Парогазовая установка

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии. Парогазовая установка содержит блок подготовки газа, сообщенный через воздушный компрессор, смеситель с подогревателем, связанным через камеру сгорания с газовой турбиной, сообщенной с котлом-утилизатором, являющимся приводом электрогенератора паровой турбины, содержащей установленные на одном валу цилиндр высокого давления, цилиндр среднего давления, цилиндр низкого давления, при этом первый выход цилиндра среднего давления связан с первым радиаторным змеевиком нагрева пара, расположенным в трубчатой печи с горелкой, выход первого радиаторного змеевика соединен с входом цилиндра низкого давления, второй выход цилиндра среднего давления сообщен с подогревателем сетевой воды, а третий выход цилиндра среднего давления сообщен с конвективным нагревателем, который через второй радиантный змеевик трубчатой печи с горелкой соединен с блоком разложения перегретого пара, сообщенного с источником постоянного тока высокого напряжения и имеющего выход пароводородной смеси и выход парокислородной смеси, которые параллельно раздельно связаны с конденсатором, имеющим первый выход водокислородной смеси и второй выход водоводородной смеси, при этом первый выход конденсатора водокислородной смеси сообщен с первым сепаратором, а второй выход водоводородной смеси - со вторым сепаратором, первый выход первого сепаратора и первый выход второго сепаратора связаны с горелкой трубчатой печи, второй выход первого сепаратора и второй выход второго сепаратора связаны через питательный насос с подогревателем сетевой воды, третий выход второго сепаратора через мембранный компрессор связан с дополнительно установленным между компрессором и подогревателем водородно-газовым смесителем. Техническим результатом изобретения является повышение ресурсосбережения и экологичности парогазовой установки, а также безопасность ее эксплуатации. 1 ил.

 

Изобретение предназначено для энергетики и может быть использовано при получении дешевых и экономичных источников энергии.

Из уровня техники известны различные технологические схемы парогазовых установок (ПГУ) с системами управления генерируемой мощностью (патенты РФ №№2208689, 2211343, 2240472, 2315871, 2391516, 2395696, 2473817, патенты US №№6796129, 6960840, заявка JP №2006009574).

Недостатком данных ПГУ являются высокий расход сжигаемого углеводородного сырья и низкая экологичность, обусловленная высоким количеством выбросов вредных веществ в атмосферу.

Известен парогазовый энергоблок с парогенерирующей водородно-кислородной установкой (патент №2563559 опубл. 20.09.2015 г. Бюл. №26), который содержит по меньшей мере, котел-утилизатор, паровую турбину, снабжаемую паром от котла-утилизатора по паропроводам высокого и среднего давлений, а также парогенерирующую водородно-кислородную установку, подключенную к паровой турбине и имеющую автоматическое управление по заданной программе, при этом парогазовый блок дополнительно содержит общий коллектор дополнительного пара с распределительным запорно-регулирующим клапаном, к выходам которого подключены паровой компрессор и вспомогательная паровая турбина, соединенные единым валом, при этом паровой компрессор имеет линию отвода в паропровод высокого давления паровой турбины, вспомогательная паровая турбина имеет линию отвода в паропровод среднего давления паровой турбины, а также первый впрыскивающий пароохладитель с впрыском воды через первый запорно-регулирующий клапан, установленный между первым выходом распределительного запорно-регулирующего клапана и паровым компрессором; второй впрыскивающий пароохладитель с впрыском воды через второй запорно-регулирующий клапан, установленный между вторым выходом распределительного запорно-регулирующего клапана и вспомогательной паровой турбиной; запорный клапан и третий впрыскивающий пароохладитель с впрыском воды через третий запорно-регулирующий клапан, последовательно установленные между общим коллектором дополнительного пара и паропроводом высокого давления паровой турбины, причем все указанные клапаны имеют автоматическое управление по заданной программе.

Недостатком данного парогазового блока являются высокий расход сжигаемого углеводородного сырья и низкая экологичность, обусловленная высоким количеством выбросов вредных веществ в атмосферу.

