Способ термической обработки заготовки из порошка сплава титана

Изобретение относится к термической обработке порошковой заготовки детали, содержащей сплав на основе титана. Способ включает в себя термическую обработку в печи заготовки, размещенной на поддоне, при заданной температуре. Поддон выполнен из сплава на основе титана, в котором массовое содержание титана превышает или равно 45%, или сплава на основе циркония, в котором массовое содержание циркония превышает или равно 95%. Материал поддона имеет температуру плавления, превышающую заранее определенную температуру термической обработки. Между заготовкой и поддоном располагают антидиффузионный барьер для предотвращения сваривания заготовки с поддоном. Обеспечивается снижение загрязнения заготовки кислородом за счет поглощения его поддоном. 8 з.п. ф-лы, 1 пр., 1 ил.

 

Уровень техники

Настоящее изобретение относится к области термической обработки порошковых заготовок. В частности, но не исключительно изобретение находит свое применение при спекании трехмерных заготовок деталей, полученных путем формования порошка сплава на основе титана.

В настоящее время часто прибегают к процессам изготовления трехмерных деталей из металла (или металлического сплава) или из керамики с осуществлением этапа формования порошка с целью получения заготовки (например, используя технологию инжекционного формования порошка (PIM или MIM) при помощи связующего, технологию горячего изостатического прессования или технологию “tape casting”), за которым следует этап спекания заготовки.

Спекание заготовки представляет собой высокотемпературную термическую обработку (как правило, температура спекания составляет от 70% до 99% температуры плавления материала, образующего порошок заготовки, и даже превышает эту температуру плавления в случае спекания в жидкой фазе), предназначенную для уплотнения порошка с целью получения уплотненной моноблочной детали.

В случае сплавов на основе титана (например, сплавов типа TiAl6V4, TiAl-48-2-2 и т.д.), которые являются особенно чувствительными к окислению, условия спекания необходимо тщательно контролировать, чтобы минимизировать загрязнение конечной детали кислородом. Действительно, присутствие кислорода в конечной детали значительно ухудшает ее механические свойства и снижает ее прочность.

В условиях спекания, обычно применяемых для этих сплавов на основе титана, в частности, при температуре спекания сверх 1100°С, после спекания отмечается относительно большое загрязнение конечных деталей. Были определены следующие источники кислорода, которые могут потенциально загрязнить деталь в ходе спекания:

- остатки кислорода, содержащиеся в атмосфере камеры печи,

- влажность печи, и

- кислород, присутствующий в инструментах спекания (таких как плита, поддерживающая заготовку, и сама печь).

Известно использование кислородных «геттеров» или кислородных ловушек, например, в виде металлических стружек, расположенных вокруг заготовки, которые при окислении поглощают кислород.

Однако эти кислородные ловушки не позволяют получить удовлетворительный уровень загрязнения кислородом на вышеупомянутых сплавах, что выражается в недостаточной механической прочности конечной детали.

Раскрытие сущности изобретения

Настоящее изобретение призвано устранить такие недостатки и предложить способ термической обработки порошковой заготовки детали, содержащей сплав на основе титана, при этом способ включает в себя термическую обработку заготовки в печи при заранее определенной температуре, при этом во время термической обработки заготовка находится на поддоне. Способ отличается тем, что поддон содержит сплав на основе титана, в котором массовое содержание титана превышает или равно 45%, или сплав на основе циркония, в котором массовое содержание циркония превышает или равно 95%, при этом материал поддона имеет температуру плавления, превышающую заранее определенную температуру термической обработки, и тем, что между заготовкой и поддоном располагают антидиффузионный барьер, чтобы воспрепятствовать свариванию заготовки с поддоном.

В частности, заявленный способ характеризуется тем, что поддон, на котором располагают заготовку, позволяет уменьшить загрязнение кислородом конечной детали в результате термической обработки (этой термической обработкой может быть спекание).

Прежде всего, поскольку поддон содержит сплав с высоким массовым содержанием титана (как правило, более 45%) или сплав с высоким массовым содержанием циркония (как правило, более 95%), он может поглощать остатки кислорода, присутствующие в атмосфере камеры печи. Действительно, титан или цирконий могут легко поглощать окружающий кислород и окисляться.

Кроме того, поддон может поглощать кислород, который уже загрязнил заготовку. Действительно, титан и цирконий являются восстановителями в большей степени, чем оксид титана (TiO2), образующийся при окислении титана, присутствующего в заготовке. Таким образом, поддон играет роль кислородной ловушки для кислорода, присутствующего в заготовке.

