Способ определения теплопроводности частиц твердых материалов при повышенных температурах

Изобретение относится к области исследования тепловых свойств частиц твердых материалов при повышенных температурах. При осуществлении способа измельчают частицы твердого материала, изготавливают смесь, смешивая в заданной пропорции измельченные частицы твердого материала с материалом-заполнителем, максимально удаляя воздух из смеси, формируют твердый образец смеси, определяют объемные доли компонентов образца для исследований - воздуха, измельченных частиц твердого материала и материала-заполнителя. При этом до приготовления смеси выбирают материал-заполнитель, который можно перевести в твердое состояние, далее до приготовления смеси измеряют теплопроводность материала-заполнителя в его твердом состоянии при различных температурах в заданном диапазоне температур и определяют зависимость теплопроводности материала-заполнителя от температуры в заданном диапазоне температур, измеряют эффективную теплопроводность образца смеси при различных температурах в заданном диапазоне температур. Далее определяют теплопроводность частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, описывающему эффективную теплопроводность образца смеси частиц твердого материала с материалом-заполнителем. Достигается расширение функциональных возможностей определения теплопроводности частиц твердого материала. 4 з.п. ф-лы, 2 пр., 1 табл.

 

Область техники, к которой относится изобретение

Изобретение относится к области исследования свойств частиц твердых материалов при повышенных температурах, а именно тепловых свойств (теплопроводности, температуропроводности, объемной теплоемкости) горных пород в неконсолидированном состоянии.

Уровень техники

Из уровня техники известен способ определения теплопроводности твердых материалов при повышенных температурах методом разделенного стержня, заключающийся в измерении теплопроводности твердого материала при различных температурах в заданном диапазоне температур на специально подготовленных образцах, имеющих цилиндрическую форму с плоскопараллельными поверхностями и фиксированные размеры (см. [1] Lemenager A., O'Neill С., Zhang S., Evans М. Geothermal Energy. The effect of temperature-dependent thermal conductivity on the geothermal structure of the Sydney Basin., 6, 1-27, 2018).

К недостаткам данного известного способа определения теплопроводности твердых материалов при повышенных температурах следует отнести то, что измерения проводятся на твердых образцах, способных без разрушения выдержать воздействие прижимного давления во время измерений, необходимого для уменьшения теплового сопротивления на поверхностях исследуемого образца.

Известен другой способ определения теплопроводности частиц твердых материалов при повышенных температурах, заключающийся в смешивании частиц твердого материала с водой, определении объемных долей частиц твердого материала и воды в смеси, измерении эффективной теплопроводности смеси частиц твердого материала с водой при различных температурах методом линейного источника, определении теплопроводности частиц твердого материала при различных температурах при помощи соотношения (теоретическая модель Лихтенеккера), описывающего эффективную теплопроводность смеси частиц твердого материала с водой (см. [2] Pribnow D., Sass J.H. Journal of Geophysical Research. Determination of thermal conductivity from deep boreholes, 100, 9981-9994, 1995).

Недостатком данного известного способа определения теплопроводности частиц твердых материалов является влияние свободной конвекции в жидкости, смешиваемой с частицами твердого материала перед измерениями, при нагреве источником тепла в процессе измерений на результаты измерений теплопроводности смеси. Неконтролируемая конвекция жидкости вносит значительные искажения в результаты измерений, которые получают с использованием формулы, не учитывающей влияние конвекции жидкости. Дополнительным недостатком является то, что диапазон температур, в котором могут производиться измерения теплопроводности смеси частиц твердого материала с жидкостью, ограничен температурой кипения жидкости.

