Установка для утилизации твердых медицинских отходов

Изобретение относится к области термической утилизации медицинских отходов, в том числе хлорсодержащих и инфицированных. Техническим результатом является предотвращение возможности образования диоксинов (ПХДД/Ф), обеспечение экологически безопасных выбросов, экономия энергоресурсов, и обеспечение автотермичности процесса, и, при необходимости, получение собственного средства для очистки дымовых газов. Установка снабжена мокрым скруббером, а камера термического разложения содержит последовательно расположенные низкотемпературную и высокотемпературную секции. Выход газообразных продуктов из низкотемпературной секции соединен с входом в мокрый скруббер, выход из которого соединен с камерой сжигания. Выход газообразных продуктов из высокотемпературной секции соединен с горелочным устройством камеры обогрева и камерой сжигания, а выход дымовых газов из камеры сжигания снабжен теплообменником-газификатором. Теплообменник-газификатор снабжен внешней газификационной полостью, а его внутренний объем снабжен встроенным парогенератором, выход из которого соединен с входом в газификационную полость. Выход газообразных продуктов из газификационной полости соединен через конденсатор водяных паров с генератором электроэнергии. Выход твердых продуктов из высокотемпературной секции камеры термического разложения снабжен сепаратором неорганических включений и соединен с газификационной полостью. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к области утилизации отходов, содержащих органические материалы, в том числе хлорсодержащие и инфицированные, и может быть использовано в коммунальном хозяйстве, химической и нефтехимической промышленности.

Одним из основных требований, предъявляемых к устройствам для обезвреживания хлорсодержащих отходов, является обеспечение условий, максимально предотвращающих возможность образования диоксинов и буранов ((полихлорированных дибензо-пара-диоксинов (ПХДД) и тибензофуранов (ПХДФ)), являющихся высокотоксичными стойкими органическими загрязнителями. Из применяемых технологий высокотемпературного обезвреживания медицинских отходов наименьшим потенциалом образования диоксинов и фуранов обладают пиролизные технологии, не использующие окислителя.

Известно «Устройство непрерывного действия для пиролиза измельченных материалов» [1], содержащее загрузчик, пиролизную камеру (реторту) и устройство выгрузки. Реторта выполнена в виде длинной стальной трубы, располагаемой горизонтально и подвергаемой внешнему нагреву. Внутри трубы по всей ее длине расположен шнек, посредством которого осуществляется непрерывное перемещение обрабатываемого материла от зоны загрузки к участку выгрузки. В верхней части трубы реторты по всей ее длине располагается система отверстий-газоходов, необходимых для отвода образующихся пиролизных газов для их дальнейшей конденсации или сжигания.

Недостатком устройства является то, что из пиролизной камеры отводится сразу вся масса образующихся парогазовых продуктов, содержащая, кроме углеводородных соединений и хлорсодержащие компоненты, которые выделяются на первой стадии термического разложения (при температурах до 350°С). В дальнейшем, при сжигании горючих продуктов и охлаждении дымовых газов, эти компоненты могут частично преобразоваться в ПХДД/Ф.

Недостатком устройства является также отсутствие системы использования теплового потенциала органической части отходов, и ведение процесса нагрева и пиролиза за счет сжигаемого в горелке внешнего топлива или использования электронагревателей, следствием чего являются повышенные эксплуатационные затраты.

Недостатком устройства является также отсутствие систем огневого обезвреживания и дополнительной очистки дымовых газов.

Наиболее близкой к заявляемому изобретению является «Установка для утилизации медицинских отходов» [2], содержащая камеру термического разложения с перемещающим устройством непрерывного действия - шнеком с переменным шагом витков, шлюзовым загрузочным устройством дискретного действия, устройством выгрузки твердого остатка, соединенным с топкой, газоходом отвода парогазовой смеси, соединенным с не менее чем двумя устройствами для ее сжигания, расположенными в топочной полости вдоль внешней стороны камеры термического разложения, теплообменником и системой газоочистки с дымососом.

Недостатком устройства также является то, что из камеры термического разложения отводится сразу вся масса образующихся газообразных продуктов, включая и хлорсодержащие компоненты, которые выделяются на первой стадии термического разложения (при температурах до 350°С). В дальнейшем, при охлаждении, эти компоненты могут частично преобразовываться в ПХДД/Ф.