В известных решениях во время спекания заготовки из порошка сплава на основе титана, как правило, заготовку помещают на плите из керамического материала (например, из двуоксида циркония, из оксида алюминия или из оксида иттрия). Было замечено, что плита из керамики постепенно теряет свои свойства после нескольких циклов спекания. Между керамической плитой и деталью происходит реакция окисления-восстановления, приводящая к восстановлению керамики плиты и к повышению содержания кислорода в детали.

В рамках заявленного способа, поскольку заготовку укладывают на поддон, она не входит в контакт с другой оснасткой, присутствующей в печи (такой как под или вышеупомянутая керамическая плита), что позволяет избегать загрязнения заготовки со стороны оснастки. Иначе говоря, поддон играет роль барьера или буфера для кислорода между этой оснасткой и заготовкой.

Наконец, поскольку поддон выполнен из материала, температура плавления которого превышает заранее определенную температуру термической обработки (например, температуру спекания), поддон не подвергается пластической деформации, то есть не претерпевает необратимых изменений своей структуры, когда его доводят до этой температуры. Таким образом, он может быть использован повторно для нескольких циклов термической обработки, не подвергаясь деформации.

В некоторых вариантах выполнения поддон содержит сплав на основе титана, в котором массовое содержание титана превышает или равно 90%, предпочтительно превышает или равно 99%. Например, поддон может содержать сплав на основе титана, выбираемый из следующих сплавов: T40, T60, TiAl6V4, TiAl-48-2-2.

В варианте поддон может содержать сплав на основе циркония, выбираемый из следующих сплавов: Zircaloy-2, Zircaloy-4.

Предпочтительно поддон имеет толщину, составляющую от 0,1 мм до 20 мм. Предпочтительно антидиффузионный барьер содержит оксид алюминия или оксид иттрия.

Предпочтительно пластину подвергают очистке. Под «очисткой» следует понимать любую обработку, позволяющую зачистить верхнюю поверхность поддона, на которую необходимо уложить заготовку, например, шлифование, фрезерование, пескоструйную обработку и прочие. Эта обработка позволяет удалить слой оксида, который может образоваться на поддоне, когда он находится в присутствии кислорода (например, кислорода воздуха), а также увеличить реактивную поверхность для улавливания кислорода в ходе термической обработки.

Термическая обработка заготовки может представлять собой спекание заготовки, при этом заранее определенной температурой термической обработки является температура спекания.

Краткое описание чертежей

Другие отличительные признаки и преимущества настоящего изобретения будут более очевидны из нижеследующего описания не ограничительного примера осуществления со ссылками на прилагаемый чертеж, на котором:

фиг. 1 - схематичный вид в разрезе поддона в соответствии с изобретением, который помещен в камеру печи и на котором находится предназначенная для термической обработки заготовка.

Осуществление изобретения

Для следует описание изобретения в его применении для спекания заготовки детали из порошка сплава на основе титана с целью уменьшения загрязнения спекаемой детали кислородом.

Необходимо отметить, что изобретение не ограничивается только спеканием порошковых заготовок, и его можно применять для любого типа термической обработки, требующего защиты от окисления, например, для удаления связующего из заготовки, выполненной из порошка в смеси со связующим.

На фиг. 1 очень схематично показана камера 2 печи 1, используемая для высокотемпературного спекания заготовки 3.

Заготовка 3 выполнена посредством формования порошка сплава на основе титана. Например, можно использовать следующие сплавы на основе титана: TiAl6V4, Ti-17, Ti-6242, Ti-5553, TiAl-48-2-2, TNMB1 и т.д.

Как известно, формование порошка для получения заготовки 3 можно производить, применяя процесс типа MIM (“Metal Injection Molding”), HIP (“Hot Isostatic Pressing”), посредством порошкового литья, литья пленки (“Tape Casting”), экструзии и т.д.

В камере 2 находится под 4, который может быть частью печи. Этот под 4 может представлять собой плиту из молибденового сплава (например, типа TZM) или из графита. Следует отметить, что на практике в камере спекания могут присутствовать несколько подов 4. Для упрощения показан только один под 4.

В случае необходимости, над подом 4 печи может находиться плита 5 из керамического материала. Эта керамическая плита 5 может содержать, например, диоксид циркония (ZrO2), оксид алюминия (Al2O3) или оксид иттрия (Y2O3).

Согласно изобретению, на керамической плите 5 находится поддон 6. Этот поддон 6, представляющий собой в данном случае опорную пластину 6, выполнен из металла или из металлического сплава, который обладает свойствами восстановления, в частности, по отношению к диоксиду титана (TiO2). Опорная пластина 6 выполняет роль кислородной ловушки не только для кислорода, присутствующего в атмосфере камеры 2, но также для кислорода, присутствующего в заготовке 3, которую укладывают на опорную пластину 6, и в находящейся в печи оснастке. Кроме того, эта опорная пластина 6 выполняет также роль барьера для кислорода, который присутствует в керамической плите 5 и в поде 4 и который уже не может воздействовать на заготовку 3 во время спекания.

