30), распознает штриховой код транспортного средства (10) и передает информацию о транспортном средстве (10), в котором может выполняться контроль, в компьютеры контроля (30).
Изобретение относится к нефтедобывающей промышленности, в частности к области геофизических исследований скважин, а именно к способам для осуществления измерения и контроля параметров скважины.
Изобретение относится к нефтедобывающей промышленности, в частности к области геофизических исследований скважин, а именно к способам для осуществления измерения и контроля параметров скважины.

Изобретение относится к диагностике систем автоматического управления. В способе поиска неисправностей динамического блока в непрерывной системе на основе введения пробных отклонений определяют время контроля; определяют число контрольных точек; определяют векторы отклонений сигналов модели в дискретные моменты времени.

Изобретение относится к средствам исследования функционального поведения технической системы. Технический результат заключается в расширении арсенала средств того же назначения.

Изобретение относится к области мониторинга и диагностирования состояния промышленного объекта. Технический результат заключается в повышении точности диагностики промышленного объекта в части выявления предотказных состояний.

Группа изобретений относится к способу и системе анализа состояния функционирования машины, такой как двигатель летательного аппарата. Для анализа состояния производят обучение для предоставления сведений эталонной базе данных о данных пороговых величин, характеризующих функционирование машины, для чего получают сигналы, характерные для нормального функционирования машины, и сигналы, характерные для аномального функционирования машины, вычисляют сигнал отклонения, на основании которого вычисляют индикатор состояния и производят регистрацию порогового значения величины индикатора в эталонной базе данных.

Изобретение относится к архитектуре модуля центрального процессора промышленного контроллера с программируемой логикой. Технический результат заключается в расширении арсенала средств.

Изобретение относится к сложным техническим системам. В способе ремонта сложных технических комплексов включают режим контроля комплекса, по результатам которого определяют местонахождение неисправности.

Для обнаружения отказа датчика температуры в турбинной системе выполняют следующие этапы: получают (102) отдельные значения измерений от каждого датчика температуры в группе датчиков температуры; вычисляют (104) характеристическое значение для каждого датчика температуры в группе на основе значений измерений для соответствующего датчика температуры; выбирают (106) первое характеристическое значение среди вычисленных характеристических значений; определяют (108) первое максимальное значение в качестве максимума характеристических значений за исключением первого характеристического значения; и определяют (110), что датчик температуры, соответствующий первому характеристическому значению, является неисправным, если первое характеристическое значение больше первого максимального значения, умноженного на предварительно определенный коэффициент.

Для обнаружения отказа датчика температуры в турбинной системе выполняют следующие этапы: получают (102) отдельные значения измерений от каждого датчика температуры в группе датчиков температуры; вычисляют (104) характеристическое значение для каждого датчика температуры в группе на основе значений измерений для соответствующего датчика температуры; выбирают (106) первое характеристическое значение среди вычисленных характеристических значений; определяют (108) первое максимальное значение в качестве максимума характеристических значений за исключением первого характеристического значения; и определяют (110), что датчик температуры, соответствующий первому характеристическому значению, является неисправным, если первое характеристическое значение больше первого максимального значения, умноженного на предварительно определенный коэффициент.

Группа изобретений относится к средствам диагностики устройств управления. Технический результат – уменьшение энергопотребления для диагностики устройства управления.

Изобретение относится к регулирующим и управляющим системам, в частности к цифровым сторожевым схемам для контроля микроконтроллера. Схемный узел для контроля характеристики тайминга микроконтроллера содержит микроконтроллер (µС), выполненный с возможностью управления по меньшей мере двумя секциями (Т1, С1, R1, R3, D1; T1, T2, C1, C2, R1, R2, R3, D1) формирования сторожевого напряжения для определенного по времени формирования по меньшей мере двух контрольных напряжений (Uc; U1, U2) и с возможностью регистрировать и считывать сформированные контрольные напряжения (Uc; U1, U2) в заданный момент снятия отсчета, и по меньшей мере две секции (Т1, С1, R1, R3, D1; T1, T2, C1, C2, R1, R2, R3, D1) формирования сторожевого напряжения.
Наверх