Указанные недостатки аналогов устраняются в другом, наиболее близком к заявляемому изобретению аналоге, взятом за прототип, в котором раскрыт способ определения теплопроводности частиц шлама и неконсолидированных образцов горных пород, т.е. способе определения теплопроводности неконсолидированного материала (см. [3] Е. Popov, A. Trofimov, A. Goncharov, S. Abaimov, Е. Chekhonin, Yu. Popov, I. Sevostianov. International Journal of Rock Mechanics and Mining Sciences. Technique of rock thermal conductivity evaluation on core cuttings and nonconsolidated rocks, 108, 15-22, 2018), включающем измельчение частиц неконсолидированного материала, приготовление смеси измельченных частиц с материалом-заполнителем и последующее прессование смеси до получения твердого образца спрессованной смеси. Далее в прототипе определяют объемные доли частиц неконсолидированного материала, материала-заполнителя, а также долю воздуха в образце спрессованной смеси. Измеряют эффективную теплопроводность образца спрессованной смеси и определяют теплопроводность частиц неконсолидированного материала по соотношениям, описывающим связь эффективной теплопроводности образца спрессованной смеси частиц неконсолидированного материала с материалом-заполнителем с теплопроводностью частиц неконсолидированного материала.

Недостатком прототипа является то, что он не предусматривает определение теплопроводности частиц твердого материала при повышенных температурах и не включает в себя операции, позволяющие определять теплопроводность частиц твердого материала при повышенных температурах.

Еще одним недостатком прототипа является то, что режимами изготовления твердого образца спрессованной смеси не обеспечивается выбор материала-заполнителя, позволяющего изготовленному из смеси образцу выдерживать давление прижима, необходимого при выполнении измерений, и сохранять свои прочностные свойства в исследуемом диапазоне температур.

Сущность изобретения

Задачей заявленного изобретения является устранение указанных недостатков прототипа и аналогов.

Техническим результатом является расширение функциональных возможностей способа определения теплопроводности частиц твердого материала за счет определения температурной зависимости теплопроводности частиц твердого материала при различных температурах в заданном диапазоне температур.

Поставленная задача решается, а технический результат достигается за счет предложенного способа определения тепловых свойств частиц твердого материала при повышенных температурах. В соответствии с предложенным способом измельчают частицы твердого материала. Затем изготавливают смесь, смешивая в заданной пропорции измельченные частицы твердого материала с материалом-заполнителем, максимально удаляя воздух из смеси. После этого формируют твердый образец смеси и определяют объемные доли компонентов твердого образца смеси - воздуха, измельченных частиц твердого материала и материала-заполнителя. Объемные доли компонент в твердом образце смеси необходимы для дальнейших математических операций по определению тепловых свойств частиц твердого материала, так как использование для математических операций пропорций, в которых смешивались измельченные частицы твердого материала с материалом-заполнителем при изготовлении смеси, без учета доли воздуха, присутствующего в твердом образце смеси, ухудшает точность определения тепловых свойств частиц твердого материала. Отличием предлагаемого технического решения от прототипа является то, что до приготовления смеси выбирают материал-заполнитель, который можно перевести в твердое состояние, далее до приготовления смеси измеряют теплопроводность материала-заполнителя в его твердом состоянии при различных температурах в заданном диапазоне температур и определяют зависимость теплопроводности материала-заполнителя от температуры в заданном диапазоне температур. После этого измеряют эффективную теплопроводность твердого образца смеси при различных температурах в заданном диапазоне температур, затем определяют теплопроводность частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, описывающему эффективную теплопроводность твердого образца смеси измельченных частиц твердого материала с материалом-заполнителем при различных температурах.

Технический результат достигается также за счет того, что дополнительно до приготовления смеси измеряют температуропроводность материала-заполнителя в его твердом состоянии при различных температурах в заданном диапазоне температур и определяют зависимость температуропроводности материала-заполнителя от температуры в заданном диапазоне температур. Дополнительно измеряют эффективную температуропроводность твердого образца смеси при различных температурах в заданном диапазоне температур. Имея температурные зависимости теплопроводности и температуропроводности материала-заполнителя в заданном диапазоне температур, а также температурные зависимости эффективной теплопроводности и эффективной температуропроводности твердого образца смеси, полученные путем измерений эффективной теплопроводности и эффективной температуропроводности твердого образца смеси при различных температурах в заданном диапазоне температур, определяют температуропроводность частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, описывающему эффективную температуропроводность твердого образца смеси измельченных частиц твердого материала с материалом-заполнителем.

