Способ предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей

Изобретение относится к области медицины, а именно к хирургической стоматологии и челюстно-лицевой хирургии, к способу предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей, и может быть использовано в условиях челюстно-лицевого, стоматологического отделения, а также других лечебных заведений. Предложен способ предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей, характеризующийся тем, что в предоперационный период перед выполнением ортогнатического вмешательства определяют методом конусно-лучевой компьютерной томографии объем и размеры подлежащих хирургическому лечению зубочелюстных аномалий зоны от надбровных дуг до края тела нижней челюсти пациента при естественном положении его головы, полученную томографическую информацию сохраняют в формате DICOM и переносят в Dolphin Imaging, выполняют с использованием камеры 3dMDface 3D-фото головы пациента в естественном положении (HNP) при ее расположении между двумя модульными блоками, содержащими синхронизированные в одном захвате шесть камер, при скорости фотографирования 1,5 миллисекунды с геометрической точностью ≤0,2 мм со 180° охватом головы пациента от уха до уха, выполняют рендинг полученных фотографий в течение 7-8 секунд с их сохранением в формате OBJ, изготавливают слепки верхней и нижней челюстей пациента с аномалиями развития с использованием слепочной массы Zher-mack Hydrogum с получением их оттисков, отливают гипсовые модели слепков верхней и нижней челюстей пациента заливкой изготовленных оттисков подготовленной массой стоматологического гипса 4 класса с использованием вибрационного стола и через 30-35 минут гипсовые модели извлекают из оттиска, сканируют гипсовые модели в оптическом узкополосном сканере Zirkozahn S600 ARTI при точности сканирования 10 мкм и при вращении моделей вокруг своей оси на 360° с углом наклона от вертикальной оси на 100° и полученные сканы сохраняют в формате STL, осуществляют с использованием программы Dolphin Imaging совмещение с точностью до 0,1 мм результатов конусно-лучевой компьютерной томографии, 3D-фото головы пациента и сканирования гипсовых моделей, выполняют виртуальные перемещения костных фрагментов и формируют виртуальный хирургический сплинт, который изготавливают с использованием при распечатке на 3D-принтере или фрезерованием на CAD/САМ для последующего использования во время выполнения предстоящей ортогнатической операции, выполняют виртуальное планирование объема перемещений костных фрагментов верхней и нижней челюстей пациента для воспроизведения при выполнении предстоящей ортогнатической операции. Изобретение обеспечивает достаточную точность и визуализацию создания необходимого положения челюстей при планировании ортогнатической операции у пациентов с аномалиями развития челюстей, значительное снижение риска послеоперационных осложнений спланированных ортогнатических вмешательств, возможность оценить результаты ортогнатического вмешательства с одновременным достижением заданного эстетического результата по послеоперационному положению мягких тканей лица пациента. 3 пр.

 

Изобретение относится к области медицины, а именно к хирургической стоматологии и челюстно-лицевой хирургии, к способу предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей и может быть использовано в условиях челюстно-лицевого, стоматологического отделения, а также других лечебных заведений.

Известен способ планирования ортогнатической хирургической операции, включающий выполнение конусно-лучевой объемной томографии челюстно-лицевой области с выбором метода операционного хирургического вмешательства (см. патент РФ №2548317, МПК А61В 6/03, 20.04.2015)

Однако известный способ при своем использовании обладает следующими недостатками:

- не обеспечивает достаточную точность и визуализацию создания необходимого положения челюстей при планировании ортогнатической операции у пациентов с аномалиями развития челюстей,

- не обеспечивает значительное снижение риска послеоперационных осложнений спланированных ортогнатических вмешательств,

- не обеспечивает возможность оценить результаты ортогнатического вмешательства с одновременным достижением заданного эстетического результата по положению мягких тканей лица.

Задачей изобретения является создание способа предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей.

Техническим результатом является обеспечение достаточной точности и визуализации создания необходимого положения челюстей при планировании ортогнатической операции у пациентов с аномалиями развития челюстей, значительное снижение риска послеоперационных осложнений спланированных ортогнатических вмешательств, обеспечение возможности оценить результаты ортогнатического вмешательства с одновременным достижением заданного эстетического результата по послеоперационному положению мягких тканей лица пациента.

