Способ повышения износостойкости детали типа зубчатое колесо

Изобретение относится к области технологии машиностроения, а именно к зубчатым передачам, и предназначено для обеспечения высокой износостойкости зубчатого зацепления, позволяет повысить долговечность зубчатых передач. Предлагается способ химико-термической обработки в плазме тлеющего разряда детали в виде зубчатого колеса, включающий загрузку зубчатых колес в вакуумную камеру, откачивание воздуха, проведение ионной очистки в газовой среде, напуск реакционного газа и ионное азотирование, отличающийся тем, что откачивание воздуха проводят до давления 10 Па, затем продувают вакуумную камеру аргоном в течение 2-5 мин при давлении 1330 Па, осуществляют последующее ее откачивание до давления 5-15 Па и проводят ионную очистку при напряжении 900-1000 В в течение 5-7 мин в газовой плазме инертного газа повышенной плотности в скрещенных электрическом и магнитном полях, после чего понижают напряжение до рабочего значения, откачивают аргон из вакуумной камеры, напускают рабочий газ и проводят ионное азотирование в плазме повышенной плотности в скрещенных электрическом и магнитном полях, затем охлаждают зубчатое колесо в вакууме с постоянной прокачкой аргона при давлении 10-15 Па в течение первых 15 минут. Обеспечивается повышение износостойкости детали типа зубчатое колесо. 1 ил., 1 пр.

 

Изобретение относится к области технологии машиностроения, а именно к зубчатым передачам и предназначена для обеспечения высокой износостойкости зубчатого зацепления, позволяет повысить долговечность зубчатых передач.

Известен способ повышения износостойкости чугунных зубчатых колес (Патент РФ 2516955, F16H 55/17, 09.10.2012), который заключается в нанесении на поверхность колес равномерного покрытия из износостойкого материала и выполнении на рабочей поверхности зубьев поперечных канавок с наполнителем. Поперечные канавки имеют форму полуокружности в поперечном сечении и выполнены на рабочих поверхностях зубьев колес без выхода на торцевую поверхность под углом к перпендикуляру. Глубина поперечных канавок равна толщине диффузионной зоны, полученной в результате термодиффузионного насыщения чугуна карбидообразующими элементами.

Недостатками данного способа являются:

- сложный технологический процесс;

- канавки могут служить концентраторами напряжений, что может привести к выкрашиванию части профиля зуба.

Известен способ упрочнения зубьев зубчатого колеса (Патент РФ 2652945, F16H 55/06, 19.12.2016), в котором повышения износостойкости боковых поверхностей зубьев производят упрочнение этих поверхностей путем повышения их твердости. Притом учитывается изменение интенсивности изнашивания боковых поверхностей зубьев вдоль их длины и увязывает упрочнение этих поверхностей с интенсивностью изнашивания.

Недостатком данного способа является сложность технологии упрочнения и контроль процесса в связи с определенным профилем упрочнения, что снижает эффективность способа.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ химико-термической обработки в плазме тлеющего разряда [Арзамасов Б.Н., Братухин А.Г., Елисеев Ю.С. Ионная химико-термическая обработка сплавов. - М.: Изд-во МГТУ им. НЭ Баумана, 1999, с. 195-213], который заключается в загрузке деталей в вакуумную камере, создание вакуума, проведение ионной очистки в газовой среде, напуске реакционного газа и проведение процесса ионного азотирования.

Недостатками прототипа являются:

- высокая длительность процесса обработки;

- небольшая величина получаемых слоев.

Задачей предлагаемого изобретения является повышение срока эксплуатации детали типа зубчатое колесо.

Техническим результатом является повышение износостойкости детали типа зубчатое колесо.

Задача решается, а технический результат достигается тем, что в способе химико-термической обработки в плазме тлеющего разряда детали в виде зубчатого колеса, включающем загрузку зубчатых колес в вакуумную камеру, откачивание воздуха, проведение ионной очистки в газовой среде, напуск реакционного газа и ионное азотирование, в отличие от прототипа, откачивание воздуха проводят до давления 10 Па, затем продувают вакуумную камеру аргоном в течение 2-5 мин при давлении 1330 Па, осуществляют последующее ее откачивание до давления 5-15 Па и проводят ионную очистку при напряжении 900-1000 B в течение 5-7 мин в газовой плазме инертного газа повышенной плотности в скрещенных электрическом и магнитном полях, после чего понижают напряжение до рабочего значения, откачивают аргон из вакуумной камеры, напускают рабочий газ и проводят ионное азотирование в плазме повышенной плотности в скрещенных электрическом и магнитном полях, затем охлаждают зубчатое колесо в вакууме с постоянной прокачкой аргона при давлении 10-15 Па в течение первых 15 минут.

