Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода



Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода
Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода
Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода
Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода
Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода
Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода
Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода
H05H1/24 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2711344:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") (RU)

Изобретение относится к области ионно-лучевой вакуумной обработке материалов и может быть использовано в плазменных источниках заряженных частиц и, в частности, в машиностроении для упрочнения режущего инструмента, повышения эксплуатационных свойств деталей машин и механизмов. Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода, содержащее полый катод основного разряда, анод основного разряда, полый катод вспомогательного разряда, устройство для подачи газа, ускоряющий электрод, коллектор, эмиссионное окно в виде сетки отличается тем, что эмиссионное окно выполнено в виде коаксиальных полых цилиндров, радиусы которых связаны соотношением Rn=nR, где n - порядковый номер цилиндра, начиная с первого, а длина L цилиндров связана с радиусом первого цилиндра соотношениемТехнический результат - повышение равномерности обработки крупногабаритных изделий и скорости процесса. 2 ил.

 

Изобретение относится к области ионно-лучевой вакуумной обработке материалов и может быть использовано в плазменных источниках заряженных частиц и в частности в машиностроении для упрочнения режущего инструмента, повышения эксплуатационных свойств деталей машин и механизмов.

Известно устройство источника плазмы [С.А. Линник, А.В. Гайдайчук, И.В.Шаманин. Источник плазмы тлеющего разряда с эффектом полого катода для модификации свойств поверхности и нанесения покрытий. - Известия Томского политехнического университета. 20П. Т.318. №2. с. 86], включающее вакуумную камеру, полый катод, анод, крышку с отверстием для подачи газа, разделительную переборку с отверстием, источник напряжения.

Недостатком прототипа является малая апертура (действующее отверстие) источника плазмы.

Наиболее близким аналогом заявленного изобретения является устройство источника плазмы [А.В. Визирь, Е.М. Окс, П.М. Щанин, Г.Ю. Юшков. Несамостоятельный тлеющий разряд с полым катодом для широкоапертурных источников. - Журнал технической физики, 1997, том 67, №6. с. 27] несамостоятельного газового разряда с эффектом полого катода, содержащее полый катод основного разряда, анод основного разряда, полый катод вспомогательного разряда, устройство для подачи газа, ускоряющий электрод, коллектор, эмиссионное окно в виде сетки.

Недостатком аналога является малая апертура источника плазмы.

Задачей настоящего изобретения является увеличение апертуры источника плазмы.

Техническим результатом является повышение равномерности обработки крупногабаритных изделий и скорости процесса.

Технический результат достигается тем, что в устройстве источника плазмы несамостоятельного газового разряда с эффектом полого катода, содержащем полый катод основного разряда, анод основного разряда, полый катод вспомогательного разряда, устройство для подачи газа, ускоряющий электрод, коллектор, эмиссионное окно выполнено в виде коаксиальных полых цилиндров радиусы которых связаны соотношением

Rn=n⋅R1,

где n - порядковый номер цилиндра, начиная с первого, а длина L цилиндров связана с радиусом первого цилиндра соотношением