Другим недостатком установки является то, что потоки дымовых газов от сгорания коксового остатка, сжигаемого в автономной топке, и сгорания парогазовой смеси объединяются и образуют смесь, содержащую все компоненты (соединения хлора, кислород, твердые продукты недожога), необходимые для образования диоксинов и фуранов. Реакция синтеза ПХДД/Ф происходит при охлаждении газодисперсной смеси в интервале температуры 450-250°С и осуществляется по гетерогенному механизму - на поверхности раздела фаз, в частности, на поверхности оборудования или поверхности твердых частиц, являющихся катализаторами процесса [3, 4].

Техническим результатом, на достижение которого направлено данное изобретение, является предотвращение возможности образования ПХДД/Ф, обеспечение экологически безопасных выбросов, экономия энергоресурсов, обеспечение автотермичности процесса и, при необходимости, получение собственного средства для очистки дымовых газов.

Технический результат достигается тем, что установка снабжена мокрым скруббером, а камера термического разложения содержит последовательно расположенные низкотемпературную и высокотемпературную секции, причем выход газообразных продуктов из низкотемпературной секции соединен с входом в мокрый скруббер, выход из которого соединен с камерой сжигания. Выход газообразных продуктов из высокотемпературной секции соединен с горелочным устройством камеры обогрева и камерой сжигания, а выход дымовых газов из камеры сжигания снабжен теплообменником-газификатором. Теплообменник-газификатор снабжен внешней газификационной полостью, а его внутренний объем снабжен встроенным парогенератором, выход из которого соединен с входом в газификационную полость. Выход газообразных продуктов из газификационной полости соединен через конденсатор водяных паров с генератором электроэнергии. Выход твердых продуктов из высокотемпературной секции камеры термического разложения снабжен сепаратором неорганических включений, выход из которого соединен с входом в газификационную полость теплообменника.

Сущность предлагаемого технического решения поясняется принципиальной схемой установки - фиг. 1 и чертежом теплообменника-газификатора - фиг. 2.

Установка содержит шлюзовое загрузочное устройство 1, камеру термического разложения 2, содержащую низкотемпературную секцию 3 и высокотемпературную секцию 4 и размещенную в камере обогрева 8 с горел очным устройством 7, мокрый скруббер 5, камеру сжигания 6, сепаратор твердых включений 9, теплообменник-газификатор 10 с газификационной полостью 11, парогенератором 12 и системой отвода тепла 13, генератор электроэнергии 14, систему газоочистки 15, дымосос 16 и горелку розжига 17. Секции 3 и 4 камеры термического разложения 2 снабжены перемещающими устройствами 18, 19. Выход из газификационной полости 11 снабжен конденсатором водяного пара 20.

Технологический процесс осуществляют следующим образом:

Камеру обогрева 8 и секции 3, 4 камеры термического разложения 2 предварительно разогревают с помощью горелки розжига 17. Отходы (МО) через шлюзовое загрузочное устройство 1 подают в низкотемпературную секцию 3, на выходе из которой поддерживается температура на уровне 250-350°С. По мере перемещения отходов вдоль оси нагретой секции они постепенно нагреваются и из них выделяются: водяной пар, газы (СО2, СО, H2S, NH3), газообразный галогенизированный водород (HCl) и углеводородные продукты начальной стадии пиролиза. Газообразные и твердые продукты на выходе из секции 3 разделяют: твердые подают в высокотемпературную секцию 4 для дальнейшего пиролиза органической массы отходов, а газообразныу (ПГС1) направляют в скуббер 5 для нейтрализации кислых газов и паров водным щелочным раствором (ЩР). Выходящие из скруббера 5 газообразные продукты совместно с частью парогазовой смеси (ПГС2) из высокотемпературной секции 4 сжигают в факеле горелочного устройства камеры сжигания 6 при температуре 1000-1350°С Другую часть высококалорийной парогазовой смеси (ПГС2), образовавшейся в высокотемпературной секции 4, сжигают в горелочном устройстве 7 камеры обогрева 8 при температуре 1000-1350°С, обеспечивая поддержание теплового баланса процесса пиролиза. Твердые продукты пиролиза (ТП) выводят из секции 4 в сепаратор твердых включений 9 отдельно от газообразных продуктов, выделяют из них неорганические включения (НВ) (стекло, металл и пр.), а оставшийся коксовый остаток (КО) подвергают паровой газификации при атмосферном давлении в газификационной полости 11 теплообменника-газификатора 10 при температуре 800-900°С до полного исчерпания углерода, т.е. полного отсутствия твердого органического остатка. Необходимый для газификации водяной пар (ВП) получают в проточном парогенераторе 12, размещенном в теплообменнике-газификаторе 10. Образующийся при газификации влажный водяной (синтез) газ (ВВГ) обезвоживают в конденсаторе 20 и направляют на сжигание в генератор электроэнергии 14. Как вариант, полученный при пиролизе коксовый остаток (КО) газифицируют перегретым при атмосферном давлении водяным паром при температуре 800-900°С до исчерпания только примерно 50% углерода, а образующийся активированный уголь (АУ) используют для очистки дымовых газов в системе газоочистки 15. Дымовые газы (ДГ) охлаждают в теплообменнике-газификаторе 10 и системе отвода тепла 13, очищают в системе газоочистки 15 и с помощью дымососа 16 выводят в атмосферу.