Технический результат достигается тем, что предложен способ предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей, характеризующийся тем, что в предоперационный период перед выполнением ортогнатического вмешательства определяют методом конусно-лучевой компьютерной томографии объем и размеры подлежащих хирургическому лечению зубочелюстных аномалий зоны от надбровных дуг до края тела нижней челюсти пациента при естественном положении его головы, полученную томографическую информацию сохраняют в формате DICOM и переносят в Dolphin Imaging, выполняют с использованием камеры 3dMDface 3D-фото головы пациента в естественном положении (HNP) при ее расположении между двумя модульными блоками, содержащими синхронизированные в одном захвате шесть камер, при скорости фотографирования 1,5 миллисекунды с геометрической точностью ≤0,2 мм со 180° охватом головы пациента от уха до уха, выполняют рендинг полученных фотографий в течение 7-8 секунд с их сохранением в формате OBJ, изготавливают слепки верхней и нижней челюстей пациента с аномалиями развития с использованием слепочной массы Zhermack Hydrogum с получением их оттисков, отливают гипсовые модели слепков верхней и нижней челюстей пациента заливкой изготовленных оттисков подготовленной массой стоматологического гипса 4 класса с использованием вибрационного стола и через 30-35 минут гипсовые модели извлекают из оттиска, сканируют гипсовые модели в оптическом узкополосном сканере Zirkozahn S600 ARTI при точности сканирования 10 мк и при вращении моделей вокруг своей оси на 360° с углом наклона от вертикальной оси на 100° и полученные сканы сохраняют в формате STL, осуществляют с использованием программы Dolphin Imaging совмещение с точностью до 0,1 мм результатов конусно-лучевой компьютерной томографии, 3D-фото головы пациента и сканирования гипсовых моделей, выполняют виртуальные перемещения костных фрагментов и формируют виртуальный хирургический сплинт, который изготавливают с использованием при распечатке на 3D-принтере или фрезерованием на CAD/САМ для последующего использования во время выполнения предстоящей ортогнатической операции, выполняют виртуальное планирование объема перемещений костных фрагментов верхней и нижней челюстей пациента для воспроизведения при выполнении предстоящей ортогнатической операции.

Способ осуществляется следующим образом. В предоперационный период перед выполнением ортогнатического вмешательства определяют методом конусно-лучевой компьютерной томографии объем и размеры подлежащих хирургическому лечению зубочелюстных аномалий зоны от надбровных дуг до края тела нижней челюсти пациента при естественном положении его головы.

Полученную томографическую информацию сохраняют в формате DICOM и переносят в Dolphin Imaging. Выполняют с использованием камеры 3dMDface 3D-фото головы пациента в естественном положении (HNP) при ее расположении между двумя модульными блоками, содержащими синхронизированные в одном захвате шесть камер, при скорости фотографирования 1,5 миллисекунды с геометрической точностью ≤0,2 мм со 180° охватом головы пациента от уха до уха. Выполняют рендинг полученных фотографий в течение 7-8 секунд с их сохранением в формате OBJ.

Изготавливают слепки верхней и нижней челюстей пациента с аномалиями развития с использованием слепочной массы Zhermack Hydrogum с получением их оттисков. Отливают гипсовые модели слепков верхней и нижней челюстей пациента заливкой изготовленных оттисков подготовленной массой стоматологического гипса 4 класса с использованием вибрационного стола и через 30-35 минут гипсовые модели извлекают из оттиска.

Сканируют гипсовые модели в оптическом узкополосном сканере Zirkozahn S600 ARTI при точности сканирования 10 мк и при вращении модели вокруг своей оси на 360° с углом наклона от вертикальной оси на 100°. Полученные сканы сохраняют в формате STL.

Осуществляют с использованием программы Dolphin Imaging совмещение с точностью до 0,1 мм результатов конусно-лучевой компьютерной томографии, 3D-фото головы пациента и сканирования гипсовых моделей. Выполняют виртуальные перемещения костных фрагментов и формируют виртуальный хирургический сплинт, который изготавливают с использованием при распечатке на 3D-принтере или фрезерованием на CAD/САМ для последующего использования во время выполнения предстоящей ортогнатической операции.