Технический результат достигается также за счет того, что дополнительно до приготовления смеси измеряют объемную теплоемкость материала-заполнителя в его твердом состоянии при различных температурах в заданном диапазоне температур и определяют зависимость объемной теплоемкости материала-заполнителя от температуры в заданном диапазоне температур. Дополнительно измеряют эффективную объемную теплоемкость твердого образца смеси при различных температурах в заданном диапазоне температур, далее определяют объемную теплоемкость частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, описывающему эффективную объемную теплоемкость твердого образца смеси измельченных частиц твердого материала с материалом-заполнителем.

Технический результат достигается также за счет того, что по результатам определения теплопроводности и температуропроводности частиц твердого материала при различных температурах в заданном диапазоне температур вычисляют объемную теплоемкость частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, связывающему температуропроводность, теплопроводность и объемную теплоемкость материалов.

Технический результат достигается также за счет того, что в качестве материала-заполнителя используют смесь из нескольких различных материалов, один из которых находится в жидком состоянии (например, двухкомпонентная цементная смесь). Сначала смешивают измельченные частицы твердого материала с твердыми компонентами материала-заполнителя до получения однородной смеси, затем добавляют жидкий компонент материала-заполнителя и доводят смесь до однородного состояния.

Осуществление изобретения

Предлагаемый способ осуществляется в несколько этапов.

На этапе 1 измеряют теплопроводность материала-заполнителя в его твердом состоянии при различных температурах в заданном диапазоне температур и определяют зависимость теплопроводности материала-заполнителя от температуры в заданном диапазоне температур. Возможен вариант, когда дополнительно измеряют температуропроводность и/или объемную теплоемкость материала-заполнителя в его твердом состоянии при различных температурах в заданном диапазоне температур и определяют зависимость температуропроводности и/или объемной теплоемкости материала-заполнителя от температуры в заданном диапазоне температур.

На этапе 2 осуществляют измельчение частиц твердого материала, например, при помощи шаровой мельницы. Измельчение производится до определенного размера частиц, который контролируется подбором продолжительности и частоты колебаний шаровой мельницы. Частота колебаний шаровой мельницы и продолжительность измельчения подбираются по результатам предварительных исследований влияния этих факторов, а также свойств измельчаемого материала (твердость, пористость и т.д.) на размер измельченных частиц.

На этапе 3 изготавливают смесь, смешивая в заданной пропорции измельченные частицы твердого материала с материалом-заполнителем. Возможен также вариант, когда в качестве материала-заполнителя используют смесь из нескольких различных материалов, один из которых находится в жидком состоянии. Сначала смешивают измельченные частицы твердого материала с твердыми компонентами материала-заполнителя до получения однородной смеси, затем добавляют жидкий компонент материала-заполнителя и доводят смесь до однородного состояния. Формируют твердый образец смеси, максимально удаляя воздух из смеси.

На этапе 4 определяют объемные доли компонент твердого образца смеси - измельченных частиц твердого материала, материала-заполнителя и воздуха.

На этапе 5 измеряют эффективную теплопроводность твердого образца смеси при различных температурах в заданном диапазоне температур. Возможен вариант, когда дополнительно измеряют эффективную температуропроводность и/или эффективную объемную теплоемкость твердого образца смеси при различных температурах в заданном диапазоне температур.

На этапе 6 определяют теплопроводность частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, описывающему эффективную теплопроводность твердого образца смеси измельченных частиц твердого материала с материалом-заполнителем. Если определена зависимость температуропроводности материала-заполнителя от температуры в заданном диапазоне температур, то по результатам измерений эффективной температуропроводности твердого образца смеси при различных температурах в заданном диапазоне температур можно рассчитать зависимость температуропроводности частиц твердого материала от температуры в заданном диапазоне температур.

