Способ повышения износостойкости рабочих органов из высокопрочного чугуна co2 - лазером


C21D1/09 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2711389:

федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) (RU)

Изобретение относится к способам термической обработки металлов, в частности к способам получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий. Способ обработки поверхностей рабочих органов почвообрабатывающих орудий из высокопрочного чугуна включает лазерное воздействие на поверхность инструмента, формирование пятна лазерного луча с определенной мощностью пучка на образце и получение коэффициента перекрытия пятна лазерного луча в диапазоне от 0,1 до 0,9. При этом обрабатывают поверхности рабочих органов из высокопрочного чугуна ВЧ 50 СО2-лазером, а затем формируют пятно лазерного луча мощностью Р=2,0 кВт на образце. Причем формируют диаметр пятна излучения в зоне обработки равным d=9 мм и проводят обработку со скоростью перемещения лазера υ=470 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3. Техническим результатом изобретения является получение заданной стабильной глубины чистого отбеленного слоя глубиной 0,14 мм в режущей части рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, повышение твердости. 1 пр., 1 табл.

 

Изобретение относится к способам термической обработки металлов, в частности к способам получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий.

Известны высокоэнергетические лазерные и электроннолучевые импульсные обработки с эффективным модифицированием структуры приповерхностного слоя изделий из различных материалов (Ivanov Y.F., Rotshtein V.P., Proskurovsky D.I., Qrlov P.V., Polestchenko K.N., Ozur G.E., Goncharenko I.M. Pulsed electronbeam treatment of WC-TiC-Co hard-alloy cutting tools: wear resistance and microstructural evolution // Surface and coating technology, 2000. - V. 125. - P. 255-256). Сверхвысокие скорости нагрева (до 106 град/с) тонкого приповерхностного слоя материала (10-1 мм для лазерного и 10-4-10-3 мм для электронного пучков) до закритических температур и формирование предельных градиентов температуры (до 107-108 град/м), обеспечивающих охлаждение приповерхностного слоя за счет теплоотвода в основной объем материала со скоростью 104-109 град/с, определяют необходимые условия образования в приповерхностном слое неравновесных структурно-фазовых состояний. Последние характеризуются более высокими значениями плотности и дисперсности внутренней структуры по сравнению с исходным состоянием материала.

К недостаткам аналога следует отнести низкую стабильность получения равномерной глубины отбела поверхности чугунных рабочих органов почвообрабатывающих орудий.

Известен способ лазерного упрочнения полой металлической заготовки, включающий воздействие лазерным лучом непрерывного действия на поверхность заготовки с образованием расплавленного слоя металла, воздействие лазерным лучом непрерывного действия осуществляют на по меньшей мере одну локальную зону металлической заготовки на заданную глубину с образованием на внешней и внутренней поверхностях стенки заготовки локальных зон переплава с функциональным градиентным слоем, при этом в начале переплава плавно увеличивают мощность лазерного луча от 2 до 10 кВт в течение 200 миллисекунд и плавно уменьшают мощность лазерного луча с 10 кВт до 0 за 400 миллисекунд в конце локального переплава, локальными зонами являются зоны детали, которые при работе подвергают фрикционному, коррозионному, эрозионному износу, металлическую заготовку при необходимости снятия напряжений после локального переплава дополнительно подвергают термической обработке печной или ТВЧ, источник лазерного луча используют в виде волоконного лазера, или твердотельного лазера, или СО2 - лазера, или диодного лазера, для заготовок толщиной свыше 8 мм для равномерности наружного и внутреннего участков переплава может применяться заглубление фокуса в диапазоне 1-4 мм (Патент РФ №2640516 C1, C21D 1/09, B23K 26/354, 09.01.2018 г.).

К недостаткам аналога следует отнести то, что способ не предусматривает термообработку металлических поверхностей.