Выполняют виртуальное планирование объема перемещений костных фрагментов верхней и нижней челюстей пациента для воспроизведения при выполнении предстоящей ортогнатической операции.

Среди существенных признаков, характеризующих предложенный способ предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей, отличительными являются:

- определение в предоперационный период перед выполнением ортогнатического вмешательства методом конусно-лучевой компьютерной томографии объема и размеров подлежащих хирургическому лечению зубочелюстных аномалий зоны от надбровных дуг до края тела нижней челюсти пациента при естественном положении его головы,

- сохранение полученной томографической информации в формате DICOM и перенесение ее в Dolphin Imaging,

- выполнение с использованием камеры 3dMDface 3D-фото головы пациента в естественном положении (HNP) при ее расположении между двумя модульными блоками, содержащими синхронизированные в одном захвате шесть камер, при скорости фотографирования 1,5 миллисекунды с геометрической точностью ≤0,2 мм со 180° охватом головы пациента от уха до уха, - выполнение рендинга полученных фотографий в течение 7-8 секунд с их сохранением в формате OBJ,

- изготовление слепков верхней и нижней челюстей пациента с аномалиями развития с использованием слепочной массы Zhermack Hydrogum с получением их оттисков,

- отливание гипсовых моделей слепков верхней и нижней челюстей пациента заливкой изготовленных оттисков подготовленной массой стоматологического гипса 4 класса с использованием вибрационного стола и через 30-35 минут извлечение гипсовых моделей из оттиска,

- сканирование гипсовых моделей в оптическом узкополосном сканере Zirkozahn S600 ARTI при точности сканирования 10 мк и при вращении моделей вокруг своей оси на 360° с углом наклона от вертикальной оси на 100° и сохранение полученных сканов в формате STL,

- осуществление с использованием программы Dolphin Imaging совмещение с точностью до 0,1 мм результатов конусно-лучевой компьютерной томографии, 3D-фото головы пациента и сканирования гипсовых моделей,

- выполнение виртуальных перемещений костных фрагментов и формирование виртуального хирургического сплинта, который изготавливают с использованием при распечатке на 3D-принтере или фрезерованием на CAD/САМ для последующего использования во время выполнения предстоящей ортогнатической операции,

- выполнение виртуального планирования объема перемещений костных фрагментов верхней и нижней челюстей пациента для воспроизведения при выполнении предстоящей ортогнатической операции.

Экспериментальные исследования предложенного способа предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей в клинических условиях показали его высокую эффективность. Способ предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей при своем использовании обеспечил необходимую и достаточную точность и визуализацию создания необходимого положения челюстей при планировании ортогнатической операции у пациентов с аномалиями развития челюстей, позволил достичь значительное снижение риска послеоперационных осложнений спланированных ортогнатических вмешательств, а также обеспечил возможность оценить результаты ортогнатического вмешательства. Кроме того, предложенный способ при своем использовании обеспечил достижение заданного эстетического результата по послеоперационному положению мягких тканей лица пациента.

Реализация предложенного способа предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей иллюстрируется следующими клиническими примерами.

Пример 1. Пациентка С, 28 лет, поступила в клинику с жалобами на неправильное смыкание зубов, нарушения приема пищи, эстетический недостаток. Со слов пациентки страдает данной патологией с детства.

Состояние при поступлении: общее состояние удовлетворительное. Дыхание через нос свободное. В легких дыхание везикулярное, хрипов нет.ЧДД -18 в минуту. Тоны сердца ясные, ритм правильный. АД - 120/70 мм. рт.ст. Пульс - 64 уд. в минуту. Т 36,8°С. Слизистая оболочка полости рта бледно-розового цвета, умеренно увлажнена.

Местный статус: конфигурация лица изменена за счет уплощения средней зоны лица. Нижняя губа и подбородок выступают вперед, западение верхней губы. Подбородок смещен вправо. Открывание рта свободное, 4 см. В полости рта: на зубах верхней и нижней челюсти зафиксирована брекет-система. Прикус: мезиальная окклюзия.