Предпочтительно опорная пластина 6 максимально перекрывает керамическую плиту 5 или под 4, чтобы ограничивать загрязнение кислородом, поступающим из этой оснастки. Предпочтительно опорная пластина 6 перекрывает основание камеры 2 печи 1.

Толщина е опорной пластины 6 может составлять, например, от 0,1 мм до 20 мм.

Материалы с необходимыми восстановительными свойствами можно выбирать, например, среди сплавов на основе титана или сплавов на основе циркония, в которых содержание этих элементов является достаточно высоким.

Сплав на основе титана для опорной пластины 6 в соответствии с изобретением предпочтительно характеризуется массовым содержанием титана, превышающим или равным 45%, еще предпочтительнее массовое содержание титана превышает или равно 90% и еще предпочтительнее массовое содержание титана превышает или равно 99%. Например, такой сплав можно выбрать среди следующих сплавов: Т40, Т60, TiAl6V4, TiAl-48-2-2.

В варианте сплав на основе циркония для опорной пластины 6 в соответствии с изобретением предпочтительно характеризуется массовым содержанием циркония, превышающим или равным 95%. Например, такой сплав можно выбрать среди следующих сплавов: Zircaloy-2, Zircaloy-4.

Кроме того, предпочтительно опорная пластина 6 почти не деформируется пластически при рассматриваемых температурах термической обработки, то есть действующие на нее температуры не меняют ее механические свойства и ее форму. Иначе говоря, опорная пластина 6 должна быть стабильной с точки зрения размеров, хотя и может претерпевать незначительные деформации, связанные с массой поддерживаемой ею детали.

На практике, температура плавления материала опорной пластины 6 превышает самую высокую температуру, действующую на нее во время термической обработки. В случае спекания заготовки из порошка сплава на основе титана обычно температура спекания превышает 1100°С. Таким образом, температура плавления материала опорной пластины 6 должна как минимум превышать 1100°С.

Предпочтительно опорную пластину 6 следует очистить перед ее укладкой в печь 1. Для этого ее можно подвергнуть шлифованию, фрезерованию или пескоструйной обработке. Эта обработка очистки позволяет снять слой оксида, который мог сформироваться на опорной пластине 6 на открытом воздухе. Кроме того, очистка позволяет также увеличить реактивную поверхность опорной пластины 6 для улучшения улавливания кислорода.

Опорная пластина 6 по меньшей мере частично покрыта антидиффузионным барьером 7 (например, на основе оксида алюминия или оксида иттрия), чтобы заготовка 3, которая будет затем помещена на опорной пластине 6, не сцеплялась с этой пластиной по причине диффузии металлических элементов (явление диффузионной сварки). Таким образом, антидиффузионный барьер расположен между опорной пластиной 6 и заготовкой 3. Антидиффузионный барьер 7 можно наносить напрямую в виде слоя порошка при помощи кисти или в виде спрея из раствора.

Следует также отметить, что антидиффузионный барьер, аналогичный описанному выше, можно нанести между керамической плитой 5 и опорной пластиной 6 (или, в случае необходимости, между подом 4 и опорной пластиной 6), чтобы избежать их взаимного сцепления.

После размещения всех элементов оснастки и заготовки в печи можно произвести спекание заготовки 3. Рабочие условия для осуществления спекания заготовки из порошка сплава на основе титана известны специалисту в данной области, и их подробное описание опускается.

Пример

Производят спекание заготовки турбиной лопатки авиационного газотурбинного двигателя из порошка, сформованного при помощи процесса инжекционного формования металла (MIM или “Metal Injection Molding”). Используемый порошок содержит сплав на основе титана типа TiAl-48-2-2.

Используемая в этом примере опорная пластина 6 содержит сплав на основе титана типа TiAl6V4 и покрыта антидиффузионным барьером на основе оксида иттрия посредством распыления из раствора.

Спекание заготовки осуществляют при температуре, составляющей от 1380°С до 1445°С в течение времени от 2 часов до 10 часов в нейтральной атмосфере аргона.

Содержание кислорода в конечной детали после спекания (измеренное согласно норме EN10276) составляет около 1300 частей на миллион. Для сравнения, если заготовку подвергнуть спеканию в тех же условиях, но без использования пластины в соответствии с изобретением, содержание кислорода в детали достигает 4500 частей на миллион. Таким образом, в этом примере использование пластины в соответствии с изобретением позволяет уменьшить в 3,5 раза загрязнение кислородом в конечной детали.