Задачей изобретения является усовершенствование парогазовой установки, позволяющее повысить ее ресурсосбережение и экологичность, а также безопасность ее эксплуатации.

Техническим результатом изобретения является снижение объема потребления углеводородного сырья и уменьшение объема выбросов при его сжигании, а также стабилизация температуры разложения воды.

Технический результат достигается тем, что парогазовая установка содержит блок подготовки газа, сообщенный через воздушный компрессор, смеситель с подогревателем, связанным через камеру сгорания с газовой турбиной, сообщенной с котлом утилизатором, являющимся приводом электрогенератора паровой турбины, содержащей, установленные на одном валу, цилиндр высокого давления, цилиндр среднего давления, цилиндр низкого давления, при этом первый выход цилиндра среднего давления связан с первым радиантным змеевиком нагрева пара, расположенным в трубчатой печи с горелкой, выход первого радиаторного змеевика соединен с входом цилиндра низкого давления, второй выход цилиндра среднего давления сообщен с подогревателем сетевой воды, а третий выход цилиндра среднего давления сообщен с конвективным нагревателем, который через второй радиантный змеевик трубчатой печи с горелкой соединен с блоком разложения перегретого пара, сообщенного с источником постоянного тока высокого напряжения, и имеющего выход пароводородной смеси и выход парокислородной смеси, которые параллельно раздельно связаны с конденсатором, имеющим первый выход водокислородной смеси и второй выход водоводородной смеси, при этом первый выход конденсатора водокислородной смеси сообщен с первым сепаратором, а второй выход водоводородной смеси - со вторым сепаратором, первый выход первого сепаратора и первый выход второго сепаратора связаны с горелкой трубчатой печи, второй выход первого сепаратора и второй выход второго сепаратора связаны через питательный насос с подогревателем сетевой воды, третий выход второго сепаратора через мембранный компрессор связан с дополнительно установленным между компрессором и подогревателем водородно-газовым смесителем.

Снижение объема потребления углеводородного сырья и уменьшение объема выбросов при его сжигании достигается за счет того, что в предлагаемой парогазовой установке предусмотрено глубокое разложение перегретого пара (температура 550°C) в блоке разложения перегретого пара, при этом разложение перегретого пара происходит под воздействием тока высокого напряжения (6000 В), что позволяет стабилизировать температуру разложения перегретого пара на длительное время, с получением пароводородной смеси и парокислородной смеси, которые затем раздельно конденсируют и сепарируют с получением кислорода, водорода и воды. Кислород и часть полученного водорода используется для поддержания процесса горения в горелке, что позволяет снизить расход метана при работе установки. Другая часть водорода подается на водородно-газовый смеситель, в котором смешивается с потоком газа из компрессора и используется далее по циклу, что позволяет также снизить расход объема углеводородного сырья. Таким образом, двухстадийное снижение объема потребления углеводородного сырья в работе установки позволит соответственно уменьшить объем выбросов загрязняющих веществ в атмосферу.

Стабилизация температуры разложения воды на отметке 550°C обеспечивает не только глубокое разделение перегретого пара, но и повысить безопасность эксплуатации установки, т.к повышение температуры свыше 580°C приводит к взрыву установки, а понижение температуры ниже 550°C не позволяет осуществить процесс разделения вообще.

Таким образом, совокупность предлагаемых признаков позволяет обеспечить снижение объема потребления углеводородного сырья и уменьшение объема выбросов в атмосферу при его сжигании, а также стабилизировать температуру разложения воды, что в свою очередь повысит ресурсосбережение, экологичность и безопасность эксплуатации парогазовой установки.