Температуропроводность материала можно рассчитать по соотношению, связывающему температуропроводность, теплопроводность и объемную теплоемкость материалов:

где С(Т) - объемная теплоемкость материала при температуре Т, λ(Т) -теплопроводность материала при температуре Т, α(Т) - температуропроводность материала при температуре Т.

Эффективную объемную теплоемкость твердого образца смеси определяют по результатам измерений эффективных теплопроводности и температуропроводности твердого образца смеси при помощи следующего соотношения:

где ССМЕСИ(Т) - эффективная объемная теплоемкость твердого образца смеси при температуре Т, λСМЕСИ(Т) - эффективная теплопроводность твердого образца смеси при температуре Т, αСМЕСИ(Т) - эффективная температуропроводность твердого образца смеси при температуре Т.

Объемную теплоемкость частиц твердого материала определяют по соотношению, связывающему объемную теплоемкость частиц твердого материала с эффективной объемной теплоемкостью твердого образца смеси, объемными теплоемкостями материала-заполнителя и воздуха, а также с объемными долями компонент в твердом образце смеси:

где СМ(Т) - объемная теплоемкость частиц твердого материала при температуре Т, СА(Т) - объемная теплоемкость воздуха при температуре Т, СВ(Т) - объемная теплоемкость материала-заполнителя при температуре Т, VМ - объемная доля измельченных частиц твердого материала, VА - объемная доля воздуха, VВ - объемная доля материала-заполнителя в твердом образце смеси.

Из соотношений (1-3) следует соотношение, позволяющее определить температуропроводность частиц твердого материала:

где λА(Т) - теплопроводность воздуха при температуре Т, λВ(Т) - теплопроводность материала-заполнителя при температуре Т, αА(Т) - температуропроводность воздуха при температуре Т, αВ(Т) - температуропроводность материала-заполнителя при температуре Т.

Теплопроводность частиц твердого материала можно определить одним из двух вариантов способа. В соответствии с первым вариантом способа теплопроводность частиц твердого материала определяют по соотношению Лихтенеккера-Асаада (см. [4] Asaad Y., A Study of the Thermal Conductivity of Fluid-bearing Porous Rock., Ph. D. Dissertation, Univ. of Calif., Berkeley, 1995), связывающему эффективную теплопроводность твердого образца смеси с теплопроводностью частиц твердого материала, теплопроводностью воздуха, теплопроводностью материала-заполнителя, их объемными долями в твердом образце смеси и параметром, характеризующим структурные особенности исследуемого материала:

где β(Т) - параметр, характеризующий структурные особенности исследуемого материала при температуре Т. Параметр β(Т) выбирают на основе априорной информации о исследуемом материале. Если же априорная информация отсутствует, параметр β(Т) полагают равным единице.

В соответствии со вторым вариантом способа определения теплопроводности частиц твердого материала, искомое значение теплопроводности частиц твердого материала находят из решения уравнения, основанного на модифицированной формуле Лихтенеккера (Эдвабник В.Г. Современные проблемы науки и образования. К теории обобщенной проводимости смесей. Вып. 1 (ч. 2), 2015) с фиксированным структурно-чувствительным параметром и нелинейного относительно искомого параметра

где параметр β(Т) выбирают на основе априорной информации об исследуемом материале. Если же априорная информация отсутствует, параметр β(Т) рассчитывают по эмпирической формуле в зависимости от измеренных параметров твердого образца смеси (формула для определения параметра β(Т) приведена далее в примере реализации предложенного способа).

Примеры определения теплопроводности частиц твердого материала при повышенных температурах по предлагаемому способу.