1. Способ термической обработки порошковой заготовки (3) детали, содержащей сплав на основе титана, включающий термическую обработку заготовки в печи (1) при заранее определенной температуре, при этом во время термической обработки заготовка находится на поддоне (6),

отличающийся тем, что используют поддон (6), содержащий сплав на основе титана, в котором массовое содержание титана превышает или равно 45%, или сплав на основе циркония, в котором массовое содержание циркония превышает или равно 95%, при этом материал поддона имеет температуру плавления, превышающую упомянутую температуру термической обработки, причем между заготовкой (3) и поддоном (6) располагают антидиффузионный барьер (7) для предотвращения сваривания заготовки с поддоном.

2. Способ по п. 1, отличающийся тем, что поддон (6) содержит сплав на основе титана, в котором массовое содержание титана превышает или равно 90%.

3. Способ по п. 1, отличающийся тем, что поддон (6) содержит сплав на основе титана, в котором массовое содержание титана превышает или равно 99%.

4. Способ по п. 1, отличающийся тем, что поддон (6) содержит сплав на основе титана, выбранный из следующих сплавов: T40, T60, TiAl6V4, TiAl-48-2-2.

5. Способ по п. 1, отличающийся тем, что поддон (6) содержит сплав на основе циркония, выбранный из следующих сплавов: Zircaloy-2, Zircaloy-4.

6. Способ по п. 1, отличающийся тем, что поддон имеет толщину (е), составляющую от 0,1 мм до 20 мм.

7. Способ по п. 1, отличающийся тем, что антидиффузионный барьер (7) содержит оксид алюминия или оксид иттрия.

8. Способ по п. 1, отличающийся тем, что поддон (6) подвергают очистке.

9. Способ по п. 1, отличающийся тем, что термическая обработка заготовки (3) представляет собой спекание заготовки, при этом заранее определенной температурой термической обработки является температура спекания.



 

Похожие патенты:

Изобретение относится к конструкционным высокопрочным титановым сплавам повышенной ударной прочности, предназначенным для изготовления броневых листов с минимальным весом, для использования в авиации, космонавтике и на флоте.

Изобретение относится к области металлургии, а именно к титановым α сплавам, предназначенным для использования в качестве конструкционного высокотехнологичного теплопроводного материала для энергетических силовых и теплообменных установок, авиационной и космической техники, длительно работающих при температурах от -100°С до 450°С.

Изобретение относится к изготовлению высокоточной заготовки из порошка титанового сплава. Способ включает послойное выращивание заготовки на установке прямого лазерного выращивания с использованием данных 3D-модели заготовки в программном обеспечении или внесенных оператором данных программы вручную с пульта оператора, фокусировку лазерного излучения в герметичной рабочей камере в зоне обработки порошка с помощью оптической системы лазерной головки, подачу порошка в зону воздействия лазерного излучения и послойное наплавление слоев заготовки из порошка посредством перемещения осциллированного лазерного излучения.

Изобретение относится к получению вольфрамотитанокобальтовых порошков из отходов сплава Т30К4. Ведут электроэрозионное диспергирование отходов сплава Т30К4 в спирте при напряжении на электродах 110…120 В, ёмкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 130...140 Гц.

Изобретение относится к металлургии, а именно к области функциональных металлических сплавов на основе титана, обладающих повышенной прочностью, упругостью и пластичностью.

Группа изобретений может быть использована при сварке изделий из титановых сплавов с проведением ультразвукового контроля полученных сварных швов. Сварочная проволока сформирована из сплава на основе титана с содержанием бора в количестве 0,05-0,20 мас.%.

Изобретение относится к получению компактных деформируемых заготовок из сплавов TiHfNi с высокотемпературным эффектом памяти формы. Способ включает гидридно-кальциевый синтез порошковой смеси при температуре 1100-1300°С в течение не менее 6 часов, после чего полученные продукты обрабатывают водой, а затем раствором соляной кислоты, затем полученный порошок консолидируют путем прессования с формированием прессовки требуемой формы, которую подвергают спеканию в вакууме при остаточном давлении не выше 10-4 мм рт.ст.

