Способ переработки бокситов на глинозем

Изобретение относится к цветной металлургии. Способ переработки бокситов на глинозем по параллельной схеме Байер-спекание включает ветвь Байера и ветвь спекания. Ветвь Байера включает дробление и последующий размол боксита в оборотном растворе, автоклавное выщелачивание, сгущение пульпы с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку маточного раствора, кальцинацию гидроксида алюминия с получением глинозема. Ветвь спекания включает подготовку шихты, спекание шихты с получением спека и пыли электрофильтров, выщелачивание полученного спека с получением алюминатного раствора, содержащего кремнезем, и красного шлама спекательного передела, обескремнивание алюминатного раствора с получением белого шлама и обескремненного алюминатного раствора, декомпозицию обескремненного алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку с получением оборотного раствора, направляемого в ветвь Байера на размол боксита. Пыль электрофильтров подвергают выщелачиванию с получением красного шлама электрофильтрации и щелочно-алюминатного раствора электрофильтрации, которые разделяют фильтрацией. Щелочно-алюминатный раствор электрофильтрации направляют на операцию смешения с обескремненным алюминатным раствором ветви спекания. Из красного шлама электрофильтрации выделяют редкоземельные элементы. Технический результат состоит в извлечении соединений редкоземельных элементов из пыли электрофильтров процесса переработки бокситового сырья. 3 табл., 2 пр.

 

Изобретение относится к области цветной металлургии, в частности, к технологии производства глинозема из бокситов.

Из уровня техники известен способ переработки бокситов по параллельной схеме Байер-спекание [1, с.570-572, 2, 3]. В байеровской ветви перерабатывается малокремнистый боксит, а в спекательной ветви – высококремнистый. Практика работы глиноземных производств показала, что на операции спекания кроме спека получается большое количество пыли, содержащей ценные компоненты. Приведенная в упомянутом источнике технологическая схема не содержит сведений о путях утилизации этого продукта. Наиболее ценные компоненты в виде перечня редкоземельных элементов, содержащиеся в бокситовом сырье заводов Урала, описаны в публикациях [4-6].

В описании к патенту US5296177 [7] предлагалось пыль печей кальцинации подвергать агломерации и возвращать обратно в производственный процесс. При этом не ставился вопрос об извлечении редкоземельных элементов.

Известен также способ переработки бокситов на глинозем по параллельной схеме Байер-спекание, описанный в патенте РФ № 2232716 [8].

Способ включает в ветви Байера размол боксита в оборотном растворе, выщелачивание, сгущение с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку маточного раствора с получением оборотного раствора, кальцинацию гидроксида алюминия с получением глинозема. В ветви спекания производят подготовку шихты, направление шихты на спекание, спекание шихты, выщелачивание полученного спека с получением алюминатного раствора, содержащего кремнезем, и красного шлама, обескремнивание алюминатного раствора с получением белого шлама и обескремненного алюминатного раствора, подачу его в ветвь Байера на декомпозицию, переработку белого шлама ветви спекания. Шихту, направляемую на спекание, готовят смешиванием красного шлама, боксита и оборотного раствора с дозировкой в оборотный раствор свободной щелочи для достижения молярного отношения Na2О/(Аl2О3+SiO2) = 1-1,2 и достижения молярного отношения Аl2О3/Fe2О3=0,33-0,5, спекание осуществляют при температуре 350-450оС. Способ по аналогу позволяет обеспечить экономию боксита и снизить удельный расход топлива. Однако способ не предусматривает использование пыли, образующейся при выполнении операции спекания.

Известен способ выщелачивания глиноземсодержащих спеков по патенту РФ 2424981 [9]. Глиноземсодержащие спеки подвергают классификации по фракции 0,5 мм, фракцию мельче 0,5 мм соединяют с аспирационной спековой пылью, смешивают с подшламовой водой, проводят агитационное выщелачивание смеси и затем направляют на совместную промывку со шламом от выщелачивания фракции крупнее 0,5 мм. Изобретение позволяет уменьшить потери глинозема в процессе выщелачивания глиноземсодержащих спеков.