Пример реализации предлагаемого способа представляет собой следующее. Берут материал-заполнитель, состоящий из твердой и жидкой фазы, для чего смешивают твердую и жидкую фазы в массовой пропорции 2 к 1. После этого с помощью вакуумирования устраняют пузырьки воздуха из материала-заполнителя и ставят материал-заполнитель на 12 часов в печь при 70°С до полного затвердевания. Затвердевание материала-заполнителя происходит за счет химической реакции компонентов материала-заполнителя, в ходе которой образуются кристаллогидраты. После извлечения из печи материал-заполнитель взвешивают и из него изготавливают образец цилиндрической формы необходимых размеров, обусловленных требованиями измерительного прибора. С помощью прибора DTC-300 (ТА Instruments) измеряют эффективную теплопроводность образца материала-заполнителя при различных температурах в заданном диапазоне температур, ограниченном температурой, при которой происходит разрушение структуры материала-заполнителя. По результатам измерений определяют зависимость теплопроводности материала-заполнителя от температуры в заданном диапазоне температур. Частицы твердого материала измельчают с помощью шаровой мельницы (модель ММ 400 фирмы Retsch) в течение 2 минут при частоте колебаний 25 Гц. Затем 20 грамм измельченных частиц неконсолидированного материала смешивают с 9 граммами твердой фазы исходного материала-заполнителя с помощью шаровой мельницы в течение 2 минут при частоте колебаний 15 Гц. Готовую смесь взвешивают и засыпают в форму с внутренним диаметром 40 мм и перемешивают с 5 граммами жидкой фазы материала-заполнителя до однородного состояния, после чего с помощью вакуумирования устраняют пузырьки воздуха из смеси, после чего снова взвешивают готовую смесь. Далее смесь ставят на 12 часов в печь при 70°С до полного затвердевания. После извлечения из печи смесь взвешивают и из нее изготавливают образец цилиндрической формы необходимых размеров. Получившийся твердый образец смеси, состоящий из смеси измельченных частиц твердого материала, материала-заполнителя и воздуха, взвешивают, измеряют его толщину и диаметр, а также пористость для определения объемных долей компонент твердого образца смеси. С помощью прибора DTC-300 измеряют эффективную теплопроводность твердого образца смеси при различных температурах в заданном диапазоне температур. После этого по зависимостям теплопроводности материала-заполнителя и воздуха от температуры в заданном диапазоне температур определяют теплопроводность частиц твердого материала для заданных значений температуры по соотношениям (5) или (5.1), описывающим эффективную теплопроводность смеси измельченных частиц твердого материала с материалом-заполнителем и воздухом.

Еще один пример реализации представляет собой следующее. С помощью образца, изготовленного из воска марки CEREOX (ВМ-0002-1 FLUXANA), расплавленного под вакуумом для максимального удаления воздуха и охлажденного до твердого состояния воска при комнатной температуре, с помощью прибора DTC-300 (ТА Instruments) измеряют эффективную теплопроводность твердого воска при различных температурах в заданном диапазоне температур, который ограничен температурой плавления воска - 140 С°. После этого определяют зависимость теплопроводности твердого воска от температуры в заданном диапазоне температур. Частицы твердого материала измельчают с помощью шаровой мельницы (модель ММ 400 фирмы Retsch) в течение 2 минут при частоте колебаний 25 Гц. Затем 20 грамм измельченных частиц твердого материала смешивают с 4 граммами исходного порошкового воска с помощью той же шаровой мельницы в течение 2 минут при частоте колебаний 15 Гц. Готовую смесь засыпают в прессовальную ячейку внутренним диаметром 40 мм пресс-машины (модель РР 25 фирмы Retsch) и нагревают до 105 С° в печи, после чего ее спрессовывают при давлении 1800 бар в течение 5 минут. После извлечения из пресс-машины твердый образец смеси, состоящий из смеси измельченных частиц твердого материала, воска и воздуха, взвешивают, измеряют его толщину и диаметр, а также измеряют пористость твердого образца смеси для определения объемных долей его компонент. С помощью прибора DTC-300 (ТА Instruments) измеряют эффективную теплопроводность твердого образца смеси при различных температурах в заданном диапазоне температур. После чего по зависимостям теплопроводности воздуха и воска от температуры в заданном диапазоне температур определяют теплопроводность частиц твердого материала для заданных значений температуры по соотношениям (5) или (5.1), описывающим эффективную теплопроводность смеси измельченных частиц твердого материала с воском и воздухом.