На фиг. представлена схема парогазовой установки. Парогазовая установка содержит блок подготовки газа 1, сообщенный через воздушный компрессор 2, водно-газовый смеситель 3 с подогревателем 4. Подогреватель 4 через камеру сгорания 5 связан с газовой турбиной 6. Газовая турбина 6 связана с котлом - утилизатором 7, который связан с являющимися приводом электрогенератора 11 паровой турбины цилиндром высокого давления 8, цилиндром среднего давления 9, цилиндром низкого давления 10, установленных на одном валу. При этом первый выход цилиндра среднего давления 9 связан с первым радиантным змеевиком 17 нагрева пара, расположенным в трубчатой печи 15 с горелкой 18, выход которого соединен с входом цилиндра низкого давления 10. Второй выход цилиндра среднего давления 9 сообщен с конвективным нагревателем 14, который через второй радиантный змеевик 16 трубчатой печи 15 с горелкой 18 соединен с блоком разложения перегретого пара 19, сообщенного с источником постоянного тока высокого напряжения 20. Блок разложения перегретого пара 19 имеет выход пароводородной смеси и выход парокислородной смеси, которые связаны с конденсатором 21. Конденсатор 21 имеет первый выход - выход водокислородной смеси, который сообщен с первым сепаратором 22, и второй выход - выход водоводородной смеси, который сообщен со вторым сепаратором 23. Первый выход первого сепаратора 22 и первый выход второго сепаратора 23 связаны с горелкой 18 трубчатой печи15. Второй выход первого сепаратора 22 и второй выход второго сепаратора 23 связаны через питательный насос 13 с подогревателем сетевой воды 12. Третий выход второго сепаратора 23 через мембранный компрессор 24 связан с дополнительно установленным между воздушным компрессором 2 и подогревателем 4 водородно-газовым смесителем 3.

Парогазовая установка работает следующим образом. Метан подают в блок подготовки газа 1. Подготовленный газ через воздушный компрессор 2 подают в подогреватель 4, где нагревают и затем направляют в связанную с ним камеру сгорания 5, куда также поступает дизельное топливо и воздух от воздушного компрессора 2. В камере сгорания 5 газообразное топливо сжигают, при этом продукты сгорания из камеры сгорания 5 попадают в газовую турбину 6. Выхлопные газы, из газовой турбины 6, поступают в связанный с ней, котел-утилизатор 7, который является приводом электрогенератора паровой турбины, содержащей, установленные на одном валу, цилиндр высокого давления 8, цилиндр среднего давления 9, цилиндр низкого давления 10. Здесь они отдают свою теплоту на перегрев пара, на кипение котловой воды и подогрев потока основного конденсата в подогревателе 12. Перегретый пар высокого давления из котла-утилизатора 7 подают в цилиндр высокого давления 8 паровой турбины, перегретый пар среднего давления и низкого давления поступает в цилиндр среднего давления 9 паровой турбины. Пар с температурой 250°C из цилиндра среднего давления 9 через третий выход поступает в первый радиантный змеевик 17 для получения перегретого пара трубчатой печи 15, в котором он нагревается до температуры 350°C и поступает на вход цилиндра низкого давления 10 паровой турбины, который является приводом электрогенератора 11, и далее конденсируется, отдавая свою теплоту охлаждающей воде.

Посредством третьего выхода цилиндра среднего давления 9 паровой турбины осуществляют отбор отработанного перегретого пара с температурой 330°C, 10% которого направляют на конвективный нагреватель пара 14, где он направляется отходящими дымовыми газами трубчатой печи 15 до температуры 400°C. Затем полученный перегретый пар направляют во второй радиантный змеевик 16 трубчатой печи 15, где он нагревается до температуры 550°C излучением, исходящим от горения топлива, поступающего из горелки 18, установленной в нижней части трубчатой печи 15. После чего перегретый пар направляют в блок разложения перегретого пара 19, сообщенного с источником постоянного тока высокого напряжения 20. В рабочей камере блока разложения 19 перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подают постоянный ток с напряжением 6000 В от источника постоянного тока высокого напряжения 20.

