Способ компенсации геометрического шума матричного фотоприемника

Изобретение относится к вычислительной технике. Технический результат заключается в уменьшении аппаратных затрат на требуемый объем памяти для хранения эталонных изображений и коэффициентов компенсации, получаемых в процессе калибровки. Способ включает предварительную калибровку геометрического шума при минимальном времени экспозиции фотоприемника tmin путем поочередного равномерного облучения элементов фотоприемной матрицы от источника с низким и высоким уровнем излучения, запоминание в цифровой форме значений яркости элементов изображений Y1 и Y2 для низкого и для высокого уровня облучения, соответственно, вычисление среднего значения m1 и m2 яркости элементов изображений Y1 и Y2, соответственно, задание на этапе калибровки максимального времени экспозиции tmax при низком уровне равномерной облученности фотоприемника и запоминание в цифровой форме получаемых при этом значений яркости элементов изображения Ymax, вычисление непосредственно перед информативной засветкой коэффициента a=(t-tmin)/(tmax-tmin) для устанавливаемого времени t экспозиции фотоприемника в пределах tmin≤t≤tmax, вычисление значений яркости элементов эталонного изображения Y0 по формуле и его средней яркости , расчет значений коэффициентов компенсации K по формуле K=(Y2-Y1)/(m2-m1), получение в процессе информативного облучения значений яркости элементов изображения Y и формирование выходных цифровых значений яркости X по формуле X=(Y-Y1)/K+m0. Значения яркости элементов эталонного изображения Y0 и значения коэффициентов K вычисляют непосредственно при информативном облучении. Для вычисления Y0 принимают X2=Ymax, X1=Y1, а для вычисления коэффициентов компенсации K и выходных цифровых значений яркости X принимают Y1=Y0, m1=m0. Формирование выходных цифровых значений яркости X производят в процессе информативной засветки по общей формуле: . 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области прикладного телевидения, использующего регистрацию отраженного или излученного потока излучения в инфракрасном (ИК) диапазоне спектра.

Геометрический шум (ГШ) или в английской аббревиатуре FPN-шум (fixed pattern noise) является для конкретного фотоприемника детерминированной помехой, имеющей две составляющих: аддитивную и мультипликативную. Аддитивная составляющая обусловлена неравномерностью термогенерации носителей заряда в элементах матричного фотоприемника. Мультипликативная составляющая обусловлена неоднородностью чувствительности элементов матричного фотоприемника.

Математическая модель, описывающая сигнал с ГШ, представляет собой линейное уравнение с постоянными коэффициентами. В матричной форме записи эта модель имеет следующий вид: Y=KX+B, где Y - матрица выходных значений сигнала яркости матричного фотоприемника с ГШ, В - матрица аддитивной составляющей ГШ, характеризующая для каждого элемента неравномерность термогенерации, X - матрица значений сигнала яркости от элементов матричного фотоприемника без ГШ, а K - матрица коэффициентов, характеризующих неравномерность чувствительности для каждого из этих элемента. При этом KX - мультипликативная составляющая ГШ.

С ГШ обычно борются компенсационным методом, заключающимся в вычитании предварительно запомненных значений аддитивной составляющей В и умножением (или делением) на предварительно рассчитанные коэффициенты K компенсации мультипликативной составляющей.

Указанная выше математическая модель используется в известном способе компенсации ГШ, описанном, в частности, на с. 16-23 литературы Л.И. Хромов, Н.В. Лебедев, А.К. Цыцулин, А.Н. Куликов «Твердотельное телевидение. Телевизионные системы с переменными параметрами на ПЗС и микропроцессорах». М., «Радио и связь», 1986 г.

Данный способ предусматривает предварительную калибровку матричного фотоприемника видимого диапазона спектра, во время которой производят поочередное перекрытие потока излучения и равномерное облучение фотоприемника. Получаемые при этом значения в матрице сигнала яркости изображений Y1 для перекрытого потока излучения и Y2 для равномерно облученного фотоприемника запоминают. Затем рассчитывают для каждого элемента изображения коэффициенты K, характеризующие относительную чувствительность элементов фотоприемника по формуле K=Y2/m2, где m2 средняя яркость изображения Y2. При информативном облучении фотоприемника производят компенсацию ГШ в получаемых при этом цифровых значениях Y, формируя выходные значения яркости X по формуле X=(Y-B)/K, причем, B=Y1.