Таким образом:

Задача обеспечения экологической безопасности окружающей среды в предлагаемом устройстве достигается за счет того, что:

- Снабжение камеры термического разложения двумя секциями позволяет на низкотемпературной стадии процесса вывести из пиролизуемых отходов до 90% хлорсодержащих компонентов, и тем самым уменьшить возможность образования ПХДД/Ф в дальнейшем процессе.

- Снабжение установки мокрым скруббером позволяет на первой стадии процесса выделить из образовавшейся парогазовой смеси (ПГС1) и нейтрализовать щелочным раствором соляную кислоту (HCl) и кислые компоненты (СО2, SO2), что приводит к обогащению углеводородами парогазовой смеси (ПГС2), получаемой на второй (высокотемпературной) стадии пиролиза, снижению ее коррозионной активности и значительному уменьшению содержания соединений хлора в отходящих газах, что ведет к снижению риска образования ПХДД/Ф.

- Снабжение установки теплообменником-газификатором позволяет газифицировать и полностью израсходовать коксовый остаток с получением водяного (синтез) газа по реакции С+Н2О=СО+Н2, который после обезвоживания используется для получения электроэнергии. При газификации коксового остатка до исчерпания только примерно 50% углерода образующийся активированный уголь используют для очистки дымовых газов.

Снабжение теплообменника-газификатора установки парогенератором позволяет получать перегретый водяной пар, используя тепловой потенциал высокотемпературных дымовых газов, одновременно снижая их температуру и, тем самым, одновременно снижая металлоемкость теплообменника.

- Снабжение установки конденсатором водяных паров позволяет освободить выходящую из газификатора парогазовую смесь от влаги и, тем самым, подавать в генератор электроэнергии осушенный горючий газ.

- Задача получения экономического эффекта достигается за счет использования в качестве энергоносителя теплового потенциала утилизируемых отходов, что позволяет обеспечивать автотермичность процесса, так как использовать внешнее топливо необходимо только для разогрева установки в пусковой период и в качестве резерва для стабилизации температурного режима. Экономический эффект достигается также за счет уменьшения металлоемкости теплообменника и удешевления системы газоочистки за счет использования собственного активированного угля, а также за счет повышения срока службы оборудования из-за снижения коррозионной активности газовых потоков.

Таким образом, совокупность указанных существенных признаков обеспечивает возможность экологически безопасной термической утилизации медицинских отходов, экономию топлива и экологическую безопасность выбросов в окружающую среду.

Источники информации:

1. Устройство непрерывного действия для пиролиза измельченных материалов // Патент РФ №132073.

2. Установка для утилизации медицинских отходов //Патент РФ №170802.

3. Ballschmiter К., Swerev М. // Z.Anal.Chem.- 1987.- V.328.- Р. 125-127.

4. Shaub W.M., Tsang W. Physical and Chemical Properties of Dioxins ir Relation to the their Disposal. // Human and Environmental Risks of Chlorinated Dioxins and Related Compounds. - N-Y:Plenum Press, 1983.- P. 731-748.