Поскольку не весь перегретый пар в блоке разложения перегретого пара 19 разлагается на кислород и водород, то на выходе получают пароводородную смесь и парокислородную смесь, которые по раздельным трубопроводам направляют в конденсатор 21, для конденсирования воды из смеси. После чего охлажденная водокислородная поступает в первый сепаратор 22 для разделения смеси на кислород и воду. Полученный кислород подают на горелку 18 трубчатой печи 15, где участвует в качестве окислителя для поддержания горения топлива. Охлажденная водоводородная смесь из конденсатора 21 поступает на второй сепаратор 23, для разделения смеси на водород и воду, при этом 20% водорода через первый выход второго сепаратора 23 поступает на горелку 18 трубчатой печи 15, где участвует в качестве топлива, а оставшиеся 80% водорода через второй выход второго сепаратора 23 подают посредством мембранного компрессора 24 в дополнительно установленный между компрессором 2 и подогревателем 4 водородно-газовый смеситель 3. Полученная из первого и второго сепараторов 23 и 23 вода посредством питательного насоса оборотной воды 13 подается в подогреватель сетевой воды 12, где охлаждается, подогревая сетевую воду, и затем поступает на вход котла-утилизатора 7.

Парогазовая установка, характеризующаяся тем, что содержит блок подготовки газа, сообщенный через воздушный компрессор, смеситель с подогревателем, связанным через камеру сгорания с газовой турбиной, сообщенной с котлом-утилизатором, являющимся приводом электрогенератора паровой турбины, содержащей установленные на одном валу цилиндр высокого давления, цилиндр среднего давления, цилиндр низкого давления, при этом первый выход цилиндра среднего давления связан с первым радиаторным змеевиком нагрева пара, расположенным в трубчатой печи с горелкой, выход первого радиаторного змеевика соединен с входом цилиндра низкого давления, второй выход цилиндра среднего давления сообщен с подогревателем сетевой воды, а третий выход цилиндра среднего давления сообщен с конвективным нагревателем, который через второй радиантный змеевик трубчатой печи с горелкой соединен с блоком разложения перегретого пара, сообщенного с источником постоянного тока высокого напряжения и имеющего выход пароводородной смеси и выход парокислородной смеси, которые параллельно раздельно связаны с конденсатором, имеющим первый выход водокислородной смеси и второй выход водоводородной смеси, при этом первый выход конденсатора водокислородной смеси сообщен с первым сепаратором, а второй выход водоводородной смеси - со вторым сепаратором, первый выход первого сепаратора и первый выход второго сепаратора связаны с горелкой трубчатой печи, второй выход первого сепаратора и второй выход второго сепаратора связаны через питательный насос с подогревателем сетевой воды, третий выход второго сепаратора через мембранный компрессор связан с дополнительно установленным между компрессором и подогревателем водородно-газовым смесителем.



 

Похожие патенты:

Изобретение относится к паросиловым энергетическим установкам, а именно к тепловым электрическим станциям (ТЭС) с паровыми турбинами и системами обеспечения экологичности и восстановления их работоспособности.

Изобретение относится к теплоэнергетике и может быть использовано для повышения КПД и снижения металлоемкости котла котлотурбинной диоксид-углеродной энергоустановки (CO2-ЭУ), использующей диоксид углерода (CO2) в качестве рабочего тела.

Определение предельного значения энергии, которое может быть полезным образом использовано в термодинамическом процессе, и оптимальных значений термического и энергетического КПД монотермических установок при одновременной работе теплового насоса и теплового двигателя осуществляют на стадии проектирования и отображают в термодинамических диаграммах с использованием графических расчётов и применением системы автоматизированного проектирования.

Изобретение относится к энергетике. Энергетическая установка содержит магистральный газопровод природного газа, воздухоразделительную установку для производства кислорода, электроприводные компрессоры для сжатия кислорода и природного газа, пароструйные компрессоры, два адиабатических реактора паровой конверсии метана, твердотопливный паровой котел, высокотемпературный пароперегреватель высокого давления, высокотемпературную конденсационную парогазовую турбинную установку с конденсатором, вихревой разделитель пара и углекислого газа, газовую турбину.