Пациентке с врожденными аномалиями челюстей выполнили предоперационное планирование ортогнатической операции.

В предоперационный период перед выполнением ортогнатического вмешательства определили методом конусно-лучевой компьютерной томографии объем и размеры подлежащих хирургическому лечению зубочелюстных аномалий зоны от надбровных дуг до края тела нижней челюсти пациентки при естественном положении ее головы. Конусно-лучевую компьютерную томографию выполнили на стоматологическом томографе "I-CAT" (I-CAT KaVO, США), рентгеновским лучом являлся конус с фокусным пятном 0.5 мм и размером вокселя 0.12 мм.

Полученную томографическую информацию сохранили в формате DICOM и перенесли в Dolphin Imaging. Выполнили с использованием камеры 3dMDface 3D-фото головы пациентки в естественном положении (HNP) при ее расположении между двумя модульными блоками, содержащими синхронизированные в одном захвате шесть камер, при скорости фотографирования 1,5 миллисекунды с геометрической точностью ≤0,2 мм со 180° охватом головы пациентки от уха до уха. Выполнили рендинг полученных фотографий в течение 8 секунд с их сохранением в формате OBJ.

Изготовили слепки верхней и нижней челюстей пациентки с аномалиями челюстей по стандартному протоколу с использованием слепочной массы Zhermack Hydrogum с получением их оттисков. Отлили гипсовые модели слепков верхней и нижней челюстей пациентки заливкой изготовленных оттисков подготовленной массой стоматологического гипса 4 класса с использованием вибрационного стола и через 35 минут гипсовые модели извлекли из оттиска.

Сканировали гипсовые модели в оптическом узкополосном сканере Zirko-zahn S600 ARTI при точности сканирования 10 мк и при вращении модели вокруг своей оси на 360° с углом наклона от вертикальной оси на 100°. Полученные сканы сохранили в формате STL.

Осуществили с использованием программы Dolphin Imaging совмещение с точностью до 0,1 мм результатов конусно-лучевой компьютерной томографии, 3D-фото головы пациента и сканирования гипсовых моделей. Выполнили виртуальную остеотомию верхней челюсти по типу ЛеФорI, межкортикальную остеотомию нижней челюсти и остеотомию подбородочного отдела. После проведения виртуальной остеотомии выполнили постановку цефало-метрических точек на КТ, а также постановку антропометрических точек на 3D-фото.

Выполнили виртуальные перемещения костных фрагментов. При этом выполнили виртуальное изменение положения профиля и анфаса мягких тканей пациентки с учетом запланированного положения костных тканей по результатам ортогнатического вмешательства.

Выполнили виртуальное планирование объема перемещений костных фрагментов верхней и нижней челюстей пациента для воспроизведения при выполнении предстоящей ортогнатической операции.

Сформировали виртуальный хирургический сплинт, который изготовили с использованием при распечатке на 3D-принтере для последующего использования во время выполнения предстоящей ортогнатической операции.

Пример 2. Пациентка А., 26 лет, поступила в клинику с жалобами на неправильное смыкание зубов, эстетический недостаток, затрудненное пережевывание пищи.

Состояние при поступлении: общее состояние удовлетворительное. Сознание ясное, в пространстве и времени ориентирована полностью. Кожные покровы и видимые слизистые оболочки чистые, нормальной влажности и окраски. Подкожно-жировая клетчатка развита умеренно. Дыхание через нос свободное. В легких дыхание везикулярное, хрипов нет.ЧДД - 18 в минуту. Тоны сердца ясные, ритм правильный. АД - 120/60 мм. рт.ст. Пульс - 60 уд. в минуту. Т 36,6°С. Слизистая оболочка полости рта бледно-розового цвета, умеренно увлажнена.

Местный статус: конфигурация лица изменена за счет увеличения нижней трети лица. В состоянии покоя определяется не полное смыкание губ. Определяется смещение нижней челюсти кзади. Открывание рта свободное, 4 см. Хрустов и щелчков в области ВНЧС не определяется. На зубах верхней и нижней челюстей зафиксирована брекет-система.