Известен способ обработки изделий из керамики на основе диоксида циркония. Суть способа заключается в том, что после спекания керамики на основе диоксида циркония, стабилизированного оксидом иттрия, поверхность облучают 1-10 импульсами пучка электронов с энергией 15-30 кэВ, длительностью импульса 30-100 мкс и плотностью 40-100 А/см2 (Патент РФ №2287503 С1, С04В 41/80, С04В 35/48, 20.11.2006 г.).

К недостаткам аналога следует отнести то, что способ не предусматривает термообработку металлических поверхностей.

В качестве прототипа выбран способ лазерной обработки пластически деформирующего инструмента из оксидной циркониевой керамики, при котором поверхность инструмента подвергают импульсному лазерному воздействию, каждая пачка импульсов которого формирует пятно лазерного луча с определенной мощностью пучка на образце, с коэффициентом перекрытия пятна лазерного луча в диапазоне от 0,1 до 0,9, при этом обработку проводят с частотой следования импульсов от 120 до 130 кГц, числом импульсов в пачке более 95 и мощностью пучка на образце от 12 до 13 Вт, поверхность инструмента подвергают импульсному лазерному воздействию с коэффициентом перекрытия пятна лазерного луча в диапазоне от 0,3 до 0,5 (Патент РФ №2612182 C1, С04В 41/91, В21С 3/02, 02.03.2017).

Недостатками прототипа является отсутствие условий для формирования стабильного по глубине отбеленного поверхностного слоя по всей поверхности режущей части рабочих органов.

Технической задачей данного изобретения является - повышение износостойкости и эксплуатационных характеристик лезвий рабочих органов почвообрабатывающих орудий.

Технический результат - получение заданной стабильной глубины чистого отбеленного слоя глубиной 0,14 мм в режущей части рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, повышение твердости.

Технический результат достигается способом повышения износостойкости рабочих органов из высокопрочного чугуна СО2 - лазером, при котором поверхность инструмента подвергают лазерному воздействию, формируя пятно лазерного луча с определенной мощностью пучка на образце, с коэффициентом перекрытия пятна лазерного луча в диапазоне от 0,1 до 0,9, при этом обрабатывают поверхности режущих частей и лезвий рабочих органов из высокопрочного чугуна ВЧ 50 многоканальным СО2 - лазером непрерывным режимом работы, формируют пятно лазерного луча на образце мощностью Р=2,0 кВт, при этом диаметром пятна излучения в зоне обработки формируют равным d=9 мм, обрабатывают со скоростью перемещения υ=470 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3.

Отличительные существенные признаки, влияющие на достижение заявленного технического результата:

- обработку проводят лезвий рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ 50;

- получение отбела осуществляли многоканальным СО2 - лазером непрерывным режимом работы, мощностью пучка на образце W=2,0 кВт, диаметром пятна излучения в зоне обработки d=9 мм, с коэффициентом перекрытия пятна лазерного луча 0,3 и скоростью перемещения υ=470 мм/с.

Оптимальные режимы способа определялись в процессе эксперимента на автоматизированном лазерно-технологическом комплексе АЛТКУ-3 (многоканальный СО2 - лазер).

Зональное структурирование отливок долота, обеспечивает их высокую износостойкость и сохранность остроты режущей кромки за счет высокой твердости отбеленного слоя и реализации эффекта самозатачивания при работе плуга, а также создает достаточный уровень сопротивления динамическим нагрузкам за счет бейнитной структуры в основном объеме детали.

Пример конкретного выполнения.

Исследование проводили на термически обработанных образцах (отливках) из чугуна ВЧ50. Режим термической обработки приведен в таблице.

Полученные в результате термической обработки структуры исследовали с помощью металлографического микроскопа «Neophot-21» на микрошлифах, травленых 4% ниталем. Локальную твердость упрочненных зон и отдельных структурных составляющих определяли с помощью прибора ПМТ-3. Общую твердость по Роквеллу, а также ударную вязкость по Шарпи определяли стандартными методами по ГОСТ 9012-59, 9013-59 и 9454-78 соответственно. Микротвердость отбеленного ледебуритного слоя, сформированного на чугуне, была примерно Н50=10210±1403 МПа. В процессе лазерного термоупрочнения удалось получить отбеленный слой глубиной 0,14 мм.