Недостатком данного способа является его низкая точность при работе в увеличенном динамическом диапазоне изменения сигнала.

Известен способ компенсации геометрического шума матричного фотоприемника, описанный на с. 3, 4 статьи авторов Брондз Д.С., Харитонова Е.Н., «Коррекция геометрического шума МФПУ с помощью аппроксимации методом наименьших квадратов передаточных характеристик матрицы полиномом Т-порядка» // Журнал радиоэлектроники, 2008, №11. С. 1-29.

Данный способ также основан на использовании рассмотренной выше математической модели ГШ. Однако, в отличие от рассмотренного первого способа, данный способ предусматривает нахождение коэффициентов K из системы уравнений: Y1=KX1+B и Y2=KX2+B. При этом Х1 и Х2 - исходные значения сигнала яркости от элементов матричного фотоприемника без ГШ при равномерном низком и высоком уровне облученности элементов фотоприемной матрицы, соответствующие средним значениям яркости m1 и m2 изображений Y1 и Y2. Из рассмотренной выше системы уравнений следует значения K=(Y2-Y1)/(m2-m1) для каждого элемента фотоприемника.

Таким образом, сущность данного способа заключается в предварительной калибровке матричного фотоприемника, выполняемой путем поочередного равномерного его облучения от источников с низким и высоким уровнем излучения. Получаемые при этом цифровые значения сигнала яркости кадров изображений Y1 для низкого и Y2 для высокого уровня облученности фотоприемника запоминают и рассчитывают средние значения яркости m1 и m2 для изображений Y1 и Y2, соответственно. Далее для каждого элемента матричного фотоприемника рассчитывают значения коэффициентов K по формуле K=(Y2-Y1)/(m2-m1). При информативном облучении фотоприемника производят компенсацию ГШ по формуле X=(Y-Y1)/K+m1. Добавление значения m1 при этом обеспечивает восстановление средней яркости изображения, теряемой при вычитании значений Y1. Данный способ в литературе известен, как двухточечная коррекция.

Недостатком данного способа является низкая точность компенсации ГШ фотоприемника при времени экспозиции (накопления), отличном от времени экспозиции, использованном в процессе калибровки. Низкая точность обусловлена тем, что, например, при увеличении времени t экспозиции фотоприемника в процессе его информативного облучения в пределах рабочего диапазона экспозиций tmin≤t≤tmax относительно минимального времени экспозиции tmin, использованного в процессе калибровки, возникает ошибка компенсации ГШ. Ошибка компенсации ГШ в свою очередь объясняется тем, что аддитивная составляющая ГШ прямо пропорциональна времени накопления. На изображении ошибка компенсации проявляется в виде помехи - зернистой структуры. При этом, чем больше задаваемое время накопления t, тем больше ошибка компенсации и заметнее помеха.

Наиболее близким по технической сущности к заявляемому способу является способ компенсации геометрического шума матричного фотоприемника (см. патент РФ №2679547, G06T 5/00, от 11.02.2019) - прототип.

Данный способ заключается в следующем. Производят предварительную калибровку фотоприемника путем поочередного равномерного облучения элементов фотоприемной матрицы от источника с низким уровнем и высоким уровнем излучения при времени экспозиции фотоприемника tmin. Полученные при этом значения сигнала яркости изображения Y1 для низкого и изображения Y2 для высокого уровня облучения запоминают в цифровой форме. Далее вычисляют средние значение m1 и m2 сигнала яркости изображений Y1 и Y2, соответственно, а также коэффициенты K для каждого элемента матричного фотоприемника по формуле K=(Y2-Y1)/(m2-m1) для времени экспозиции фотоприемника tmin. На этапе калибровки дополнительно задают максимальное время экспозиции tmax при низком уровне равномерной облученности фотоприемника. Получаемые при этом значения сигнала яркости изображения Ymax запоминают в цифровой форме и вычисляют их среднее значение mmax.

