Способ изготовления керамических форм сложной геометрии из порошковых систем

Изобретение относится к изготовлению керамических форм сложной геометрии из порошковых систем. Осуществляют послойное программно-компьютерное моделирование изделия, подготовку керамического порошка, послойное нанесение керамического порошка на подложку и послойно-селективную обработку каждого слоя. Сначала на каждом нанесенном слое осуществляют программно-регламентированное внесение связующего путем впрыска его в слой керамического порошка согласно изготавливаемому сечению, а по окончании обработки связующим каждый слой подвергается программно-регламентированной обработке контуров изготавливаемого сечения лазером. В качестве керамического порошка используют оксидную керамику крупности в 0,02-0,04 мм и связующие на водной основе, обладающие свойством самоотверждения и отверждения под действием теплового воздействия. Содержание связующего составляет от 1 до 5% массы керамического порошка. В результате повышается качество литейных форм и снижается выброс вредных веществ в окружающую среду. 1 ил.

 

Изобретение относится к технологическим процессам, а именно металлургии, в частности, к технологии послойного синтеза сложных литейных форм из керамических порошков и может найти применение в разных отраслях машиностроения, например, для изготовления литейных форм и стержней особо сложной конфигурации для авиационной, автомобилестроительной, кораблестроительной и др. отраслей.

Известен способ изготовления многослойных оболочковых литейных форм по выплавляемым моделям, включающий послойное нанесение на блок выплавляемых моделей огнеупорной суспензии, обсыпку зернистым материалом, введение кислородсодержащего вещества, вытопку моделей, сушку и прокалку, при этом кислородсодержащее вещество вводят, начиная со второго слоя оболочки, в составе зернистого материала для обсыпки, к которому добавляют борную кислоту в количестве 2-3% мас. В качестве кислородсодержащего вещества используют дихромат калия или пероксиды щелочноземельных металлов в количестве 5-10% мас. [патент РФ №2433013, кл. В22С 9/04, 2011]. Однако известный способ требует больших затрат на кислородсодержащее вещество, количество которого при введении в состав обсыпки примерно в 8-10 раз превышает необходимое количество при введении в суспензию.

Известен способ, включающий послойное нанесение на блок выплавляемых моделей огнеупорной суспензии, введение кислородсодержащего вещества, начиная со второго слоя оболочки с использованием борной кислоты, обсыпку зернистым материалом, вытопку моделей, сушку и прокаливание, кислородсодержащее вещество вводят в составе материала огнеупорной суспензии, к которой добавляют борную кислоту в количестве 3-4% мас. В качестве кислородсодержащего вещества используют полупродукт переработки шламов селитровых ванн, применяемых в цехах термической обработки для проведения операции отпуска, в количестве 2-4% масс. суспензии. (патент РФ №2532753, В22С 9/04, 2013 г.) Недостатком известного технического решения является его трудоемкость и высокая стоимость, поскольку при реализации известного способа сначала создается модель изделия вручную, на ЧПУ станке или из пластика с применением аддитивных технологий: SLA, SLS, DLP, затем получают ее восковую копию, на которую послойно наносят оболочковую форму, затем удаляют восковую копию и только после этого в форму льют металл, что увеличивает технологическую цепочку и сроки изготовления, а так же ограничивает применение технологии в случае наличия внутренних каналов и полостей в отливке, в связи с высокой трудоемкостью или невозможностью удаления материала формы из отливки.

Наиболее близким по технической сущности к заявляемому решению, является технология 3D-печати песчаных форм (http://3d.globatek.ru/production/tech-sand/). Технология заключается в многократном поочередном нанесении слоя смешанного с отвердителем литейного песка и слоя связующего вещества. Каждый слой песчаной формы состоит из двух материалов, добавленных последовательно. Формовочный песок: устройство подачи и выравнивания песка подает формовочный песок на поверхность к камере построения. Связующее вещество: печатная головка выборочно наносит литейные смолы на песок. Активатор, находящийся в песке упрочняет связующее вещество. Таким образом, формируется единичный слой. Процесс повторяется, пока не будет построена литейная форма.