Зубчатые колеса являются одними из распространенных деталей современных машин и механизмов. Выход зубчатого колеса из строя в конечном счете повлечет за собой снижение надежности и времени эксплуатации всего механизма. По многочисленным исследованиям известно что причиной выхода из строя зубчатых колес является их изнашивание. Около 70% от общего количества отказов составляют поломка зубчатых колес и шестерен в результате изнашивания [Веселовский А.А. Износостойкость зубчатых колес из высокопрочного чугуна с термодиффузионными покрытиями ванадием, хромом и марганцем // Металлообработка. - 2011. - №. 2 (62), с. 12-13]. Одним из самых распространенных методов повышения износостойкости зубчатых колес является химико-термическая обработка, в частности, в последнее время ионное азотирование. Но притом у ионного азотирования есть недостатки связанные с относительно высокой длительностью процессом и небольшой величиной получаемых слоев. Использование в качестве интенсификации процесса наложение скрещенных электрических и магнитных полей приводит к созданию плазмы повышенной плотности, что в свою очередь приводит к повышению производительности процесса и повышения износостойкости зубчатых колес, за счет более твердого и протяженного азотированного слоя.

Существо изобретения поясняется чертежом, на фиг. 1 изображена схема реализации способа.

Пример конкретной реализации способа.

Способ осуществляется с помощью установки, содержащей: источник питания 1, электрод-анод 2, обрабатываемая деталь (катод) 3, вакуумная камера 4, электромагнитная система 5, источник питания электромагнитной системы 6, изоляторы 7. В вакуумной камере 4 (фиг. 1) деталь подключают к отрицательному электроду (катоду) 2, герметизируют вакуумную камеру 4 и откачивают воздух до давления 10 Па. После эвакуации воздуха камеру продувают аргоном в течение 2-5 мин при давлении ~1330 Па, затем откачивают вакуумную камеру 4 до давления 5-15 Па, включают источник питания электромагнитной системы 6 и подают на электроды анод 2 и катод (деталь) 3 разность потенциалов с помощью источника питания 1 и зажигают тлеющий разряд. При напряжении 900-1000 В осуществляется ионная очистка в плазме повышенной плотности. После 5-7 минутной обработки по режиму катодного распыления напряжение понижают до рабочего, включают форвакуумный насос и откачивают аргон из вакуумной камеры, далее напускают рабочий газ, с помощью источника питания электромагнитной системы изменяют конфигурацию магнитного поля таким образом чтобы деталь была полностью погружена в плазму повышенной плотности и проводят процесс химико-термической обработки, затем охлаждают деталь в вакууме, притом первые 15 мин с постоянной прокачкой аргона при давлении 10-15 Па.

Предлагаемый способ позволяет повышать износостойкость детали за счет проведения процесса химико-термической обработке в плазме повышенной плотности тлеющего разряда, создаваемая наложением скрещенных электромагнитных полей.

Способ химико-термической обработки в плазме тлеющего разряда детали в виде зубчатого колеса, включающий загрузку зубчатых колес в вакуумную камеру, откачивание воздуха, проведение ионной очистки в газовой среде, напуск реакционного газа и ионное азотирование, отличающийся тем, что откачивание воздуха проводят до давления 10 Па, затем продувают вакуумную камеру аргоном в течение 2-5 мин при давлении 1330 Па, осуществляют последующее ее откачивание до давления 5-15 Па и проводят ионную очистку при напряжении 900-1000 В в течение 5-7 мин в газовой плазме инертного газа повышенной плотности в скрещенных электрическом и магнитном полях, после чего понижают напряжение до рабочего значения, откачивают аргон из вакуумной камеры, напускают рабочий газ и проводят ионное азотирование в плазме повышенной плотности в скрещенных электрическом и магнитном полях, затем охлаждают зубчатое колесо в вакууме с постоянной прокачкой аргона при давлении 10-15 Па в течение первых 15 минут.



 

Похожие патенты:

Изобретение относится к ионно-плазменной технологии и может быть использовано для упрочнения режущего инструмента. Способ комбинированного упрочнения режущего инструмента включает заполнение газовой плазмой рабочей вакуумной камеры с установленным внутри нее режущим инструментом, нагрев и выдержку режущего инструмента в азотной плазме и синтез на его поверхности из плазмы износостойкого покрытия.