Изобретение относится к энергетике. Способ получения электрической энергии осуществляется с помощью по меньшей мере одного низкотемпературного источника тепла, причем проводят циклический VPT-процесс (турбина с изменяемой фазой).

Изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в механическую.

Изобретение относится к области парогазовых энергоблоков (ПГУ) тепловых электрических станций. ПГУ предусматривает генерацию и подачу дополнительного пара от водородно-кислородных парогенераторов на вход частей высокого и среднего давления паровой турбины.

Изобретение относится к области теплотехники и может быть использовано в системах теплообмена, предназначенных для восстановления и использования отработанного тепла.

Изобретение относится к гелиотехнике и может быть использовано для утилизации тепловой энергии природных источников, а именно трансформации тепловой энергии солнца, наружного воздуха и воды в механическую и электрическую для перемещения водного транспортного средства.

Изобретение относится к отраслям промышленности, использующим ископаемое топливо, например электроэнергетике, химии, нефтехимии, металлургии, коксохимии. .

Изобретение относится к энергомашиностроению, а именно к способам, устройствам для выработки тепловой и электрической энергий. Технический результат заключается в увеличении КПД установки за счет повышения эффективности использования газов в установке, а также уменьшении выбросов CO2 в окружающую среду, за счет использования части диоксида углерода в химических реакциях, необходимых для выработки электрической и тепловой энергий.

Предложен усовершенствованный замкнутый контур 100 с циклом Брайтона для силовой установки, который включает в себя нагреватель 110, по меньшей мере одну турбину 120, рекуператор 150, по меньшей мере один охладитель 160, по меньшей мере один компрессор 170, обходную линию 180 и откидной клапанный механизм 190 в замкнутом контуре, в котором циркулирует рабочая текучая среда, чтобы вырабатывать электричество через генератор 132.

Изобретение относится к энергетике. Стехиометрическая парогазотурбинная установка состоит из входного устройства, компрессора низкого и компрессора высокого давлений, между которыми расположен теплообменник, являющийся нагревательным элементом паросиловой установки, камеры сгорания, охлаждаемой турбины, за которой размещены: теплообменник-испаритель и теплообменник-конденсатор.

Настоящее изобретение относится к энергетике, к задаче прямого преобразования тепловой энергии в электрическую посредством термоэлектрической и термоэлектронной эмиссии, в частности к получению электрической энергии за счет тепла газов, образующихся при термохимическом преобразовании топлива, и может быть использовано для снабжения электроэнергией и теплом отдельных зданий промышленной и индивидуальной застройки, в металлургии, транспорте и других отраслях промышленности.

Изобретение относится к энергетике. Способ работы парогазовой установки (ПГУ) осуществляют с использованием парового охлаждения горячих элементов турбины.

Изобретение относится к энергетике. Предложен способ более точного определения эффективности паровой турбины, в котором уплотнительный пар в паровой турбине перенаправляют с обеспечением возможности более точного определения эффективности паровой турбины.

Изобретение относится к энергетике и двигателестроению. Двигатель внутреннего испарения содержит источник тепла, рекуперативный теплообменник, рабочую машину в виде камеры переменного объема с подвижным элементом, холодильник, насос и рабочее тело в виде жидкости, на входном трубопроводе которой из холодильника в камеру установлены насос и дополнительно дозатор, подвижный элемент соединен с потребителем механической энергии, а на выходном трубопроводе установлен управляемый клапан, управление работой которого, а также дозатором согласовано с положением подвижного элемента относительно стенок этой камеры.

Тепловой двигатель включает парогенератор и гидромотор. Гидромотор приводится в действие напором жидкости, вытесняемой паром.

Изобретение относится к области тепловой энергетики и может быть использовано для производства электрической и тепловой энергии. .

Изобретение относится к паровой турбине (10), имеющей множество ступеней и содержащей множество точек (12) впуска, соединенных с множеством линий (21) впуска, подающую линию (20), соединенную с множеством линий (21) впуска, и по меньшей мере одну линию (22) отбора, отходящую от промежуточной ступени турбины (10).
Наверх