Следует отметить, что объект по аналогу описывает технологию переработки нефелинового сырья, а не бокситов. Это следует из описания опытов, выполненных авторами: они применили сырье Ачинского глиноземного комбината, работающего исключительно на нефелиновой руде. Одно из отличий состоит в том, что нефелины не содержат в своем составе достаточно большие количества редкоземельных элементов. Кроме того, в упомянутом патенте описан вариант переработки аспирационной спековой пыли, которая получается в результате дробления и механического рассева спека. При исследованиях, выполненных для создания заявляемого объекта, было выявлено, что физико-химические свойства пылей, получаемых на различных этапах переработки сырья, оказываются различными. Таким образом, недостатками объекта – аналога является применение для исследований не бокситового сырья, а также использование пылей иного вида, чем это сделано в заявляемом объекте.

В статье [10] выполнено изучение физико-химических свойств возвратной пыли печей спекания бокситовых шихт, и было показано, что пыль может обладать высокой реакционной способностью. Несмотря на применение устройств улавливания пыли, часть ее попадает в окружающую среду с отходящими газами, что создает экологические проблемы [11].

Наиболее близким по технической сущности к предлагаемому объекту является способ переработки бокситов на глинозем по параллельной схеме Байер-спекание, описанный в книге [2, с.163].

Известный способ переработки бокситов на глинозем включает в ветви Байера дробление и последующий размол боксита в оборотном растворе, автоклавное выщелачивание, сгущение пульпы с получением алюминатного раствора и красного шлама автоклавного выщелачивания, промывку красного шлама автоклавного выщелачивания, декомпозицию алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку маточного раствора с получением оборотного раствора, кальцинацию гидроксида алюминия с получением глинозема, в ветви спекания подготовку шихты, спекание шихты с получением спека и пыли электрофильтров, выщелачивание полученного спека с получением алюминатного раствора, содержащего кремнезем, и красного шлама спекательного передела, обескремнивание алюминатного раствора с получением белого шлама и обескремненного алюминатного раствора, декомпозицию обескремненного алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку с получением оборотного раствора, направляемого в ветвь Байера на размол боксита. Пыль после операции спекания возвращается вновь на операцию спекания [2, c.131]. Количество пыли достигает 30-70 % от массы получаемого спека. Возврат пыли в технологическую схему позволяет сократить потери ценных компонентов. Однако при этом большая часть пылевидной фракции шихты вновь удаляется из процесса в виде пыли на этой же операции спекания, что делает такой возврат малоэффективным приемом обработки.

Пыль электрофильтров наравне с другими видами пылей возвращается в технологический цикл спекания подачей ее в печь.

Недостатком способа является наличие потерь ценных компонентов в виде соединений редкоземельных элементов, содержащихся в пыли электрофильтров.

Задачей, на решение которой направлено заявляемое изобретение, является извлечение соединений редкоземельных элементов из пыли электрофильтров процесса переработки бокситового сырья.

Предлагаемый способ переработки бокситов на глинозем включает в ветви Байера дробление и последующий размол боксита в оборотном растворе, автоклавное выщелачивание, сгущение пульпы с получением алюминатного раствора и красного шлама автоклавного выщелачивания, промывку красного шлама автоклавного выщелачивания, декомпозицию алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку маточного раствора с получением оборотного раствора, кальцинацию гидроксида алюминия с получением глинозема, в ветви спекания подготовку шихты, спекание шихты с получением спека и пыли электрофильтров, выщелачивание полученного спека с получением алюминатного раствора, содержащего кремнезем, и красного шлама спекательного передела, обескремнивание алюминатного раствора с получением белого шлама и обескремненного алюминатного раствора, декомпозицию обескремненного алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку с получением оборотного раствора, направляемого в ветвь Байера на размол боксита.

Способ отличается тем, что пыль электрофильтров подвергают выщелачиванию водой или обескремненным алюминатным раствором с получением красного шлама электрофильтрации и щелочно-алюминатного раствора электрофильтрации, разделяют фильтрацией красный шлам электрофильтрации и щелочно-алюминатный раствор электрофильтрации, щелочно-алюминатный раствор электрофильтрации направляют на смешение с обескремненным алюминатным раствором ветви спекания, а красный шлам электрофильтрации направляют на выделение из него редкоземельных элементов.