Затем на этапе калибровки осуществляют преобразования полученных изображений Y2, Y1 и Ymax по формулам X1=(Y2-Y1)K+m1 и X2=(Y2-Ymax)K+mmax, соответствующим способу двухточечной коррекции, и запоминают полученные значения сигнала яркости кадров изображений Х1 и Х2. Полученные кадры изображения содержат остаточный ГШ, получаемый после указанных выше преобразований сигнала яркости изображения Y2 при времени экспозиции tmin и tmax, соответственно.

Непосредственно перед информативной засветкой вычисляют коэффициент a=(t-tmin)/(tmax-tmin) для заданного в пределах tmin≤t≤tmax времени t экспозиции фотоприемника и формируют корректирующий кадр изображения Y0 по формуле , а также определяют его среднюю яркость m0.

Непосредственно при информативном облучении фотоприемника, получая изображение Y с установленным временем экспозиции t, производят двухточечную коррекцию по формуле X=(Y-Y1)K+ml с использованием отсчетов яркости Y1 и коэффициентов K, вычисленных на этапе калибровки для времени экспозиции tmin. Далее окончательно выходное изображение Х0 формируют в соответствии с выражениями X0=X-Y0+m0, если t≠tmin и Х0=Х, если t=tmin.

Таким образом, сущность способа-прототипа заключается в том, что вычисляются значения сигнала яркости интерполированного корректирующего кадра изображения Y0 для времени экспозиции t. При информативной засветке значения Y0 вычитаются из значений яркости соответствующих элементов выходного кадра X, формируемого по коэффициентам K, рассчитанным на этапе калибровки при времени экспозиции tmin.

Недостатком данного способа является то, что при реализации способа вычисления в процессе компенсации ГШ требуют увеличенного объема памяти для хранения эталонных изображений и коэффициентов компенсации. В частности, требуется память для хранения эталонных изображений Х1, Х2, Y1 и матрицы коэффициентов компенсации K.

Задачей изобретения является уменьшение при реализации способа объема памяти, требуемой для хранения эталонных изображений и коэффициентов компенсации, получаемых в процессе калибровки.

Технический результат - уменьшение при реализации способа аппаратных затрат на требуемый объем памяти для хранения эталонных изображений и коэффициентов компенсации, получаемых в процессе калибровки.

Поставленная задача достигается тем, что в способе компенсации геометрического шума матричного фотоприемника, включающем его предварительную калибровку при минимальном времени экспозиции фотоприемника tmin путем поочередного равномерного облучения элементов фотоприемной матрицы от источника с низким и высоким уровнем излучения, запоминание в цифровой форме значений яркости элементов изображений Y1 и Y2, для низкого и для высокого уровня облучения, соответственно, вычисление средних значений m1 и m2 яркости элементов в изображениях Y1 и Y2, задание на этапе калибровки максимального времени экспозиции tmax при низком уровне равномерной облученности фотоприемника и запоминание в цифровой форме получаемых при этом значений яркости элементов изображения Ymax, вычисление непосредственно перед информативной засветкой коэффициента a=(t-tmin)/(tmax-tmin) для устанавливаемого времени t экспозиции фотоприемника в пределах tmin≤t≤tmax, вычисление значений яркости элементов эталонного изображения Y0 по формуле и его средней яркости m0, расчет значений коэффициентов компенсации K по формуле K=(Y2-Y1)/(m2-m1), получение в процессе информативного облучения, значений яркости элементов изображения Y и формирование выходных цифровых значений яркости X по формуле X=(Y-Y1)/K+m1, значения яркости элементов эталонного изображения Y0, и значения коэффициентов K вычисляют при информативном облучении, причем, при вычислении Y0 принимают X2=Ymax, X1=Y1, а при вычислении коэффициентов компенсации K и выходных цифровых значений яркости X принимают Y1=Y0, а m1=m0, где m0 - средняя яркость Y0, вычисляемая непосредственно перед информативной засветкой по формуле ,

Иными словами, при информативной засветке вычисления производят по общей формуле: что позволяет уменьшить объем памяти, требуемой для хранения эталонных изображений и значений коэффициентов компенсации.

Действительно, в заявляемом способе для выполнения калибровки фотоприемника требуется объем памяти для хранения только трех изображений: Y1, Y2 и Ymax, в то время, как по способу-прототипу выполнение калибровки требует объема памяти для хранения трех изображений: Х2, X1, Y1 и дополнительный объем памяти для хранения значений коэффициентов компенсации K, а также значений яркости элементов кадра интерполированного корректирующего изображения Y0.