В последнее время в связи с постепенным внедрением ионных и электронных технологий в производство возрастает интерес к получению пучков с большим поперечным сечением [Бугаев С.П. Электронные пучки большого сечения / С.П. Бугаев, Ю.Е. Крейедель, П.М. Щанин. М.:Энергоатомиздат, 1984. 112 с.], которые дают возможность быстрой обработки крупных деталей без сканирования по поверхности образца или без его перемещения, а также одновременной обработки большой партии мелких деталей. Эффектом полого катода является большая величина тока, протекающего через разряд, по сравнению с системой с плоскими электродами, имеющей геометрические размеры того же порядка. Такой тип разряда реализуется в полости, когда ее диаметр (2R1 примерно соответствует длине отрицательного свечения. Электроны производят эффективную ионизацию за счет осцилляции между катодным падением потенциала противоположных стенок полости при этом характерный размер катодной полости (2R1) должен быть меньше длины свободного пробега электронов. В разряде с полым катодам происходит резкое падение напряжения горения разряда и увеличение его тока. Экспериментально установлено, что минимум напряжения или максимум разрядного тока (при поддержании заданного напряжения) наблюдается при отношении длины L цилиндрического полого катода к его диаметру (2R1) примерно равным 10 (Крейндель Ю.Е. Плазменные источники электронов / Ю.Е. Крендель. М.: Атомиздат, 1977. 145 с.). Для функционирования разряда в сильноточном низковольтном режиме горения необходимо обеспечить давление в разрядном промежутке порядка 1 Па. Для сохранения же электрической прочности ускоряющего промежутка и транспортировки ускоренного пучка на значительные расстояния давление в этих областях должно быть ниже 10-2 Па. Снижение давления в разрядном промежутке приводит к быстрому росту напряжения разряда, и он переходит в высоковольтную слаботочную форму либо обрывается при недостаточном напряжении источника питания. Инжекция электронов позволяет понизить минимальное давление, при котором существует разряд в полом катоде до значения <10-2 Па [А.В. Визирь, Е.М. Окс, П.М. Щанин, Г.Ю. Юшков. Несамостоятельный тлеющий разряд с полым катодом для широкоапертурных источников. - Журнал технической физики, 1997, том 67, №6. с. 27]. Для стабилизации эмиссионной поверхности плазмы эмиссионное окно перекрывают мелкоструктурной сеткой. Замена мелкоструктурной сетки на совокупность коаксиальных полых цилиндров позволяет, при одинаковом характеристическом размере(одинаковом размере ячеек сетки и диаметре цилиндров (2R1)) примерно в 5 раз увеличить выходную аппретуру(при одинаковом геометрическом размере эмиссионного окна) эмиссионного окна. Увеличение ионного потока с единицы площади свидетельствует об повышении плотности плазмы, что интенсифицирует (ускоряет) процессы обработки деталей. Поскольку зазоры между коаксиальными цилиндрами являются кольцевыми полыми катодами, то это позволяет создавать источники плазмы с любыми требуемыми поперечными сечениями пучков, а также дополнительно повысить плотность плазменного потока. Увеличение поперечного сечения пучка ионов, а также повышение плотности потока ионов, позволяют повысить равномерность обработки крупногабаритных изделий и скорость процесса.

На фиг. 1 изображена схема устройства источника плазмы несамостоятельного газового разряда с эффектом полого катода. Схема содержит полый катод основного разряда 1, анод основного разряда 2, полый катод вспомогательного разряда 5, отверстие для подачи газа 7, эмиссионное окно выполненное в виде коаксиальных полых цилиндров 4, керамические кольца 3, 6, сетка для ослабления провисания потенциала 8, ускоряющий электрод 9, коллектор 10.

На фиг. 2 изображено эмиссионное окно выполненное в виде коаксиальных полых цилиндров радиусы которых связаны соотношением

Rn⋅R1,

где n - порядковый номер цилиндра, начиная с первого, а длина L цилиндров связана с радиусом первого цилиндра соотношением

Пример конкретной реализации устройства.

Источник плазмы несамостоятельного газового разряда с эффектом полого катода помещаем в вакуумную камеру, где создается давление 5⋅10-3 Па. В отверстие 7 подаем рабочий газ понижающий давление во вспомогательном полом катоде 5(длиной и диаметром 12,5 см) до 2 Па. На торце полого катода 5 имеется центральное отверстие диаметром 5 мм, которое расположено соосно с отверстием 7 мм в полом катоде 1. Из-за перепада давления при протекании газа через отверстия в электродах 1 и 5 давление газа в полом катоде основного разряда 1 (длиной, шириной и высотой 40 см.) составит примерно 10-2 Па. Вспомогательный разряд инициируется разрядом на поверхности керамического кольца 6 и возникает в начальный момент приложения напряжения от регулируемого выпрямителем с напряжением до 3 кВ и током до 0,3 А между полым катодом 5 и электродом 1, являющегося анодом вспомогательного разряда. Для ослабления провисания потенциала в катодную полость вспомогательного разряда отверстие в торцевом электроде закрывается вольфрамовой сеткой с размером ячейки 0,2 мм 8. Дополнительная инжекция электронов в катодную полость основного разряда осуществляется при их отборе из плазмы вспомогательного разряда, зажигаемого между полым катодом 5 и электродом 1. Основной разряд зажигаем между полым катодом основного разряда 1 и размещенным внутри анодом 2, представляющим стержень диаметром 8 мм, включив регулируемый выпрямитель с напряжением до 2 кВ и током до 1 А. При токе электронов в вспомогательном разряде 50 мА основной разряд стабильно зажигается при давлении вплоть до 5×10-3 Па. Включаем ускоряющее ионы напряжение величиной до 5 кВ, приложенное между катодом 1 и ускоряющим электродом 9, находящимся при отрицательном относительно коллектора 10 потенциалом.