Исследуя реальную картину работы ветвей спекания Уральских заводов, авторы обратили внимание на образование большого количества пыли в процессе получения спека. Данная пыль является балластом, снижающим КПД печи спекания и процесса в целом. При попадании шихты в печь спекания происходят различные физико-химические превращения. В связи с этим часть продуктов реакций из различных зон печи увлекается отходящими газами и в виде пыли выносится во внепечное пространство, где улавливается системой газоочистки.

В силу технологических особенностей работы трубчатых печей спекания всю пыль вывести из процесса спекания нельзя, поэтому была поставлена задача по поиску возможности утилизации в цикле Байера только самой проблемной части – пыли электрофильтров (ПЭ), так как электрофильтрами улавливается только самые мелкие частицы. Кратность пылевозврата этих фильтров самая высокая из всех агрегатов системы пылеулавливания (батарейных циклонов, пылевой камеры) и, в связи с этим, нагрузка на данный фильтр чрезмерна.

Исследование возвратной пыли электрофильтров двух и трех компонентных шихт печей спекания уральских заводов на вещественный и количественный состав было проведено методами ИК–спектроскопии и рентгенодифрактометрии, а также методом рентгеноспектрального флуоресцентного анализа. В таблице 1 представлен количественный анализ ПЭ двухкомпонентной шихты, для сравнения также показан химический состав получаемого спека.

Таблица 1 – Химический состав пыли электрофильтров (ПЭ) и спека, полученных в технологическом цикле из двухкомпонентной шихты, %

Элементы ППП Al2O3 SiO2 Na2O K2O MgO CaO Fe2O3
ПЭ 24,8 25,5 2,49 28,3 0,44 0,1 2,5 12,2
Спёк 0,1 33,1 5,12 27,5 0,32 2,0 11,2 14,8

Как видно по данным таблицы, химический состав ПЭ и спека значительно отличаются друг от друга. В первую очередь это связано с незавершенностью процесса спекания пыли, которая достаточно легкая и очень быстро проходит горячие зоны печи. Различие в составе ПЭ и спека также подтверждается результатами ИК-спектроскопии и рентгенофазового анализа.

Данные ИК-спектроскопии показали, что валентные и деформационные колебания химических связей пыли электрофильтров соответствуют следующим минеральным соединениям:

2Na2O· 2SiO2·2H2O (натриевый гидросиликат) с максимумом 1100-1000см-1, AlOOH (бёмит или диаспор) в зависимости от спекаемого боксита 1145 – 1152см-1, CaCO3 880см-1 (кальцит или арагонит), а так же Na2O·Al2O3·3H2O – 630см-1, 525-580см-1. Рентгеноструктурный анализ подтвердил наличие в составе возвратной пыли небольшого количества алюминатов и ферритов натрия. Вещественный состав полученных спеков показал, что они полностью состоят из ферритов (Na2O·Fe2O3) и алюминатов натрия (Na2O·Al2O3), а также силиката натрия (Na2O·SiO2), полученных после завершения спекообразования шихты в технологическом цикле.

Выявленные довольно сильные отличия в химическом составе ПЭ и спека, которые ранее считались одинаковыми материалами, привел к необходимости проверки отличий в концентрации редкоземельных элементов (РЗЭ). Эти отличия показаны в таблице 2.

Таблица 2 – Химический состав содержания редкоземельных элементов (РЗЭ) в пыли электрофильтров и спека, полученных в технологическом цикле при спекании двухкомпонентной шихты, г/т

Элементы Sc Sr Y La Ce Nd Sm Eu
ПЭ 20,9 372,8 50,8 68,4 142,3 56,0 9,8 1,8
Спёк 42,4 756,3 103,3 96.5 172,8 113,6 20,2 3.7

Из приведенных данных видно, что пыли электрофильтров спекательного передела содержат также РЗЭ. Поэтому данная пыль электрофильтров может являться источником сырья для выделения из нее редкоземельных элементов, ее рекомендуется перерабатывать отдельно, выводя из технологического цикла.