Таким образом, заявленный способ повышения износостойкости рабочих органов из высокопрочного чугуна СО2 - лазером обеспечивает получение заданной стабильной глубины чистого отбеленного слоя глубиной 0,14 мм в режущей части рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, повышение твердости.

Способ обработки поверхности рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, включающий лазерное воздействие на поверхность инструмента, формирование пятна лазерного луча с заданной мощностью пучка на образце, отличающийся тем, что осуществляют обработку поверхности режущих частей и лезвий рабочих органов из высокопрочного чугуна ВЧ 50 многоканальным СО2-лазером с непрерывным режимом работы, при этом формируют пятно лазерного луча мощностью Р=2,0 кВт на образце, затем проводят обработку с диаметром пятна излучения в зоне обработки, равным d=9 мм, со скоростью перемещения лазера υ=470 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3.



 

Похожие патенты:
Изобретение относится к сельскохозяйственному машиностроению, в частности к изготовлению рабочих органов почвообрабатывающих орудий. Способ упрочнения лезвий рабочих органов почвообрабатывающих орудий включает нагрев поверхности тыльной стороны лезвия электрической дугой обратной полярности при перемещении электрода по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия и вращением вокруг вертикальной оси, при этом рабочий орган выполнен из высокопрочного чугуна, нагрев поверхности тыльной стороны лезвия осуществляют постоянным током с помощью вольфрамового электрода, причем диаметр вращения электрода вокруг вертикальной оси задают равным ширине лезвия, за один оборот электрода вокруг вертикальной оси линейное перемещение составит 3 мм, частота вращения ω выражается зависимостью ω=k⋅30 мин1, где k=1,5 при толщине лезвия 2,0 ≤ δ ≤ 3,0 мм, k=1,0 при толщине лезвия 3,1 ≤ δ ≤ 5,0 мм, k=0,8 при толщине лезвия 5,1 ≤ δ ≤ 7,0 мм.
Изобретение относится к сельскохозяйственному машиностроению, в частности к изготовлению рабочих органов почвообрабатывающих орудий. Для повышения износостойкости и эксплуатационных характеристик лезвий рабочих органов почвообрабатывающих орудий осуществляют нагрев поверхности тыльной стороны лезвия электрической дугой обратной полярности при перемещении электрода по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия почвообрабатывающих орудий и вращением вокруг вертикальной оси, при этом почвообрабатывающие орудия выполняют из высокопрочного чугуна ВЧ50, нагрев поверхности тыльной стороны лезвия осуществляют вольфрамовым электродом постоянным током, причем диаметр вращения электрода вокруг вертикальной оси задают равным ширине лезвия, при этом за один оборот электрода вокруг вертикальной оси линейное перемещение составит 5 мм, частота вращения 25 мин-1, при этом толщина лезвия равна не менее 7 мм.

Изобретение относится к области черной металлургии, в частности к термической обработке прокатных валков, и может быть использовано на предприятиях, изготавливающих двухслойные прокатные валки.

Изобретение относится к области термической обработки изделий из графитизированных чугунов и может быть использовано в энергомашиностроении, двигателестроении, сельхозмашиностроении и других отраслях промышленности.