Изобретение относится к области металлургии, а именно к титановым сплавам с высокой прочностью и коррозионной стойкостью. Альфа-бета титановый сплав, содержащий, мас.%: алюминиевый эквивалент от 2,0 до 10,0; молибденовый эквивалент от 2,0 до 10,0; от 0,24 до 0,5 кислорода; по меньшей мере 2,1 ванадия; от 0,3 до 5,0 кобальта; необязательно, добавку для измельчения зерна, представляющую собой один или более из церия, празеодима, неодима, самария, гадолиния, гольмия, эрбия, тулия, иттрия, скандия, бериллия и бора, в общей концентрации, которая выше 0 до 0,3; необязательно, антикоррозионную добавку, представляющую собой один или более из золота, серебра, палладия, платины, никеля и иридия, в общей концентрации, которая составляет до 0,5; необязательно, олово до 6; необязательно, кремний до 0,6; необязательно, цирконий до 10; необязательно, азот до 0,25; необязательно, углерод до 0,3; остальное - титан и случайные примеси.

Изобретение относится к области металлургии, а именно к высокопрочным титановым сплавам с альфа-бета-структурой. Альфа-бета-титановый сплав содержит, мас.%: алюминий от около 4,5 до около 5,5; ванадий от около 3,0 до около 5,0; молибден от около 0,72 до около 1,8; железо от около 0,48 до около 1,2; кислород от около 0,12 до около 0,25; кремний от около 0,10 до около 0,40; необязательно легирующий элемент, выбранный из группы, состоящей из ниобия, хрома, олова и циркония, причем общее количество легирующих элементов составляет менее около 1,0 мас.%; остальное титан и случайные примеси, при этом содержание любой из случайных примесей составляет менее около 0,1 мас.%, а суммарное количество всех примесей составляет менее около 0,5 мас.%.

Изобретение относится к титановым материалам и изделиям, таким как титановая проволока или пруток. Может использоваться в теплообменниках, использующих морскую воду, химических установках, в корпусах воздушных судов, в автомобилестроении.
Изобретение относится к изготовлению фрикционных изделий. Способ включает нанесение, предварительное припекание свободнонасыпанного слоя фрикционного материала на стальную несущую основу и спекание заготовки в виде диска.

Группа изобретений относится к электроимпульсному нанесению упрочняющего покрытия из порошка на поверхность стальной детали. Способ включает спекание засыпки порошка в неэлектропроводной матрице на поверхности детали под давлением пуансона путем пропускания импульсов тока.

Изобретение относится к порошковой металлургии, в частности к композициям для изготовления магнитотвердых ферритов. Может использоваться в процессах очистки сточных вод, в магнитных фильтрах, в качестве размольных и перемешивающих тел в электромагнитных аппаратах.
Изобретение относится к изготовлению керамических изделий из порошка. Способ включает прессование порошка с одновременным электроимпульсным спеканием.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе никеля. Может использоваться в авиастроении, автомобильной промышленности, а также при производстве турбин.

Изобретение относится к порошковой металлургии, в частности к получению цементированного карбида или кермета для изготовления вращающихся инструментов, подвергающихся износу.

Изобретение относится к области порошковой металлургии, в частности, к крупнозернистым твердым сплавам системы WC-Co/Ni/Fe. Может применяться для производства породоразрушающего твердосплавного инструмента.

Изобретение относится к порошковой металлургии, в частности к получению проницаемого пеноматериала из сверхупругого сплава системы титан-цирконий-ниобий. Может использоваться в медицине, в качестве костных имплантатов, и в других отраслях техники, в качестве фильтровальных элементов.

Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях.
Изобретение относится к получению мишени, состоящей из DyInO3. Получают порошок DyInO3 путем растворения In(NO3)3 и Dy(NO3)3 в дистиллированной воде, последующего химического соосаждения гидроксидов диспрозия и индия из полученного раствора водным раствором аммиака при рН 10 с последующей термообработкой полученного порошка на воздухе при 700°С в течение 1 ч.

Изобретение относится к изготовлению керамических форм сложной геометрии из порошковых систем. Осуществляют послойное программно-компьютерное моделирование изделия, подготовку керамического порошка, послойное нанесение керамического порошка на подложку и послойно-селективную обработку каждого слоя.

Изобретение относится к термической обработке порошковой заготовки детали, содержащей сплав на основе титана. Способ включает в себя термическую обработку в печи заготовки, размещенной на поддоне, при заданной температуре. Поддон выполнен из сплава на основе титана, в котором массовое содержание титана превышает или равно 45, или сплава на основе циркония, в котором массовое содержание циркония превышает или равно 95. Материал поддона имеет температуру плавления, превышающую заранее определенную температуру термической обработки. Между заготовкой и поддоном располагают антидиффузионный барьер для предотвращения сваривания заготовки с поддоном. Обеспечивается снижение загрязнения заготовки кислородом за счет поглощения его поддоном. 8 з.п. ф-лы, 1 пр., 1 ил.

Наверх