Недостатком известного решения является малая температурная стойкость форм, необходимость применения большого количества связующего вещества и активатора для получения достаточной прочности формы, что ведет к большему выделению вредных веществ в рабочую зону при построении формы и при заливке металла, увеличивает газотворную способность формы, что в свою очередь приводит к появлению дефектов в отливке и увеличивает стоимость изготовления. Кроме того, известная технология требует большее количество времени для отверждения смеси.

Задачей заявляемого решения является снижение себестоимости и времени изготовления изделий сложной формы из песчано-полимерных систем, повышение качества отливки, при снижении выброса вредных веществ в окружающую среду.

Поставленная цель достигается за счет того, что в известном способе изготовления изделий сложной формы из керамических порошков, включающем послойное программно-компьютерное моделирование изделия, подготовку керамического порошка, послойное нанесение керамического порошка на подложку и послойно-селективную обработку каждого слоя, в соответствии с компьютерными сечениями модели до образования запрограммированной формы изделия, согласно заявленного решения, послойную программно-ориентированную обработку керамического порошка на глубину слоя в два этапа, сначала на каждом нанесенном слое обработку проводят программно-регламентированным внесением связующего путем впрыска в слой керамического порошка согласно изготавливаемого сечения, по окончании обработки связующим, каждый слой подвергается программно-регламентированной обработке контуров изготавливаемого сечения лазером, для повышения точности получаемого изделия и увеличения прочности внешнего слоя. Кроме того, за счет того, что лазерную обработку проводят, нагревая до температуры 80°С что является ниже температуры воспламенения, обеспечивая достаточную вентиляцию рабочей зоны, а подготовку керамического порошка осуществляют до дисперсности не более одной трети толщины наносимого единичного слоя, в качестве керамического порошка используют оксидную керамику крупности в диапазоне 0,02-0,04 мм и связующие на водной основе, обладающих свойством самоотверждения и отверждения под действием теплового воздействия, при этом содержание связующего составляет от 1% до 5% массы керамического порошка.

Технический результат достигается за счет того, что заявленная совокупность операций позволяет снизить количество связующего и катализатора в смеси, за счет чего обеспечить получение высокой механической прочности изделий, благодаря снижению вероятности появления дефектов в отливке из-за малой газотворности формы. Ускорение процесса отверждения и увеличение прочности внешнего слоя изделия достигается за счет того, что послойно-селективную обработку каждого слоя керамического порошка осуществляют до затвердевания смеси на глубину слоя, в два этапа, при этом контур каждого слоя по окончании обработки связующим подвергается лазерной обработке. Кроме того, применение связующих на водной основе приводит к снижению количества выделяемых вредных веществ и снижению себестоимости процесса изготовления формы.

Скорость отверждения и прочность полученных песчано-полимерных изделий (литейных форм, стержней и пр.) в случае самоотверждения определяется скоростью испарения влаги из связующего, что в свою очередь зависит от температуры, в случае применения лазерного отверждения контуров, скорость отверждения и прочность наружного слоя, необходимая для увеличения точности изделий и достаточной для манипулирования изделиями перед заливкой металлом, определяется скоростью прогрева участка смеси. Сочетание методов самоотверждения и термического отверждения позволяет получить высокую прочность изделий с высокой скоростью изготовления.

Заявленное техническое решение обеспечивает получение литейной формы, частей литейной формы и литейных стержней с конфигурацией любой сложности и высокими прочностными характеристиками, низкой газотворной способностью для точного, бездефектного получения металлических отливок в кратчайшие сроки, что достигается за счет применения совокупности методов самоотверждения и термической обработки керамического порошка, произведенных в оптимальной последовательности.

На фиг. 1 представлен пример изготовления по заявленному способу литейного стержня.

Заявленный способ изготовления изделий сложной формы из песчано-полимерных систем осуществляется следующим образом.