Отбор ионов из плазмы основного разряда осуществляем через круглое эмиссионное окно 4 представляющее собой коаксиальные цилиндры круглого сечения, радиусы которых связаны соотношением

Rn=nR1,

где n - порядковый номер цилиндра, начиная с первого, R1=4 мм, расположенное на боковой поверхности полого катода основного разряда 1. Длина L цилиндров, определенная из выражения L/2R1=10, равна 80 мм. При данных размерах число полых катодов в эмиссионном окне равно 24(n=24).

Предлагаемое устройство позволяет:

1. получать пучки ионов с требуемым поперечным сечением,

2. повысить равномерность ионной обработки за счет применения пучков ионов с большим поперечным сечением,

3. сократить время технологического процесса за счет увеличения плотности ионного пучка и применения пучков с большим поперечным сечением.

Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода, содержащее полый катод основного разряда, анод основного разряда, полый катод вспомогательного разряда, устройство для подачи газа, ускоряющий электрод, коллектор, эмиссионное окно в виде сетки, отличающееся тем, что эмиссионное окно выполнено в виде коаксиальных полых цилиндров, радиусы которых связаны соотношением

Rn=n⋅R,

где n - порядковый номер цилиндра, начиная с первого, а длина L цилиндров связана с радиусом первого цилиндра соотношением



 

Похожие патенты:

Изобретение относится к области физики плазмы, газового разряда, сильноточной электроники и т.д. и может быть использовано для генерации магнитоактивной низкотемпературной плазмы в больших объемах в целях проведения научно-исследовательской деятельности.

Изобретение относится к плазменной технике и может быть использовано, например, в качестве импульсного источника электромагнитного излучения и направленных потоков заряженных частиц.

Изобретение относится к плазменной технологии в металлургическом производстве, а именно к способам и устройствам для переработки дисперсных материалов, и может быть использовано для получения чистых элементов.

Изобретение относится к получению порошка металлов, сплавов и металлических соединений из проволоки. Плазменно-дуговой реактор содержит корпус, первый электрод и размещенный на расстоянии от него второй электрод, причем первый электрод выполнен с каналом, выпускное отверстие которого выходит в пространство между первым и вторым электродами, средство для формирования плазменной дуги в пространстве между первым и вторым электродами, средство для подачи проволоки через упомянутое выпускное отверстие канала в пространство между первым и вторым электродами и камеру пассивирования, выполненную с возможностью подачи в нее паров проволоки и размещенную с образованием кольцевой щели с поверхностью корпуса для ввода газа.

Изобретение относится к соплам для головки плазменно-дуговой горелки с жидкостным охлаждением. Сопло включает корпус с общей осевой длиной L, внутренней поверхностью и внешней поверхностью, с передним и задним концами и с отверстием сопла на переднем конце, причем внешняя поверхность корпуса, исходя от заднего конца, имеет по существу цилиндрический первый участок с осевой длиной L1, на котором на заднем конце корпуса находится простирающая, преимущественным образом, в окружном направлении канавка для кольца круглого сечения или с расположенным в ней кольцом круглого сечения, которая в направлении заднего конца корпуса ограничена выступом, который задает внешний диаметр D11 корпуса, а на переднем конце находится центрирующая поверхность для держателя сопла, которая задает внешний диаметр D12 корпуса, и примыкающий к нему в направлении переднего конца второй участок, который задает осевую упорную поверхность для держателя сопла на границе с первым участком, которая задает внешний диаметр D21 корпуса и по меньшей мере на частичном участке по существу конусообразно сужается к переднему концу корпуса.

Изобретение относится к плазмотрону для наплавки металлического порошка. Плазмотрон содержит защитное электрически нейтральное сопло с патрубком для подачи присадочного порошка, плазменное сопло с патрубком для подачи газа, соединенное с положительным полюсом источника питания постоянного тока, электрод, установленный внутри плазменного сопла и соединенный с отрицательным полюсом источника питания постоянного тока.

Изобретение относится к области генерации низкотемпературной неравновесной аргоновой плазмы при атмосферном давлении, может быть использовано для стерилизации/дезинфекции медицинского инструмента и принадлежностей, обеззараживания микроорганизмов (бактерий, спор, патогенной микрофлоры), в частности, при хранении, сушке, предпосевной обработке продукции сельского хозяйства (семян, овощей, фруктов, кормовых смесей).