Именно поэтому предлагается пыль электрофильтров подвергнуть выщелачиванию водой или обескремненным алюминатным раствором с получением красного шлама электрофильтрации и щелочно-алюминатного раствора электрофильтрации. Затем следует разделть фильтрацией красный шлам электрофильтрации и щелочно-алюминатный раствор электрофильтрации, щелочно-алюминатный раствор электрофильтрации направить на смешение с обескремненным алюминатным раствором ветви спекания, а красный шлам электрофильтрации направить на выделение из него редкоземельных элементов. Получаемый эффект будет показан в примерах реализации.

Пример 1.

В лабораторных условиях проводили исследования с пылью электрофильтров, полученной в промышленных условиях на переделе спекания Уральского алюминиевого завода. Выщелачивание навески пыли электрофильтров при ж:т = 10:1 проводили при температуре 95оС в дистиллированной воде в течение 60 минут. После выщелачивания отделяли полученный красный шлам электрофильтров от алюминатного раствора. После его промывки и сушки определяли в нем содержание редкоземельных элементов с применением метода индуктивно связанной плазменной спектрометрии (ISP-MS) на приборе NIOX300D (таблица 3). Рассчитывали извлечение редкоземельных элементов в полученный красный шлам. Оно составило 80-90% от исходной пыли электрофильтров.

Пример 2.

В лабораторных условиях проводили исследования с пылью электрофильтров, полученной в промышленных условиях на переделе спекания Уральского алюминиевого завода. Выщелачивание навески пыли электрофильтров при ж:т = 10:1 проводили при температуре 95оС в алюминатном растворе в течение 60 минут. Алюминатный раствор имел следующий химический состав: Na2O = 120,1 г/дм3, Al2O3 = 118,6 г/дм3.После выщелачивания отделяли полученный красный шлам электрофильтров от алюминатного раствора. После его промывки и сушки определяли в нем содержание редкоземельных элементов с применением метода индуктивно связанной плазменной спектрометрии (ISP-MS) на приборе NIOX300D (таблица 3). Рассчитывали извлечение редкоземельных элементов в полученный красный шлам. Оно составило 50-60% от исходной пыли электрофильтров. Более низкое извлечение РЗЭ во втором примере объясняется наличием в алюминатном растворе каустической щелочи, что приводит к частичному растворению минералов, содержащих РЗЭ и разубоживанию их в полученном красном шламе.

Таблица 3 – Химический состав содержания редкоземельных элементов в красном шламе, полученном после выщелачивания пыли электрофильтров в воде и алюминатном растворе, г/т

Элементы Sc Sr Y La Ce Nd Sm Eu
Красный шлам, полученный после выщелачивания пыли электрофильтров в воде 269,0 3397,5 701,8 1103,6 2083,3 718,7 109,8 19,3
Красный шлам, полученный после выщелачивания пыли электрофильтров в алюминатном растворе 180,9 2701,2 312,1 343,6 693,2 265,6 46,1 8,6

Как видно из таблицы 3, общее количество РЗЭ, которое удалось выделить в красном шламе после выщелачивания пыли электрофильтров в первом примере составило свыше 8000 г/т, а во втором примере более 4000 г/т. Тем самым показано достижение технического результата - извлечение соединений редкоземельных элементов из пыли электрофильтров процесса переработки бокситового сырья. Извлечение дополнительных компонентов из природного сырья позволяет повысить эффективность переработки бокситового сырья в целом.

Библиографические данные источников информации

1. Лайнер А.И. Производство глинозема. М.: Металлургиздат, 1961. 620с.

2. Троицкий И.А., Железнов В.А. Металлургия алюминия. М.: Металлургия, 1977. 392с.

3. Логинова И.В., Кырчиков А.В. Аппаратурно-технологические схемы в производстве глинозема. Екатеринбург: УрФУ. 2012. 233 с.

4. Логинова И.В., Корюков В.Н., Лебедев В.А., Ракипов Д.Ф. Распределение редкоземельных элементов в сырье и продуктах глиноземного производства Уральских заводов. Известия вузов. Цветная металлургия. 1997. №1. С.19-20.

5. Логинов Ю.Н., Буркин С.П., Логинова И.В., Щипанов А.А. Восстановительная плавка красных шламов глиноземного производства. Сталь. 1998. № 8. С. 74-77.