В начале технологического процесса изготовления изделия, посредством заданной программы создается трехмерная компьютерная модель изготавливаемого изделия - 3D-модель. Специальное программное обеспечение «разрезает» модель на тонкие слои толщиной порядка нескольких десятков микрон. Осуществляют подготовку керамического порошка до дисперсности не более одной трети толщины наносимого единичного слоя. В качестве керамического порошка используют оксидную керамику крупности в диапазоне 0,02-0,04 мм и связующие на водной основе, обладающих свойством самоотверждения и отверждения под действием теплового воздействия.

Керамический порошок дисперсностью 20-40 мкм наносят на подложку. Устройство нанесения связующего в соответствии с компьютерной программой единичного поперечного сечения 3D-модели изготавливаемого изделия, наносит связующее, путем впрыска его в керамический порошок, отверждая керамический порошок на глубину слоя. Затем лазер воздействует на контуры отвержденных участков слоя, интенсифицируя процесс отверждения керамического порошка в обрабатываемой зоне. После селективного внесения связующего и термической обработки первого слоя, подложку опускают вниз на величину следующего слоя керамического порошка. Устройством подачи и нанесения керамического порошка наносят новый слой керамического порошка, и процесс химической и термической обработки повторяют, пока изготовление изделия не будет завершено.

По окончании процесса образования запрограммированной формы изделия, производят удаление несвязанного керамического порошка и изделие готово к употреблению.

Технологические параметры такие, как: количество связующего, температура лазерной обработки слоя, время термической обработки, толщина слоя керамического порошка, температурная стойкость полученного изделия зависят от конфигурации изделия, применяемых типов полимеров и химических реагентов (отвердителей), типа заливаемого металла и его объема.

Для изготовления, например, литейного стержня (фиг. 1) по трехмерной компьютерной модели изготавливаемого изделия, используют керамический порошок с дисперсностью не крупнее 0,04 мм. С помощью механизма нанесения керамический порошок наносят на подложку слоем в 0,12 мм. Затем наносят связующее на водной основе, путем впрыска его в керамический слой в соответствии с компьютерной программой единичного поперечного сечения 3D-модели изделия. Количество связующего составляет 5% от массы керамического порошка. Затем с помощью лазера воздействуют на контуры отвержденного слоя, при этом время термического воздействия составляет 5 сек, при температуре 80 градусов. И повторяют процесс до получения запрограммированной формы литейного стержня.

Заявленная технология изготовления трехмерных объектов сложной формы послойно-селективной обработкой керамического порошка обеспечивает гарантированное получение литейной формы, частей литейной формы и стержней с конфигурацией любой сложности для точного, бездефектного получения металлических отливок в кратчайшие сроки.

Способ изготовления керамических форм сложной геометрии из порошковых систем, включающий послойное программно-компьютерное моделирование изделия, подготовку керамического порошка, послойное нанесение керамического порошка на подложку и послойно-селективную обработку каждого слоя в два этапа, при этом сначала на каждом нанесенном слое осуществляют программно-регламентированное внесение связующего путем впрыска его в слой керамического порошка согласно изготавливаемому сечению, а по окончании обработки связующим каждый слой подвергают программно-регламентированной обработке контуров изготавливаемого сечения лазером, отличающийся тем, что в качестве керамического порошка используют оксидную керамику крупности 0,02-0,04 мм и связующие на водной основе, обладающие свойством самоотверждения и отверждения под действием теплового воздействия, при этом содержание связующего составляет от 1 до 5% массы керамического порошка.



 

Похожие патенты:

Группа изобретений относится к электроимпульсному нанесению упрочняющего покрытия из порошка на поверхность стальной детали. Способ включает спекание засыпки порошка в неэлектропроводной матрице на поверхности детали под давлением пуансона путем пропускания импульсов тока.