Диагноз: Вертикальная резцовая дизокклюзия. Верхняя макрогнатия, нижняя микро- и ретрогнатия.

Пациентке с врожденными аномалиями челюстей выполнили предоперационное планирование ортогнатической операции.

В предоперационный период перед выполнением ортогнатического вмешательства определили методом конусно-лучевой компьютерной томографии объем и размеры подлежащих хирургическому лечению зубочелюстных аномалий зоны от надбровных дуг до края тела нижней челюсти пациентки при естественном положении ее головы. Конусно-лучевую компьютерную томографию выполнили на стоматологическом томографе "I-CAT" (I-CAT KaVO, США), рентгеновским лучом являлся конус с фокусным пятном 0.5 мм и размером вокселя 0.12 мм.

Полученную томографическую информацию сохранили в формате DICOM и перенесли в Dolphin Imaging. Выполнили с использованием камеры 3dMDface 3D-фото головы пациентки в естественном положении (HNP) при ее расположении между двумя модульными блоками, содержащими синхронизированные в одном захвате шесть камер, при скорости фотографирования 1,5 миллисекунды с геометрической точностью ≤0,2 мм со 180° охватом головы пациентки от уха до уха. Выполнили рендинг полученных фотографий в течение 7 секунд с их сохранением в формате OBJ.

Изготовили слепки верхней и нижней челюстей пациентки с аномалиями челюстей по стандартному протоколу с использованием слепочной массы Zhermack Hydrogum с получением их оттисков. Отлили гипсовые модели слепков верхней и нижней челюстей пациентки заливкой изготовленных оттисков подготовленной массой стоматологического гипса 4 класса с использованием вибрационного стола и через 30 минут гипсовые модели извлекли из оттиска.

Сканировали гипсовые модели в оптическом узкополосном сканере Zirko-zahn S600 ARTI при точности сканирования 10 мк и при вращении модели вокруг своей оси на 360° с углом наклона от вертикальной оси на 100°. Полученные сканы сохранили в формате STL.

Осуществили с использованием программы Dolphin Imaging совмещение с точностью до 0,1 мм результатов конусно-лучевой компьютерной томографии, 3D-фото головы пациента и сканирования гипсовых моделей. Выполнили виртуальную остеотомию верхней челюсти по типу ЛеФорI, межкортикальную остеотомию нижней челюсти и остеотомию подбородочного отдела. После проведения виртуальной остеотомии выполнили постановку цефалометрических точек на КТ, а также постановку антропометрических точек на 3D-фото.

Выполнили виртуальные перемещения костных фрагментов. При этом выполнили виртуальное изменение положения профиля и анфаса мягких тканей пациентки с учетом запланированного положения костных тканей по результатам ортогнатического вмешательства.

Выполнили виртуальное планирование объема перемещений костных фрагментов верхней и нижней челюстей пациента для воспроизведения при выполнении предстоящей ортогнатической операции.

Сформировали виртуальный хирургический сплинт, который изготовили с использованием при распечатке фрезерованием на CAD/САМ для последующего использования во время выполнения предстоящей ортогнатической операции.

Пример 3. Пациентка В., 29 лет, поступила в клинику с жалобами на неправильное смыкание зубов, нарушения приема пищи с затрудненное пережевыванием, эстетический недостаток.

Состояние при поступлении: общее состояние удовлетворительное. Сознание ясное, в пространстве и времени ориентирована. Кожные покровы и видимые слизистые оболочки чистые, нормальной влажности и окраски. Подкожно-жировая клетчатка развита умеренно. Дыхание через нос свободное. В легких дыхание везикулярное, хрипов нет. ЧДД - 16 в минуту, тоны сердца ясные, ритм правильный. АД - 120/70 мм. рт.ст. Пульс - 78 ударов в минуту.

Местный статус: конфигурация лица изменена за счет переднего и ассимет-ричного положения нижней челюсти и подбородка. Определяется уплощение средней зоны лица и чрезмерное выстояние нижней челюсти кпереди. Открывание рта свободное, хрустов, щелканья в области ВНЧС нет. На зубах верхней и нижней челюсти зафиксирована брекет-система.