6. Буркин С.П., Логинов Ю.Н., Щипанов А.А., Жуков С.С., Логинова И.В. Переработка железоглиноземистых техногенных отходов. Сталь. 1996. № 6. С. 77-80.

7. Патент US5296177. Process for producing agglomerates from dusts. Патентообладатель ALCAN INT LTD. Опубл. 1994-03-22. МПК C01F7/02; C22B1/24, B29B9/08. Заявка US19920972506 от 1992.11.06.

8. Патент РФ № 2232716. МПК C01F7/38. Способ переработки бокситов на глинозем/ И.В. Логинова; Ю.Н. Логинов; С.Ф. Ордон; В.А. Лебедев; заявитель ГОУ ВПО "Уральский государственный технический университет - УПИ". Опубл. 2004.07.20.

9. Патент RU 2424981. Способ выщелачивания глиноземсодержащих спеков. Заявка: 2009103355/05 от 02.02.2009. Опубл.: 27.07.2011. Бюл. № 21. Патентообладатель: ОАО «РУСАЛ ВАМИ» (RU). МПК C01F7/38, C01F7/06.

10. Логинова И.В., Шопперт А.А., Чайкин Л.И. Изучение физико-химических свойств возвратной пыли печей спекания бокситовых шихт. Вестник Иркутского государственного технического университета. 2016. № 2 (109). С. 100-106.

11. Чжен В.А., Буркат В.С., Утков В.А., Самбуева Е.А. Минимизация негативного воздействия предприятий алюминиевой промышленности на окружающую среду. Металлург. 2008. № 11. С. 41-45.


Способ переработки бокситов на глинозем по параллельной схеме Байер-спекание, включающий в ветви Байера дробление и последующий размол боксита в оборотном растворе, автоклавное выщелачивание, сгущение пульпы с получением алюминатного раствора и красного шлама автоклавного выщелачивания, промывку красного шлама автоклавного выщелачивания, декомпозицию алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку маточного раствора с получением оборотного раствора, кальцинацию гидроксида алюминия с получением глинозема, в ветви спекания подготовку шихты, спекание шихты с получением спека и пыли электрофильтров, выщелачивание полученного спека с получением алюминатного раствора, содержащего кремнезем, и красного шлама спекательного передела, обескремнивание алюминатного раствора с получением белого шлама и обескремненного алюминатного раствора, декомпозицию обескремненного алюминатного раствора с получением гидроксида алюминия и маточного раствора, выпарку с получением оборотного раствора, направляемого в ветвь Байера на размол боксита, отличающийся тем, что пыль электрофильтров подвергают выщелачиванию водой или обескремненным алюминатным раствором с получением красного шлама электрофильтрации и щелочно-алюминатного раствора электрофильтрации, разделяют фильтрацией красный шлам электрофильтрации и щелочно-алюминатный раствор электрофильтрации, щелочно-алюминатный раствор электрофильтрации направляют на смешение с обескремненным алюминатным раствором ветви спекания, а красный шлам электрофильтрации направляют на выделение из него редкоземельных элементов.



 

Похожие патенты:

Изобретение может быть использовано в химической промышленности для получения глинозема и содопродуктов. Переработка нефелиновых руд и концентратов включает подготовку нефелиново-известняково-содовой шихты с введением в нее глиноземсодержащей добавки, спекание и выщелачивание подготовленной шихты с последующим получением глинозема и сопутствующих продуктов.

Изобретение относится к способам обработки материалов промышленных отходов, а именно к способам обработки летучей золы. Способ включает выщелачивание летучей золы с использованием HCl с получением продукта выщелачивания, содержащего ионы алюминия, ионы железа и твердое вещество, и отделение указанного твердого вещества от продукта выщелачивания.

Изобретение относится к cпособу переработки глиноземсодержащего сырья и может быть использовано в спекательной технологии получения глинозема и содопродуктов из нефелиновой руды.