Изобретение относится к области строительства. Энергоэффективная огнестойкая многослойная изолирующая панель состоит из конструктивоформирующего слоя из пеноалюминия закрытоячеистой или открытоячеистой структуры и последующих, нанесенных как минимум с одной стороны объемоформирующего, теплоизолирующего и связующего слоя из жесткого пенополимера закрытоячеистой структуры, огнестойкого пеноминерального жесткого закрытоячеистого слоя в виде стыкуемых в замок пластин, и отделочного слоя из общеприменимых негорючих и слабогорючих строительных материалов.

Группа изобретений относится к способу и машине для изготовления сырых изделий, сделанных по меньшей мере из одного материала, выбранного из керамических материалов и металлических материалов с использованием технологии аддитивных процессов.

Изобретение относится к спеченному уплотнительному материалу для газотурбинных двигателей. Материал содержит порошок нитрида бора, порошок нихрома и порошок карбонильного никеля, при этом содержание порошка карбонильного никеля составляет 10-15 мас.% от содержания порошка нихрома.

Изобретение относится к порошковой металлургии, в частности к изготовлению высоконагруженных составных дисков с функционально градиентными свойствами для газотурбинных установок (ГТУ) и газотурбинных двигателей (ГТД), работающих в условиях градиента температуры и имеющих механические свойства, меняющиеся по сечению.

Группа изобретений относится к получению тела из металлической пены, которое содержит подложку, изготовленную по меньшей мере из одного металла или металлического сплава A и слой металла или металлического сплава B, присутствующего на по меньшей мере одном участке поверхности подложки, причем A и B отличаются размером зерна металла или металлического сплава.

Изобретение относится к спеченным фрикционным материалам на основе железа, предназначенным для изготовления фрикционных элементов, используемых в узлах трения при ограниченной смазке.

Изобретение относится к получению многослойной энерговыделяющей наноструктурированной фольги для соединения материалов. Способ включает приготовление исходной смеси металлических порошков планетарным перемешиванием, формование смеси порошков горячей прецизионной прокаткой через валки.

Группа изобретений относится к изготовлению объемных изделий из порошка в виде заполненной оболочки с донной частью. Формируют на опоре донную часть, затем формируют внешнюю оболочку по высоте из групп слоев, причем каждую из групп слоев формируют путем послойной насыпки порошка, его планаризации и послойного лазерного спекания заданной области в плоскости каждого слоя с получением оболочки заданной высоты, после формирования каждой группы слоев внутреннюю полость полученной внешней оболочки заполняют порошком на высоту этой группы слоев и проводят лазерное спекание порошка внутренней полости упомянутой оболочки на всю его глубину.

Изобретение относится к области износостойких композиционных спеченных материалов, применяемых для изготовления вооружения бурового инструмента и опорно-центрирующих устройств, полученных методами порошковой металлургии, в частности устройств для калибровки ствола скважин.

Изобретение относится к получению изделий из порошка высокотемпературных полимеров методом селективного лазерного спекания. Устройство содержит лазерно-оптический узел, отделенную от него ZnSe-стеклом внутреннюю герметичную камеру с установленными в ней пирометром и системой нагрева нанесенного слоя порошка, рабочий стол, встроенный в плиту нанесения слоев порошка и перемещающийся внутри сменного бункера изготовления, нижний переходный стол, механизм разравнивания порошка, контур охлаждения ZnSe-стекла со стороны внутренней герметичной камеры, штангу для перемещения нижнего переходного стола, контуры охлаждения водой плиты нанесения слоев порошка, штанги для перемещения нижнего переходного стола, плиты устройства поджима сменного бункера изготовления, корпуса пирометра и фланца стакана лазерно-оптического узла, на котором установлено защитное ZnSe-стекло.

Изобретение относится к получению изделий из порошка высокотемпературных полимеров методом селективного лазерного спекания. Устройство содержит лазерно-оптический узел, отделенную от него ZnSe-стеклом внутреннюю герметичную камеру с пирометром и системой нагрева порошка, рабочий стол, встроенный в плиту нанесения слоев порошка, нижний переходный стол с приводом вертикального перемещения, механизм разравнивания порошка, контур охлаждения ZnSe-стекла со стороны внутренней герметичной камеры, штангу для перемещения нижнего переходного стола, контуры охлаждения водой плиты нанесения слоев порошка, штанги для перемещения нижнего переходного стола, плиты устройства поджима сменного бункера изготовления, корпуса пирометра и фланца стакана лазерно-оптического узла, на котором установлено защитное ZnSe-стекло.