Изобретение относится к плазменной горелке, предпочтительно плазменному резаку. Плазменная горелка содержит по меньшей мере один подводящий канал (34, 35) в корпусе (30), через который плазмообразующий газ (PG1 и/или PG2) направляется к отверстию (210) сопла.

Группа изобретений может быть использована в сельском хозяйстве, в медицине и пищевой промышленности. Способ активации воды или водных растворов включает воздействие плазмы на объем обрабатываемой воды или водных растворов.

Группа изобретений относится к медицинской технике, а именно к средствам для обработки кожи. Устройство для обработки кожи с использованием нетепловой плазмы содержит узел электродной головки и рукоятку, включающую в себя приводной механизм, содержащий источник питания, выполненный с возможностью генерирования указанного низковольтного электрического сигнала, при этом узел электродной головки и приводной механизм включают в себя взаимодействующие элементы, выполненные с возможностью разъемного соединения узла электродной головки с приводным механизмом и электрического соединения источника питания с трансформатором.
Изобретение относится к космической технике и касается высокочастотных ионных двигателей. Электрод ионного двигателя, содержит равномерно распределенные по поверхности круглой или прямоугольной формы отверстия размером 1,2-4,6 мм и перемычки между ними шириной 0,4-2,4 мм и выполнен из (УУКМ) на основе каркаса слоистой структуры из высокомодульных углеродных волокон и коксо-пироуглеродной матрицы; при этом углеродные волокна (УУКМ) входят в состав однонаправленной ленты толщиной 0,07-0,11 мм и расположены в УУКМ детали под углом 60 или 90 градусов друг к другу для отверстий круглой и квадратной формы соответственно.Технический результат изобретения - повышение ресурса работы ускоряющего электрода и эмиссионного электрода ИОС, а также повышение их прочности и размерной точности, высокой чистоты поверхности и упрощение технологии изготовления.

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках.

Изобретение относится к источнику отрицательно заряженных ионов. Заявленный источник ионов содержит плазменную камеру, микроволновой источник, устройство преобразования в отрицательно заряженные ионы, магнитный фильтр и приспособление для формирования пучка.

Изобретение относится к области плазменной техники. Технический результат - повышение стабильности плазменного потока и устойчивости протекания тока в межэлектродном промежутке, что обеспечивает существенное уменьшение времени коммутации и увеличение амплитуды разрядного тока.

Изобретение относится к области плазменных двигателей. Устройство содержит, по меньшей мере: один главный кольцевой канал (21) ионизации и ускорения, при этом кольцевой канал (21) имеет открытый конец, анод (26), находящийся внутри канала (21), катод (30), находящийся снаружи канала на его выходе, магнитную цепь (4) для создания магнитного поля в части кольцевого канала (21).

Изобретение относится к области приборостроения. Технический результат - увеличение светосилы ионного источника тлеющего разряда за счет уменьшения диффузионных потерь ионов в разрядной камере.

Изобретение относится к физике взаимодействия ионов с поверхностью вещества. .

Изобретение относится к технике получения электронных и ионных пучков и может быть использовано в электронных и ионных источниках, генерирующих пучки с большим поперечным сечением.

Изобретение относится к плазменной технике, а именно к источникам получения пучка ионов, и может быть использовано в ионно-лучевых технологиях для модификации поверхностей изделий и для нанесения на них тонких пленок SiC, AIN, твердых растворов на их основе и т.д.

Изобретение относится к инжекционной технике, применяемой для создания мощных ионных пучков. .

Изобретение относится к области ионно-лучевой вакуумной обработке материалов и может быть использовано в плазменных источниках заряженных частиц и, в частности, в машиностроении для упрочнения режущего инструмента, повышения эксплуатационных свойств деталей машин и механизмов. Устройство источника плазмы несамостоятельного газового разряда с эффектом полого катода, содержащее полый катод основного разряда, анод основного разряда, полый катод вспомогательного разряда, устройство для подачи газа, ускоряющий электрод, коллектор, эмиссионное окно в виде сетки отличается тем, что эмиссионное окно выполнено в виде коаксиальных полых цилиндров, радиусы которых связаны соотношением RnnR, где n - порядковый номер цилиндра, начиная с первого, а длина L цилиндров связана с радиусом первого цилиндра соотношениемТехнический результат - повышение равномерности обработки крупногабаритных изделий и скорости процесса. 2 ил.

Наверх