Изобретение может быть использовано в цветной металлургии для приготовления шихты при производстве глинозема из низкокачественного алюмосиликатного сырья. Способ подготовки шихты включает измельчение алюмосиликатного сырья на содовом растворе в мельнице, гидроциклонирование пульпы по классу 0,25 мм, выведение песков гидроциклона крупностью более 0,25 мм из процесса, слив гидроциклона крупностью менее 0,25 мм на измельчение в мельницу, работающую в замкнутом цикле с гидроциклоном, возвращение песков гидроциклона крупностью более 0,063 мм на доизмельчение в мельницу, направление слива крупностью менее 0,063 мм, являющегося готовым продуктом, на металлургический передел.

Настоящее изобретение относится к содержащим оксид титана частицам оксида алюминия на основе корунда, выплавленного в электродуговой печи из кальцинированного глинозема, а также к способу их получения.

Изобретение может быть использовано в области цветной металлургии. Способ переработки алюмосиликатного сырья включает его термическую обработку и последующее взаимодействие с раствором соляной кислоты с выделением нерастворимого кека, очистку раствора и его переработку с получением оксида алюминия и регенерацией соляной кислоты.
Изобретение относится к области промышленного производства цемента, более конкретно к способу производства цементного клинкера из высокоглиноземистых золошлаковых отходов угольных электростанций, и может найти применение, в том числе при переработке золоотвалов Экибастузской ГРЭС.

Изобретение относится к способам получения глинозема из техногенных отходов, в частности из минеральной части золы сжигания бурых углей. Шихту приготавливают смешиванием золошлаковых отходов ТЭЦ и известняка, который берут в избытке 28,0-75,0% от стехиометрического количества, после чего спекают.
Изобретение может быть использовано в области цветной металлургии, в технологии производства глинозема. Алюминийсодержащий спек получают спеканием шихты из нефелиновой руды, известняка и оборотных продуктов при температуре 1250-1300°С.

Изобретение относится к области металлургии. .

Изобретение относится к области гидрометаллургии и может быть использовано при переработке высококалиевого нефелин-полевошпатового сырья, в качестве которого используют сынныриты.

Изобретение относится к способу получения адсорбента для осушки содержащих влагу газов. Для получения адсорбента продукт центробежной термической активации гидраргиллита (ЦТА ГГ) в щелочном растворе, сушат, размалывают, пептизируют и пластифицируют в растворе азотной кислоты, формуют полученную пасту методом экструзии, сушат и прокаливают в токе осушенного воздуха.

Изобретение может быть использовано при получении катализаторов для обработки выхлопных газов двигателей. Способ получения улавливающего NOx материала носителя катализатора включает получение первой суспензии, содержащей предшественник гомогенного смешанного оксида Mg/Al, и сушку первой суспензии.

Изобретение может быть использовано при переработке низкосортного высококремнистого алюмосодержащего сырья. Для получения металлургического глинозема каолиновые глины выщелачивают в автоклаве соляной кислотой в течение 60-180 мин при температуре 130-190°C.

Изобретение относится к получению ряда сухих продуктов на основе хлорида алюминия. Продукты на основе гидроксохлорида алюминия содержат измельченные частицы гидроксохлорида алюминия в кристаллической форме.

Изобретение может быть использовано при создании протонообменных мембран, применяемых в топливных элементах на основе водорода. Композитный протонопроводящий материал имеет состав xCs4(HSO4)3(H2PO4)-(1-х)AlPO4, где х=0,5-0,9.
Изобретение относится к области получения дейтеридов металлов для применения в качестве селективного восстановителя в органическом синтезе, для дейтерирования лекарственных препаратов с целью последующего использования в медицине и фармацевтике.

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, солегированных редкоземельными элементами, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной геометрии.

Изобретение может быть использовано при получении алюминиевого коагулянта, применяемого в области водоподготовки. Для получения гидроксохлорсульфата алюминия сернокислую соль алюминия в виде кристаллогидрата - сульфата алюминия Al2(SO4)3⋅18H2O или алюминиевых квасцов R2SO4⋅Al2(SO4)3⋅24H2O, где R - К или NH4+, обрабатывают газообразным аммиаком.

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного электроизоляционного материала, окон или линз в оптических приборах, оптических элементах в ИК области спектра.
Изобретение может быть использовано в цветной металлургии для переработки бокситов гидрохимическим способом. К бокситу добавляют оборотный раствор и обожженную при 1200-1300°С известь в количестве 12-14% от массы боксита.
Наверх