Изобретение относится к получению изделий из порошка высокотемпературных полимеров методом селективного лазерного спекания. Устройство содержит лазерно-оптический узел, отделенную от него ZnSe-стеклом внутреннюю герметичную камеру с установленными в ней пирометром и системой нагрева нанесенного слоя порошка, ограниченную снизу рабочим столом, оборудованным системой нагрева и соединенным с нижним переходным столом, механизм разравнивания порошка с приводом, обеспечивающий прием порошка из бункеров подачи, формирование слоя порошка на рабочем столе и сброс излишков порошка в бункеры сбора порошка, и контур охлаждения ZnSe-стекла со стороны внутренней герметичной камеры.

Заявленная группа изобретений относится к получению трехмерного изделия, состоящего из основного элемента и послойно изготовленного на нем из порошкообразного материала дополнительного элемента.

Заявленная группа изобретений относится к получению трехмерного изделия, состоящего из основного элемента и послойно изготовленного на нем из порошкообразного материала дополнительного элемента.

Изобретение относится к изготовлению высокоточной заготовки из порошка титанового сплава. Способ включает послойное выращивание заготовки на установке прямого лазерного выращивания с использованием данных 3D-модели заготовки в программном обеспечении или внесенных оператором данных программы вручную с пульта оператора, фокусировку лазерного излучения в герметичной рабочей камере в зоне обработки порошка с помощью оптической системы лазерной головки, подачу порошка в зону воздействия лазерного излучения и послойное наплавление слоев заготовки из порошка посредством перемещения осциллированного лазерного излучения.

Изобретение относится к изготовлению высокоточной заготовки из порошка титанового сплава. Способ включает послойное выращивание заготовки на установке прямого лазерного выращивания с использованием данных 3D-модели заготовки в программном обеспечении или внесенных оператором данных программы вручную с пульта оператора, фокусировку лазерного излучения в герметичной рабочей камере в зоне обработки порошка с помощью оптической системы лазерной головки, подачу порошка в зону воздействия лазерного излучения и послойное наплавление слоев заготовки из порошка посредством перемещения осциллированного лазерного излучения.

Изобретение относится к порошковой металлургии, в частности к технологии лазерного синтеза керамики методом селективного лазерного спекания (СЛС), и может быть использовано в авиационной промышленности и двигателестроении.

Группа изобретений относится к изготовлению конструктивных элементов из дуплексной стали с аустенитной фазой в форме зерен, включенной в ферритную матрицу. Порошкообразный исходный материал, изготовленный из дуплексной стали и содержащий аустенитную и ферритную фазы и дополнительные легирующие элементы, слоями наносят на носитель, каждый отдельный слой подвергают воздействию лазерного пучка и отверждают с обеспечением постепенного формирования конструктивного элемента.

Группа изобретений относится к изготовлению конструктивных элементов из дуплексной стали с аустенитной фазой в форме зерен, включенной в ферритную матрицу. Порошкообразный исходный материал, изготовленный из дуплексной стали и содержащий аустенитную и ферритную фазы и дополнительные легирующие элементы, слоями наносят на носитель, каждый отдельный слой подвергают воздействию лазерного пучка и отверждают с обеспечением постепенного формирования конструктивного элемента.

Изобретение относится к литейному производству и может быть использовано при изготовлении литейных форм сложной геометрии из песчано-полимерных смесей. Способ включает создание трехмерной компьютерной модели послойно изготавливаемой литейной формы, подготовку песка до дисперсности не более одной трети толщины наносимого слоя, смешивание песка с катализатором в бункере подготовки.
Наверх