Изобретение относится к изготовлению закаленных под прессом деталей из стальных листов или стальных лент с покрытием на основе алюминия. Предложен способ, в котором на стальной лист или стальную ленту наносят основной слой покрытия на основе алюминия методом горячего погружения, после которого до процесса формования стальной лист или стальную ленту с основным слоем покрытия подвергают плазменному оксидированию и/или обработке горячей водой, и/или обработке водяным паром, и на поверхности основного слоя покрытия путем образования оксидов или гидроксидов образуют поверхностный слой, содержащий оксид и/или гидроксид алюминия.

Изобретение относится к способу упрочнения твердого сплава и может найти применение в машиностроении при изготовлении изделий порошковой металлургии из твердых сплавов, применяемом для холодной и горячей механической обработки металлов и сплавов, например, резанием.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности.

Изобретение относится к способу и устройству для термохимического упрочнения деталей. Упомянутый способ включает по меньшей мере одну стадию науглероживания в углеродсодержащей газовой атмосфере с давлением менее 50 мбар, причем детали выдерживают при температуре от 900 до 1050°С, и по меньшей мере одну стадию азотирования в азотсодержащей газовой атмосфере с давлением менее 50 мбар, причем детали выдерживают при температурах от 800 до 1050°С, азотсодержащая газовая атмосфера содержит молекулярный азот (N2) в качестве донорного газа и возбуждается посредством разрядной плазмы.

Изобретение относится к упрочнению поверхности изделий из титана и титановых сплавов путем ионно-плазменного азотирования и может быть использовано в авиакосмической отрасли, машиностроении, медицине и других отраслях.

Изобретение относится к области металлургии, в частности к плазменной химико-термической обработке титановых сплавов, и может быть использовано в машиностроении для повышения износостойкости и коррозионной стойкости деталей машин.

Изобретение относится к химико-термической обработке и может быть использовано в машиностроении и других областях промышленности. Способ обработки поверхности стального изделия включает проведение интенсивной поверхностной пластической деформации и ионное азотирование.

Изобретение относится к нанесению покрытия на поверхность стального изделия, применяемого для защиты от эрозионного износа рабочих лопаток влажнопаровых ступеней турбин, эксплуатирующихся в экстремальных условиях.

Изобретение относится к области машиностроения, в частности к ионной химико-термической обработке металлических изделий. Способ циркуляционного ионного азотирования металлического изделия в азотной среде под воздействием коронного разряда, включает проведение ионизации азота при давлении от 105 до 106 Па и температуре от 500 до 900°С под воздействием коронного разряда, образованного при напряжении на чередующихся коронирующих электродах от 20 до 40 кВ и токе на каждом из коронирующих электродов от 100 до 300 мкА, и осуществление циркуляции азотной смеси с помощью чередующихся коронирующих электродов с острыми коронирующими кромками, подключенных к высоковольтному источнику напряжения.

Изобретение относится к области обогащения и может быть использовано в производстве ферросплавов, в частности ферросилиция, и в цехах, использующих ферросилиций. Способ подготовки гранулированного ферросилиция к тяжелосредной сепарации включает формирование на поверхности гранулированного ферросилиция защитной пленки путем воздействия восстановительной пассивирующей средой.

Настоящее изобретение относится к способу обработки азотированного/углеродоазотированного изделия, включающему: подвержение по меньшей мере части изделия первому этапу, на котором по меньшей мере один лазерный луч перемещают за по меньшей мере один проход над указанной частью до тех пор, пока поверхностный слой взятой части не будет преобразован частично или полностью, и до тех пор, пока распределение концентрации азота в зоне диффузии не будет изменено, и подвержение для преобразования поверхностного слоя части, по меньшей мере обработанной посредством лазера, второму этапу, на котором по меньшей мере один лазерный луч перемещают за по меньшей мере один проход над указанной частью, чтобы сделать возможным снижение концентрации азота в нижележащем диффузионном слое.
Изобретение относится к способу изготовления реторты для печи для азотирования, в которой металлические детали подвергаются термической обработке в предварительно заданной атмосфере, а также к реторте для печи для азотирования и к печи для азотирования с соответствующей изобретению ретортой.

Изобретение относится к способу получения поверхностно-обработанного титана или титанового сплава, используемого для применения в материале, выбранном из группы, состоящей из фотокаталитических материалов, материалов элементов фотоэлектрического преобразования, устойчивых к скольжению материалов и износостойких материалов.
Изобретение относится к области плазменной химико-термической обработки поверхности деталей и может быть использовано в авиадвигателестроении. Способ азотирования изделий из титанового сплава в тлеющем разряде включает вакуумный нагрев изделий из титанового сплава в тлеющем разряде в плазме азота повышенной плотности.