Изобретение относится к области металлургии, конкретно к получению тормозных локомотивных колодок из фрикционного чугуна. Для повышения долговечности и износостойкости трибологической пары «колесо-колодка» тормозную колодку получают из фрикционного чугуна, содержащего углерод, кремний, марганец, фосфор, серу, барий, кальций, железо и примеси, путем термической обработки, включающей нагрев в печи до температуры 950-1000°С, выдержку в течении 2 часов и охлаждение вместе с печью до комнатной температуры с обеспечением феррито-графитовой микроструктуры.
Изобретение относится к области термической обработки деталей из легированного чугуна с различной формой графита. Способ включает контроль исходной структуры, термическую обработку, азотирование, механическую обработку, при этом исходную структуру детали контролируют на содержание графита, цементита и феррита, термообработку для деталей из чугуна, содержащего в структуре графит шаровидной формы, до 10% графита нешаровидной формы и до 20% феррита, проводят путем высокого отпуска и старения, при содержании в структуре от 10 до 80% графита нешаровидной формы и от 20 до 85% феррита путем аустенизации, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита, изотермической выдержки, высокого отпуска и старения, а при содержании в структуре от 10 до 80% графита нешаровидной формы, от 20 до 85% феррита и до 80 % цементита путем предварительного диффузионного отжига, аустенизации, охлаждения со скоростью 5-15°С в секунду до температуры верхнего бейнита, изотермической выдержки, высокого отпуска и старения, после термообработки контролируют структуру деталей, осуществляют механическую обработку поверхности детали с припуском, обеспечивающим при последующей после азотирования механической обработке удаление слоя ε-фазы, после чего участки детали с наименьшей толщиной стенки подвергают деформационному наклепу, затем детали фосфатируют, проводят низкотемпературное азотирование, рабочую поверхность детали подвергают электрохимическому травлению, хонингуют и фосфатируют.

Изобретение относится к области металлургии, в частности к получению отливок из высокопрочных чугунов с шаровидным графитом. .

Изобретение относится к области термической обработки и к конструктивным элементам железнодорожных грузовых тележек, в частности к конструкциям литых фрикционных клиньев из чугуна для восприятия и гашения колебаний надрессорной балки тележки грузового вагона.

Изобретение относится к металлургии, в частности к способам термической обработки чугунов с шаровидным графитом. .

Изобретение относится к области металлургии, в частности к получению высокопрочных чугунов с шаровидным графитом, и может быть использовано при производстве литых изделий, отличающихся высокими механическими свойствами, в том числе при динамическом нагружении.

Изобретение относится к области металлургии. Для повышения ударной вязкости, предела усталости и сопротивления истиранию способ производства стального компонента включает нагрев стального листа в науглероживающей атмосфере для формирования науглероженного слоя на поверхности стального листа, содержащего в мас.%: С от 0,0005 до 0,1, Si от 0,01 до 2,0, Mn от 0,05 до 3,0, Al 0,9 или меньше, P 0,05 или меньше, S 0,01 или меньше, Ti от 0,0 до 0,2, Nb от 0,0 до 0,1, Cr от 0 до 2, Mo от 0,0 до 0,2, B от 0,000 до 0,005, железо и примеси остальное и структуру стали, представленную ферритом с долей площади 70% или больше, формование стального листа с использованием металлических штампов и выполнение закалки стального листа в состоянии его нахождения в металлических штампах для преобразования науглероженного слоя в мартенсит и придать той части стального листа, которая находится под науглероженным слоем, структуру стали, представленную ферритом с долей площади 50% или больше.

Настоящее изобретение относится к способу закалки под прессом для получения детали из листовой углеродистой стали, детали, полученной указанным способом и применению упомянутой детали для изготовления автомобильного транспортного средства.

Изобретение относится к автоматизированному комплексу для лазерного термоупрочнения поверхностей изделий. Технический результат изобретения состоит в расширении технологических возможностей и повышении качества обработки поверхности изделий.

Изобретение относится к области металлургии и машиностроения. Для повышения ударной вязкости при сохранении высокой прочности стальных деталей способ производства закаленной прессованной детали включает первый процесс термической обработки, содержащий нагрев заготовочного стального материала до температуры выше точки превращения Ac3 для аустенитного превращения, а затем охлаждение для мартенситного превращения или бейнитного превращения, и второй процесс термической обработки, содержащий нагрев стального материала, который подвергся первому процессу термической обработки, до температуры выше точки превращения Ac3 для аустенитного превращения, а затем охлаждение для мартенситного превращения.