Технические решения, содержащие совокупность признаков, идентичную признакам изобретения, не выявлены, что определяет соответствие изобретения критерию «новизна».

Заявителем не выявлены какие-либо источники информации, содержащие сведения о влиянии отличительных признаков на достигаемый результат, что свидетельствует о соответствии изобретения критерию «изобретательский уровень».

На фиг. 1 приведен пример структурной схемы устройства для реализации заявляемого способа, где:

1 - объектив;

2 - инфракрасная камера (ИК-камера);

3 - устройство видеозаписи;

4 - компьютер.

Изображения для низкого и высокого уровня облучения фотоприемников в процессе калибровки фотоприемника могут быть получены, например, путем последовательной съемки матричной ИК-камерой изображений излучателя по модели абсолютно черного тела (АЧТ) при его низкой и высокой температуре. Фиксация изображений в компьютере может осуществляться через стандартное устройство видеозаписи, например, типа Aver EZ Capture фирмы Aver Media, подключаемое к PCI- шине компьютера. Результирующее изображение может быть получено, например, путем программирования в среде стандартного пакета MATLAB или путем создания специализированной программы, например, в среде С++.

Устройство содержит объектив 1, оптически связанный с матричной ИК-камерой 2, последовательно подключенной к устройству 3 видеозаписи и компьютеру 4.

Способ осуществляется следующим образом.

Поток излучения, проходит через объектив 1 на фотоприемник ИК-камеры 2. Время экспозиции t в пределах tmin≤t≤tmax задается в ИК-камере. Значения t, tmin, tmax и вводятся в компьютер в ручном режиме. Калибровка камеры осуществляется при t=tmin. Получаемые в процессе калибровки изображения Y1 для tmin„ Ymax для tmax при низкой и Y2 для tmin при высокой температуре АЧТ последовательно преобразуются ИК-камерой 2 в электрический сигнал, который в свою очередь преобразуется в цифровую форму стандартным устройством 3 видеозаписи и последовательно вводится в компьютер 4.

Введенные в компьютер исходные цифровые значения яркости элементов изображений Y1, Y2, Ymax, а также значения t, tmin и tmax обрабатываются программным путем с целью вычислении средних значений m1, m2 яркости элементов в кадрах изображений Y1, Y2 и получения значений коэффициентов а по формуле: a=(t-tmin)/(tmax-tmin) и интерполированного значения средней яркости по формуле .

При информативном облучении с временем экспозиции t в компьютер вводится изображение со значениями яркости элементов Y, которые обрабатываются программным путем с целью формирования выходных цифровых значений яркости X по общей формуле:

.

Выходные цифровые значения яркости элементов откорректированного изображения X отображаются на экране дисплея компьютера.

Таким образом, для реализации данного способа могут быть применены известные материалы и технические средства, что обуславливает соответствие изобретения критерию «промышленная применимость».

1. Способ компенсации геометрического шума матричного фотоприемника, включающий его предварительную калибровку при минимальном времени экспозиции фотоприемника tmin путем поочередного равномерного облучения элементов фотоприемной матрицы от источника с низким и высоким уровнем излучения, запоминание в цифровой форме значений яркости элементов изображений Y1 и Y2 для низкого и для высокого уровня облучения, соответственно, вычисление среднего значения m1 и m2 яркости элементов изображений Y1 и Y2, соответственно, задание на этапе калибровки максимального времени экспозиции tmax при низком уровне равномерной облученности фотоприемника и запоминание в цифровой форме получаемых при этом значений яркости элементов изображения Ymax, вычисление непосредственно перед информативной засветкой коэффициента a=(t-tmin)/(tmax-tmin) для устанавливаемого времени t экспозиции фотоприемника в пределах tmin≤t≤tmax, вычисление значений яркости элементов эталонного изображения Y0 по формуле и его средней яркости , расчет значений коэффициентов компенсации K по формуле K=(Y2-Y1)/(m2-m1), получение в процессе информативного облучения значений яркости элементов изображения Y и формирование выходных цифровых значений яркости X по формуле X=(Y-Y1)/K+m0, отличающийся тем, что значения яркости элементов эталонного изображения Y0 и значения коэффициентов K вычисляют непосредственно при информативном облучении, причем для вычисления Y0 принимают X2=Ymax, X1=Y1, а для вычисления коэффициентов компенсации K и выходных цифровых значений яркости X принимают Y1=Y0, m1=m0.