Диагноз: «Микро и ретрогнатия верхней челюсти, макро и прогнатия нижней челюсти. Недоразвитие средней зоны лица. Мезиальная окклюзия».

Пациентке с врожденными аномалиями челюстей выполнили предоперационное планирование ортогнатической операции.

В предоперационный период перед выполнением ортогнатического вмешательства определили методом конусно-лучевой компьютерной томографии объем и размеры подлежащих хирургическому лечению зубочелюстных аномалий зоны от надбровных дуг до края тела нижней челюсти пациентки при естественном положении ее головы. Конусно-лучевую компьютерную томографию выполнили на стоматологическом томографе "I-CAT" (I-CAT KaVO, США), рентгеновским лучом являлся конус с фокусным пятном 0.5 мм и размером вокселя 0.12 мм.

Полученную томографическую информацию сохранили в формате DICOM и перенесли в Dolphin Imaging. Выполнили с использованием камеры 3dMDface 3D-фото головы пациентки в естественном положении (HNP) при ее расположении между двумя модульными блоками, содержащими синхронизированные в одном захвате шесть камер, при скорости фотографирования 1,5 миллисекунды с геометрической точностью ≤0,2 мм со 180° охватом головы пациентки от уха до уха. Выполнили рендинг полученных фотографий в течение 8 секунд с их сохранением в формате OBJ.

Изготовили слепки верхней и нижней челюстей пациентки с аномалиями челюстей по стандартному протоколу с использованием слепочной массы Zhermack Hydrogum с получением их оттисков. Отлили гипсовые модели слепков верхней и нижней челюстей пациентки заливкой изготовленных оттисков подготовленной массой стоматологического гипса 4 класса с использованием вибрационного стола и через 32 минуты гипсовые модели извлекли из оттиска.

Сканировали гипсовые модели в оптическом узкополосном сканере Zirko-zahn S600 ARTI при точности сканирования 10 мк и при вращении модели вокруг своей оси на 360° с углом наклона от вертикальной оси на 100°. Полученные сканы сохранили в формате STL.

Осуществили с использованием программы Dolphin Imaging совмещение с точностью до 0,1 мм результатов конусно-лучевой компьютерной томографии, 3D-фото головы пациента и сканирования гипсовых моделей. Выполнили виртуальную остеотомию верхней челюсти по типу ЛеФорI, межкортикальную остеотомию нижней челюсти и остеотомию подбородочного отдела. После проведения виртуальной остеотомии выполнили постановку цефалометрических точек на КТ, а также постановку антропометрических точек на 3D-фото.

Выполнили виртуальные перемещения костных фрагментов. При этом выполнили виртуальное изменение положения профиля и анфаса мягких тканей пациентки с учетом запланированного положения костных тканей по результатам ортогнатического вмешательства.

Выполнили виртуальное планирование объема перемещений костных фрагментов верхней и нижней челюстей пациента для воспроизведения при выполнении предстоящей ортогнатической операции.

Сформировали виртуальный хирургический сплинт, который изготовили с использованием при распечатке на 3D-принтере для последующего использования во время выполнения предстоящей ортогнатической операции.