Изобретение относится к области производства деталей бурового нефтегазового оборудования, в частности цилиндровых втулок бурового насоса из стали Х12МФЛ, работающих в условиях абразивного износа, коррозионного воздействия и высоких переменных давлениях.

Изобретение относится к деревообрабатывающей промышленности. Способ осуществляют вальцеваним полотна пилы роликами по заданным радиальным направлениям с образованием радиальных ребер, разделяющих полотно пилы на секторы, ребра формируются с опережающим индукционным локальным нагревом материала полотна в зоне перед фронтом рабочей поверхности ролика до состояния пластификации материала.

Изобретение относится к автоматизированному лазерному технологическому комплексу для термоупрочнения детали. Комплекс снабжен разборным кабинетным ограждением зоны обработки детали, имеющим двери раздвижные Г- образной формы для доступа в зону обработки детали и загрузки деталей, и шарнирную дверь для обеспечения доступа при обслуживании лазера.

Группа изобретений относится к устройствам для термической обработки и способам для термической обработки. Устройство содержит устройство для подачи термически обрабатываемой детали далее в направлении подачи вдоль линии прохождения термически обрабатываемой детали, нагревательное устройство, включающее нагревательную катушку, расположенную после устройства подачи в направлении подачи, и окружающее линию прохождения, охлаждающее устройство, которое расположено рядом с нагревательной катушкой так, что отсутствует зазор с нагревательной катушкой, после нее в направлении подачи и окружающее линию прохождения, устройство подачи газа, которое расположено перед нагревательной катушкой в направлении подачи, непосредственно соединяется с нагревательной катушкой и окружает линию прохождения, и которое включает в себя множество газовых отделений, образующихся за счет внутреннего разделения устройства подачи газа в направлении подачи детали и дополнительно содержащее эластичный герметизирующий элемент на краю отверстия, окружающего линию прохождения, предусмотренного в стенке, разделяющей множество газовых отделений устройства подачи газа.

Изобретение относится к области металлургии. Для обеспечения качества закалки деталей предусмотрена система закаливания разбрызгиванием с одним или несколькими разбрызгивающими закалочными кольцами, которые выпускают управляемый объем разбрызгиваемой закалочной среды на обрабатываемую деталь, пропускаемую через закалочные кольца.

Изобретение относится к способу формирования упрочненного приповерхностного слоя в процессе лазерной резки деталей из листовых легированных сталей. Осуществляют газодинамическое воздействие на зону реза потоком лазерного излучения в инфракрасной области спектра.

Изобретение относится к лазерной обрабатывающей головке (1) и может быть использовано для обработки материалов с помощью лазерного излучения. Головка содержит коллиматорную оптику (21) для коллимации расходящегося рабочего лазерного луча (121) и фокусирующую оптику для фокусирования рабочего лазерного луча (12) на подлежащей обработке детали (14).

Изобретение относится к способам термической обработки металлов, в частности к способам получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий. Способ обработки поверхностей рабочих органов почвообрабатывающих орудий из высокопрочного чугуна включает лазерное воздействие на поверхность инструмента, формирование пятна лазерного луча с определенной мощностью пучка на образце и получение коэффициента перекрытия пятна лазерного луча в диапазоне от 0,1 до 0,9. При этом обрабатывают поверхности рабочих органов из высокопрочного чугуна ВЧ 50 СО2-лазером, а затем формируют пятно лазерного луча мощностью Р2,0 кВт на образце. Причем формируют диаметр пятна излучения в зоне обработки равным d9 мм и проводят обработку со скоростью перемещения лазера υ470 ммс и коэффициентом перекрытия пятна лазерного луча 0,3. Техническим результатом изобретения является получение заданной стабильной глубины чистого отбеленного слоя глубиной 0,14 мм в режущей части рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, повышение твердости. 1 пр., 1 табл.

Наверх