2. Способ по п. 1, отличающийся тем, что формирование выходных цифровых значений яркости X производят в процессе информативной засветки по общей формуле: .



 

Похожие патенты:

Очки содержат две ветви наблюдения для телевизионного и тепловизионного диапазонов, каждая из которых включает блок управления, окуляр и микродисплей, расположенный в его предметной плоскости, а так же защитное стекло и прямоугольную призму с отражающими гранями, за каждой из которых установлены объектив и система преобразования изображения телевизионной и тепловизионной ветвей соответственно.

Изобретение относится к вычислительной технике. Технический результат – обеспечение обратной совместимости SDR и HDR посредством комбинирования декодированных компонент яркости и цветности.

Изобретение относится к панорамному компьютерному наблюдению, которое выполняется цветной телевизионной камерой кругового обзора в области, близкой к полусфере, т.е.

Изобретение относится к телевизионной технике и ориентировано на использование в телевизионных камерах, выполненных на базе однокристального «кольцевого» телевизионного сенсора по технологии комплементарных структур «металл-окисел-полупроводник» (КМОП).

Изобретение относится к телевизионной технике и ориентировано на использование в телевизионных камерах, выполненных на базе однокристального «кольцевого» телевизионного сенсора по технологии комплементарных структур «металл-окисел-полупроводник» (КМОП).

Изобретение относится к панорамному телевизионному наблюдению, которое выполняется компьютерной системой при помощи телевизионной камеры, обеспечивающей круговой обзор в различных шаровых слоях окружающей сферической области пространства.

Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20°С.

Использование: для настройки магнитооптической системы протонографического комплекса. Сущность изобретения заключается в том, что осуществляют пропускание пучка протонов через объектную плоскость магнитооптической системы, включающей магнитные линзы и коллиматор, с последующим получением с помощью системы регистрации изображений тест-объекта, помещенного в объектную плоскость, меняя величину тока магнитных линз для определения оптимального значения, при котором магнитная индукция магнитооптической системы согласована с энергией пучка протонов, при этом в качестве тест-объекта используют пластину, толщина которой выбрана из условия обеспечения потери энергии протонов при прохождении через нее, не превышающей разброс энергии протонов в падающем пучке, при этом пластину выполняют либо сплошной и ориентируют так, чтобы пучок проходил через ее грань, либо с одной или несколькими прямоугольными прорезями и ориентируют так, чтобы пучок проходил через прорези, изменение величины тока линз производят с шагом, соответствующим требуемой точности настройки магнитооптической системы, выбор оптимального значения тока магнитных линз осуществляют по профилям интенсивности протонного пучка, которые строят по полученным изображениям тест-объекта в направлении, перпендикулярном грани или прорезям, в том случае если на грани или границах прорезей отсутствует всплеск интенсивности, то плоскость фокусировки магнитооптической системы совпадает с объектной плоскостью, а величина тока магнитных линз, при которой было получено изображение, является оптимальной.

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в качестве аппаратно-программного комплекса автоматического получения и обработки изображений с субматричным фотоприемным устройством для повышения качества формируемого изображения из RAW изображения в цифровую форму, полностью адаптированную для дальнейшей обработки изображения, в т.ч.

Изобретение относится к панорамному телевизионному сканированию, которое осуществляется компьютерной системой при помощи телевизионной камеры в области, близкой к полусфере, т.е.

Изобретение относится к вычислительной технике. Технический результат – повышение качества изображения.

Изобретение относится к области обработки изображений. Техническим результатом является повышение эффективности обработки изображений.

Группа изобретений относится к способам обнаружения и определения уровня зубного налета и/или повреждений у домашних животных. Предложен способ обнаружения и количественного определения субстрата в ротовой полости у бодрствующего субъекта, включающий следующие этапы: (i) получение одного или нескольких снимков одного или нескольких зубов у бодрствующего испытуемого субъекта с помощью устройства для получения снимков, которое выполнено с возможностью обнаружения флуоресценции; (ii) анализ снимков и (iii) количественное определение покрытия субстратом на каждом зубе каждого субъекта, причем испытуемый субъект является животным-компаньоном.