Способ предоперационного планирования ортогнатической операции у пациентов с врожденными аномалиями челюстей, характеризующийся тем, что в предоперационный период перед выполнением ортогнатического вмешательства определяют методом конусно-лучевой компьютерной томографии объем и размеры подлежащих хирургическому лечению зубочелюстных аномалий зоны от надбровных дуг до края тела нижней челюсти пациента при естественном положении его головы, полученную томографическую информацию сохраняют в формате DICOM и переносят в Dolphin Imaging, выполняют с использованием камеры 3dMDface 3D-фото головы пациента в естественном положении (HNP) при ее расположении между двумя модульными блоками, содержащими синхронизированные в одном захвате шесть камер, при скорости фотографирования 1,5 миллисекунды с геометрической точностью ≤0,2 мм со 180° охватом головы пациента от уха до уха, выполняют рендинг полученных фотографий в течение 7-8 секунд с их сохранением в формате OBJ, изготавливают слепки верхней и нижней челюстей пациента с аномалиями развития с использованием слепочной массы Zhermack Hydrogum с получением их оттисков, отливают гипсовые модели слепков верхней и нижней челюстей пациента заливкой изготовленных оттисков подготовленной массой стоматологического гипса 4 класса с использованием вибрационного стола и через 30-35 минут гипсовые модели извлекают из оттиска, сканируют гипсовые модели в оптическом узкополосном сканере Zirkozahn S600 ARTI при точности сканирования 10 мкм и при вращении моделей вокруг своей оси на 360° с углом наклона от вертикальной оси на 100° и полученные сканы сохраняют в формате STL, осуществляют с использованием программы Dolphin Imaging совмещение с точностью до 0,1 мм результатов конусно-лучевой компьютерной томографии, 3D-фото головы пациента и сканирования гипсовых моделей, выполняют виртуальные перемещения костных фрагментов и формируют виртуальный хирургический сплинт, который изготавливают с использованием при распечатке на 3D-принтере или фрезерованием на CAD/САМ для последующего использования во время выполнения предстоящей ортогнатической операции, выполняют виртуальное планирование объема перемещений костных фрагментов верхней и нижней челюстей пациента для воспроизведения при выполнении предстоящей ортогнатической операции.



 

Похожие патенты:

Изобретение относится к медицине, а именно к системе измерения концентрации аналита. Предложена медицинская система, содержащая управляющее устройство и медицинское устройство, причем: медицинское устройство представляет собой медицинское устройство, носимое на теле, и содержит подкожную часть, причем медицинское устройство питается электроэнергией от первого аккумулятора и содержит первый беспроводной коммуникационный модуль, первый процессор и первое запоминающее устройство, содержащее команды, обеспечивающие работу медицинского устройства, причем медицинское устройство содержит систему мониторирования, содержащую сенсор для измерения концентрации аналита, а подкожная часть включает по меньшей мере участок сенсора аналита, управляющее устройство питается электроэнергией от второго аккумулятора и содержит второй беспроводной коммуникационный модуль, второй процессор и второе запоминающее устройство, содержащее область приложения и область постоянного хранения данных, причем область приложения содержит медицинское приложение и данные приложения, а область постоянного хранения данных содержит архив данных, содержащий копию по меньшей мере части данных приложения, первый и второй беспроводные коммуникационные модули выполнены с возможностью образования беспроводного канала связи между медицинским и управляющим устройствами, медицинское приложение выполнено с возможностью управления медицинским устройством путем передачи сообщений в первый процессор по беспроводному каналу связи, причем выполнение команд управления инициирует осуществление вторым процессором управления системой мониторирования по беспроводному каналу связи, причем медицинское приложение выполнено с возможностью изменения данных приложения в области приложения и сохранения части данных приложения, содержащихся в архиве данных, в области постоянного хранения данных, вводимые медицинские данные включают концентрацию аналита, а выполнение команд медицинского устройства инициирует осуществление первым процессором: регистрации концентрации аналита посредством системы мониторирования, генерирования вводимых медицинских данных с по меньшей мере частичным использованием концентрации аналита, передачи вводимых медицинских данных в управляющее устройство посредством беспроводного канала связи, причем данные приложения включают вводимые медицинские данные, второе запоминающее устройство также содержит операционную систему, выполненную с возможностью деинсталляции медицинского приложения, сопровождающейся удалением данных приложения и сохранением архива данных в области постоянного хранения данных.

Изобретение относится к медицине, нутрициологии, диетологии, иммунологии, эндокринологии. Проводят курс коррекции метаболических нарушений у лиц трудоспособного возраста с повышенным индексом массы тела (ИМТ).

Группа изобретений относится к медицинской технике. Устройство для отбора проб содержит корпус.

Изобретение относится к медицине и может быть использовано для оценки степени тяжести пострадавших в дорожно-транспортных происшествиях в догоспитальном периоде на этапе приемно-диагностического отделения госпитального периода.