1. Установка для утилизации медицинских отходов, содержащая камеру термического разложения, камеру обогрева, камеру сжигания, теплообменник, систему газоочистки и дымосос, отличающаяся тем, что установка снабжена мокрым скруббером, камера термического разложения содержит последовательно расположенные низкотемпературную и высокотемпературную секции, причем выход газообразных продуктов из низкотемпературной секции соединен с входом в мокрый скруббер, выход из которого соединен с камерой сжигания, выход газообразных продуктов из высокотемпературной секции соединен с горелочным устройством обогревательной камеры и камерой сжигания, а выход дымовых газов из камеры сжигания снабжен теплообменником-газификатором.

2. Установка по п. 1, отличающаяся тем, что теплообменник-газификатор снабжен газификационной полостью, внутренний объем теплообменника снабжен встроенным парогенератором, выход из которого соединен с входом в газификационную полость, а выход газообразных продуктов из газификационной полости соединен с генератором электроэнергии.

3. Установка по пп. 1, 2, отличающаяся тем, что выход газообразных продуктов из газификационной полости теплообменника-газификатора снабжен конденсатором водяных паров.

4. Установка по пп. 1, 2, 3, отличающаяся тем, что выход твердых продуктов из высокотемпературной секции камеры термического разложения снабжен сепаратором неорганических включений, выход из которого соединен с газификационной полостью теплообменника.



 

Похожие патенты:

Изобретение относится к области конструкций пиролизных установок, перерабатывающих отходы возобновляемого углеводородного сырья, в частности в виде древесной щепы, способом термического разложения и последующего применения получающихся продуктов.

Изобретение относится к оборудованию для комбинированной термической переработки твердых отходов органического происхождения с получением тепловой и электрической энергии.

Изобретение относится к области утилизации органических отходов и шламов, в частности осадков сточных вод, с получением гранулированного остеклованного шлака для дальнейшего его использования.

Изобретение относится к области жилищно-коммунального хозяйства и может быть использовано для экологически чистой переработки твердых коммунальных отходов. Пиролизный реактор включает камеру пиролиза с двойной внешней стенкой, через проем которой пропускают горячий газ для конвективного нагрева отходов для их термохимического разложения, и камеру сушки, установленную над камерой пиролиза, через которую пропускают отработанные горячие газы для предварительного нагрева и сушки отходов, камера пиролиза в сечении имеет форму протяженного овала с минимальной длиной короткой оси для максимального прогрева отходов между двумя раскаленными металлическими стенками, а по краям основания загрузочного бункера, камеры сушки и камеры пиролиза имеются прямоугольные отверстия, в которых смонтированы по два шунтирующих плоских затвора с электроприводами, между которыми расположены кольцевые активаторы с режущими лезвиями для рыхления и дробления отходов.

Изобретение относится к области переработки конденсированных топлив с получением горючего газа и может быть использовано для переработки различных твердых топлив для получения энергии.

Изобретение относится к охране окружающей среды и может быть использовано для переработки и утилизации полимерных компонентов коммунальных и промышленных отходов, а именно производства элементов строительных конструкций.

Изобретение относится к устройствам для термической переработки твердых коммунальных отходов и может быть использовано в жилищно-коммунальном хозяйстве для обезвреживания и уничтожения отходов с одновременным получением газообразного топлива.

Изобретение относится к области термической утилизации медицинских отходов, в том числе хлорсодержащих. Техническим результатом является создание условий, минимизирующих возможность образования диоксинов, обеспечение экологически безопасных выбросов, получение материалов для доочистки дымовых газов и обеспечение автотермичности процесса.

Группа изобретений относится к области горения и газификации и предназначена для получения силового генераторного газа для производства электрической и тепловой энергии.

Изобретение относится к устройствам для переработки отходов из резинотехнических и полимерных материалов. Технический результат - снижение времени процесса переработки отходов из резинотехнических и полимерных материалов.

Изобретение относится к области дорожно-строительных и строительных материалов, а именно к способу получения модифицированного битумного вяжущего, который заключается в предварительном нагреве битума до вязкого состояния и последующем введении в битум, при постоянном его перемешивании, модификатора, причем модификатор, составляющий 3,0-10,0 мас.

Изобретение относится к области термической утилизации медицинских отходов, в том числе хлорсодержащих. Техническим результатом является создание условий, минимизирующих возможность образования диоксинов, обеспечение экологически безопасных выбросов, получение материалов для доочистки дымовых газов и обеспечение автотермичности процесса.