Изобретение относится к вычислительной технике. Технический результат − повышение эффективности поиска интересующего объекта при минимальных начальных данных Система для обработки данных из архива содержит: видеокамеры; память для хранения архива видеоданных от видеокамер системы; базу данных для хранения метаданных; графический пользовательский интерфейс (ГПИ), содержащий: блок выбора видеокамер; блок задания промежутка времени; блок выбора режима поиска; блок характеристик поиска; блок отображения, для отображения результатов поиска; а также устройство обработки данных для выполнения: декомпрессии и анализа видеоданных для формирования метаданных, характеризующих данные обо всех объектах в видео, при этом упомянутые метаданные записываются в базу данных системы; обработки архивных видеоданных и осуществления поиска по метаданным; вывода результата поиска посредством блока отображения.

Изобретение относится к способу расчета непрерывного распределения пор по размеру на основе двумерного цифрового изображения. Техническим результатом является повышение точности определения размеров пор.

Изобретение относится к медицине, а именно к визуализации целевой зоны терапии перед назначением лечения и после него. Предложена система, содержащая машиночитаемый носитель, для реализации способа, причем способ включает в себя: определение минимальной протяженности измеримого поражения в соответствии со стандартом, выбранным из группы: RECIST, PERCIST, RANO, на основе метода визуализации, используемого для захвата изображения поражения, и толщины среза изображения; создание пространственного курсора, соответствующего минимальной протяженности измеримого поражения в соответствии со стандартом, выбранным из группы: RECIST, PERCIST, RANO, и имеющего круглую форму с диаметром, соответствующим минимальной протяженности, и показ изображения поражения с помещенным поверх него пространственным курсором.

Группа изобретений относится к системе определения положения контактного устройства сопряжения транспортного средства, относительно контактного устройства сопряжения зарядной станции для транспортного средства и транспортному средству с электроприводом.

Изобретение относится к медицинской технике, а именно к ультразвуковым диагностическим системам визуализации для определения границы камеры сердца на ультразвуковом изображении.

Изобретение относится к медицинской технике, а именно к ультразвуковой диагностической системе получения изображений для определения границы камеры сердца в ультразвуковом изображении.

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении пониженной чувствительности к шуму.

Изобретение относится к вычислительной технике. Технический результат – обеспечение обратной совместимости SDR и HDR посредством комбинирования декодированных компонент яркости и цветности.

Изобретение относится к вычислительной технике. Технический результат заключается в уменьшении аппаратных затрат на требуемый объем памяти для хранения эталонных изображений и коэффициентов компенсации, получаемых в процессе калибровки. Способ включает предварительную калибровку геометрического шума при минимальном времени экспозиции фотоприемника tmin путем поочередного равномерного облучения элементов фотоприемной матрицы от источника с низким и высоким уровнем излучения, запоминание в цифровой форме значений яркости элементов изображений Y1 и Y2 для низкого и для высокого уровня облучения, соответственно, вычисление среднего значения m1 и m2 яркости элементов изображений Y1 и Y2, соответственно, задание на этапе калибровки максимального времени экспозиции tmax при низком уровне равномерной облученности фотоприемника и запоминание в цифровой форме получаемых при этом значений яркости элементов изображения Ymax, вычисление непосредственно перед информативной засветкой коэффициента a для устанавливаемого времени t экспозиции фотоприемника в пределах tmin≤t≤tmax, вычисление значений яркости элементов эталонного изображения Y0 по формуле и его средней яркости, расчет значений коэффициентов компенсации K по формуле K, получение в процессе информативного облучения значений яркости элементов изображения Y и формирование выходных цифровых значений яркости X по формуле XK+m0. Значения яркости элементов эталонного изображения Y0 и значения коэффициентов K вычисляют непосредственно при информативном облучении. Для вычисления Y0 принимают X2Ymax, X1Y1, а для вычисления коэффициентов компенсации K и выходных цифровых значений яркости X принимают Y1Y0, m1m0. Формирование выходных цифровых значений яркости X производят в процессе информативной засветки по общей формуле:. 1 з.п. ф-лы, 1 ил.

Наверх