Изобретение относится к медицине, а именно, к инструментальной диагностике в кардиологии. Определяют индекс конечно-диастолического объема левого желудочка (ИКДО ЛЖ) как отношение конечно-диастолического объема левого желудочка (КДО ЛЖ) к площади поверхности тела (ППТ).

Группа изобретений относится к медицинской технике, а именно к средствам зондирования и обнаружения событий, в частности к проглатываемым маркерам событий. Электронное устройство, представляющее собой идентификатор, который использует электромагнитную энергию для передачи сигнала, отображающего событие зондирования или обнаружения, содержит устройство управления, схему возбуждения, соединенную с устройством управления, причем схема возбуждения выполнена с возможностью изменения электрической проводимости и содержит: перекрестно-связанные транзисторы, и конденсатор, подключенный между стоками перекрестно-связанных транзисторов, источник питания пониженной мощности, соединенный с устройством управления, который выполнен с возможностью подачи разности потенциалов на устройство управления и схему возбуждения, которое образуется при вхождении источника питания пониженной мощности в контакт с токопроводящей жидкостью, при этом источник питания пониженной мощности содержит: первый материал, электрически связанный с устройством управления, и второй материал, электрически связанный с устройством управления и гальванически развязанный с первым материалом, и индуктор, соединенный со схемой возбуждения, причем схема возбуждения выполнена с возможностью пропускания тока через индуктор, при этом индуктор подключен между стоками перекрестно-связанных транзисторов и при этом величина тока, пропускаемого через индуктор, варьируется для генерирования кодированного сигнала, который удаленно детектируется приемником.

Изобретение относится к медицинской технике. Автономный мобильный комплекс идентификации личности содержит электронно-вычислительное устройство, по меньшей мере одно устройство передачи данных, по меньшей мере одно устройство считывания биометрических данных, по меньшей мере одно мобильное устройство и автономный источник питания.
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для прогнозирования высокого риска развития пролиферативной диабетической ретинопатии у беременных с сахарным диабетом 1 типа.

Изобретение относится к области медицины, а именно к кардиологии. Определяют возраст, атеросклеротическое поражение артерий, инфаркт миокарда, оперативные вмешательства в процессе госпитализации, тромботические массы в ушке левого предсердия и в левом желудочке, постоянную форму фибрилляции предсердий.
Изобретение относится к медицине, а именно к урологии, гинекологии. Выполняют урофлоуметрию и для объективного подтверждения наличия обструктивного мочеиспускания подбирают гинекологический пессарий.

Изобретение относится к медицине и может быть использовано для дифференцированного отбора пациентов с сахарным диабетом на проведение плановой операции тотального эндопротезирования тазобедренного и/или коленного сустава. Предварительно определяют показатель гликированного гемоглобина, а накануне операции натощак проводят регистрацию кишечных шумов на компьютерном фоноэнтерографе и определяют по таблице тип перистальтики. Пациентов с умеренным и сильным типом перистальтики направляют на проведение плановой операции. Для группы пациентов со слабым типом перистальтики определяют значение интестинального пик-фактора, затем данной группе пациентов дают пищу и сахароснижающие препараты. После чего снова определяют значение ИПФ2 и сравнивают значения ИПФ1 и ИПФ2. Группу пациентов, у которых показатели ИПФ1 и ИПФ2 отличаются менее чем на 30%, направляют на проведение плановой операции. Группе пациентов, у которых значение ИПФ2 уменьшилось более чем на 30% от значения ИПФ1, дают препараты, стимулирующие моторику желудочно-кишечного тракта, и сахароснижающие препараты. Через 20-50 минут после приема данных препаратов определяют значение ИПФ3 и сравнивают значения ИПФ1 и ИПФ3. Пациентов, у которых показатели ИПФ3 и ИПФ1 отличаются менее чем на 30%, направляют на плановую операцию. Для пациентов с показателем ИПФ3 ниже показателя ИПФ1 более чем на 30% плановую операцию переносят на следующий день и снова определяют ИПФ1, при необходимости ИПФ2 и ИПФ3 до достижения корректных показателей. Техническим результатом является снижение послеоперационных рисков. 1 табл.
Наверх