Изобретение относится к области термической утилизации медицинских отходов, в том числе хлорсодержащих и инфицированных. Техническим результатом является создание условий, максимально исключающих возможность образования диоксинов, обеспечение экологически безопасных выбросов, получение материалов, пригодных для очистки дымовых газов, и обеспечение автотермичности процесса за счет собственных энергоресурсов.

Изобретение относится к способу регенерации сырьевых материалов, содержащих целлюлозу, пластмассы и металлы, из содержащих бумагу отходов, упаковочных материалов или композитных материалов, в котором целлюлозу сначала растворяют с использованием ионных жидкостей, а ионные жидкости восстанавливают посредством осаждения, причем способ содержит следующие технологические операции: измельчение сырьевого материала, очистка сырьевого материала, отделение фракции, содержащей целлюлозу, при помощи воды с получением в результате фракции целлюлозы и остальной части композитного материала, сушка фракции, содержащей целлюлозу, растворение целлюлозы в ионной жидкости, осаждение целлюлозы при помощи коагулянта, отделение целлюлозы в виде твердого вещества и сушка целлюлозы, отделение ионной жидкости от коагулянта для целлюлозы, очистка и отведение ионной жидкости, растворение пластмассы из остальной части композитного материала, отделение металла в виде твердого вещества и сушка металла, получение растворителя из раствора пластмассы, регенерирование остатка растворителя из пластмассы, и экструдирование пластмассы.

Изобретение относится к технологии переработки промышленных и бытовых отходов. Способ переработки измельченных резиносодержащих отходов включает их предварительную подготовку, термическое разложение в печи, разделение продуктов разложения на парогазовую смесь и твердый остаток, выделение из парогазовой смеси тяжелой углеводородной фракции.

Изобретение относится к способу получения стирола из отходов полистирола, включающему растворение отходов полистирола в органическом растворителе, введение полученного раствора в реактор и разложение полистирола в отсутствие катализатора при повышенной температуре и атмосферном давлении.

Изобретение относится к способу переработки отходов, содержащих термореактивные полимеры в виде отвержденных или неотвержденных фенольных или эпоксидных смол, и может быть использовано в машиностроении, приборостроении, авиационной и космической промышленности и других отраслях.

Изобретение относится к утилизации отходов полимеров путем каталитической деструкции с получением топлив или компонентов топлива. Способ переработки органических полимерных отходов включает ожижение измельченных полимеров, смешение с катализатором и термокаталитическую деструкцию реакционной смеси при нормальном атмосферном давлении, при этом в качестве катализатора используют 2-этилгексаноат никеля (II) в виде 40-45%-ного раствора в бензоле, взятого в массовом соотношении отход:катализатор 1:0,03-0,06, а ожижение отходов и термокаталитическую деструкцию осуществляют путем нагрева реакционной массы до температуры 300-400°C при рециркуляции легких углеводородов в течение 0,5-1,5 часа с последующим отгоном жидких углеводородов.

Изобретение относится к способу термического разложения отходов полимеров, содержащих поливинилхлорид. Способ термического разложения отходов полимеров, содержащих поливинилхлорид, включает стадии измельчения отходов полимеров, подлежащих переработке, подачи их в дегалогенизационный реактор вместе с тяжелой фракцией масла с получением смеси измельченных отходов полимеров и тяжелого масла с массовым соотношением 1:0,3-0,8, нагревания реакционной смеси до температуры 210-250°С, получения раствора кислоты из газообразного галогенированного водорода, выделяющегося из вещества, удаления этого раствора, подачи смеси, оставшейся в камере реактора, в деполимеризационный реактор, температура которого повышена до температуры от 480°С до 600°С, экстракции образующейся газообразной смеси углеводородов, ее разделения на фракции, конденсации и возвращения части тяжелой фракции масла в дегалогенизационный реактор для получения смеси полимерной крошки и тяжелого масла.

Изобретение относится к технологии регенерации резиновой крошки из каучуков общего назначения и может быть использовано в шинной промышленности, производстве резино-технических изделий и каучукобитумных мастик, на основе которых могут быть получены гидроизоляционные материалы, используемые в строительстве (кровельные мастики, изоляция труб, дорожные покрытия), а также для изготовления антикоррозионных автомобильных мастик.

Изобретение относится к оборудованию для предварительной разделки изношенных или бракованных шин различного диаметра, а именно к станку для резки шин на ленту. Техническим результатом является разрезание шины на ленту по всей поверхности шины.
Наверх