Изобретение относится к области плазменной химико-термической обработки поверхности деталей и может быть использовано в авиадвигателестроении для повышения эксплуатационных свойств деталей, работающих при циклических нагрузках, а также позволяет интенсифицировать процесс азотирования.
Изобретение относится к области металлургии, в частности к химико-термической обработке изделий из инструментальных сталей. Для увеличения глубины азотируемого слоя за короткий промежуток времени, повышения износостойкости перетачиваемого инструмента, изготовленного из отожженной заготовки, инструмент нагревают в вакуумной камере в среде аргона при давлении 0,2-0,67 Па до температуры не ниже 450° и не выше Ac1-(50-70)°C с обеспечением ионной очистки поверхности, затем при указанной температуре нагрева осуществляют ионно-плазменное азотирование в плазме азота или смеси газов аргона и азота с концентрацией азота не менее 20% путем двухступенчатого вакуумно-дугового разряда, при этом сила тока дуги составляет (80-100)±0,5А, а сила тока дополнительного анода - (70-90)±0,5 А при подаче на инструмент напряжения смещения в диапазоне от -50 В до -900 В в течение 0,5-2 час, охлаждение ведут в камере, а закалку и отпуск проводят по стандартному режиму для данной стали с получением азотированного слоя глубиной 2-2,5 мм.

Изобретение относится к металлургии, а именно к химико-термической обработке изделий из металлов и их сплавов, преимущественно сталей, и может быть использовано для упрочения изделий и повышения их эксплуатационной стойкости.

Изобретение относится к способу выращивания пленки нитрида галлия путем автосегрегации на поверхности подложки-полупроводника из арсенида галлия и может быть использовано при изготовлении светоизлучающих диодов, лазерных светодиодов, а также сверхвысокочастотных транзисторных приборов высокой мощности.
Изобретение относится к области термической обработки деталей из легированного чугуна с различной формой графита. Способ включает контроль исходной структуры, термическую обработку, азотирование, механическую обработку, при этом исходную структуру детали контролируют на содержание графита, цементита и феррита, термообработку для деталей из чугуна, содержащего в структуре графит шаровидной формы, до 10% графита нешаровидной формы и до 20% феррита, проводят путем высокого отпуска и старения, при содержании в структуре от 10 до 80% графита нешаровидной формы и от 20 до 85% феррита путем аустенизации, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита, изотермической выдержки, высокого отпуска и старения, а при содержании в структуре от 10 до 80% графита нешаровидной формы, от 20 до 85% феррита и до 80 % цементита путем предварительного диффузионного отжига, аустенизации, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита, изотермической выдержки, высокого отпуска и старения, после термообработки контролируют структуру деталей, осуществляют механическую обработку поверхности детали с припуском, обеспечивающим при последующей после азотирования механической обработке удаление слоя ε-фазы, после чего участки детали с наименьшей толщиной стенки подвергают деформационному наклепу, затем детали фосфатируют, проводят низкотемпературное азотирование, рабочую поверхность детали подвергают электрохимическому травлению, хонингуют и фосфатируют.

Изобретение относится к области энергетического машиностроения и может быть использовано для защиты от эрозионного износа стальных рабочих лопаток влажнопаровых ступеней турбин, подвергающихся высокоскоростному каплеударному воздействию в коррозионно-активных средах при повышенных усталостных нагрузках.

Изобретение относится к области технологии машиностроения, а именно к зубчатым передачам, и предназначено для обеспечения высокой износостойкости зубчатого зацепления, позволяет повысить долговечность зубчатых передач. Предлагается способ химико-термической обработки в плазме тлеющего разряда детали в виде зубчатого колеса, включающий загрузку зубчатых колес в вакуумную камеру, откачивание воздуха, проведение ионной очистки в газовой среде, напуск реакционного газа и ионное азотирование, отличающийся тем, что откачивание воздуха проводят до давления 10 Па, затем продувают вакуумную камеру аргоном в течение 2-5 мин при давлении 1330 Па, осуществляют последующее ее откачивание до давления 5-15 Па и проводят ионную очистку при напряжении 900-1000 В в течение 5-7 мин в газовой плазме инертного газа повышенной плотности в скрещенных электрическом и магнитном полях, после чего понижают напряжение до рабочего значения, откачивают аргон из вакуумной камеры, напускают рабочий газ и проводят ионное азотирование в плазме повышенной плотности в скрещенных электрическом и магнитном полях, затем охлаждают зубчатое колесо в вакууме с постоянной прокачкой аргона при давлении 10-15 Па в течение первых 15 минут. Обеспечивается повышение износостойкости детали типа зубчатое колесо. 1 ил., 1 пр.

Наверх