Для демонстрации работоспособности способа определения теплопроводности частиц твердого материала при повышенных температурах и оценки погрешности определения теплопроводности частиц твердого материала были выполнены измерения теплопроводности в заданном диапазоне температур на неизмельченном образце технического стекла (далее - материал К8) (результаты показаны в нижней строке таблицы 1). После этого твердый материал измельчали и изготавливали смесь из измельченных частиц твердого материала и материала-заполнителя в соответствии с описанным выше алгоритмом. Исходные экспериментальные данные - теплопроводность материала-заполнителя и эффективная теплопроводность твердого образца смеси, а также ранее опубликованные табличные значения теплопроводности воздуха при различных температурах в заданном диапазоне температур (см. [6] Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей, М.: «Наука», 1972), используемые в данном примере реализации предлагаемого способа определения теплопроводности частиц твердого материала при повышенных температурах, приведены в таблице 1. Объемные доли компонент твердого образца смеси составили: измельченные частицы твердого материала 64,3%, материал-заполнитель 32,8%, воздух 2,9%.

Для определения теплопроводности частиц твердого материала в заданном диапазоне температур сначала производят расчет структурно-чувствительного параметра β(Т) по эмпирической формуле:

Подставляя соответствующие значения объемной доли измельченных частиц твердого материала и эффективной теплопроводности твердого образца смеси при 30°С, получают параметр β(30)=0,46.

Затем находят искомое значение теплопроводности частиц неконсолидированного материала, минимизируя функцию, получающуюся из нелинейного уравнения (5.1):

Подставив в приведенную выше формулу соответствующие величины объемных долей компонент твердого образца смеси и теплопроводности из таблицы 1, для 30°С получают:

По результатам минимизации, проведенной с помощью численного алгоритма, основанного на методе золотого сечения и параболической интерполяции, получаем λМ(30)=1,062 Вт/(м⋅К), что лишь на 2,5% меньше значения теплопроводности, измеренного на неизмельченном образце твердого материала (1,089 Вт/(м⋅К)) и приведенного в таблице 1, что является приемлемым на современном уровне измерений тепловых свойств материалов.

Аналогичным образом определяют теплопроводность частиц твердого материала при других значениях температур из заданного диапазона температур. Так для температуры 50°С параметр β(50)=0,46; λМ(50)=1,062 Вт/(м⋅К), что на 3,2% меньше значения теплопроводности, измеренного на неизмельченном образце твердого материала (1,098 Вт/(м⋅К), Таблица 1). Для температуры 75°С параметр β(75)=0,47; λМ(75)=1,088 Вт/(м⋅К), что на 1,8% меньше значения теплопроводности, измеренного на неизмельченном образце твердого материала (1,108 Вт/(м⋅К), Таблица 1). Для температуры 100°С параметр β(100)=0,49; λМ(100)=1,177 Вт/(м⋅К), что на 4,8% больше значения теплопроводности, измеренного на неизмельченном образце твердого материала (1,123 Вт/(м⋅К), Таблица 1).

Зависимость β(λСМЕСИ(Т), VМ) может быть уточнена путем расширенного анализа результатов измерений теплопроводности на коллекции измельченных и неизмельченных образцов с известной теплопроводностью.

1. Способ определения тепловых свойств частиц твердого материала при повышенных температурах, в соответствии с которым измельчают частицы твердого материала, изготавливают смесь, смешивая в заданной пропорции измельченные частицы твердого материала с материалом-заполнителем, максимально удаляя воздух из смеси, формируют твердый образец смеси, определяют объемные доли компонентов образца для исследований - воздуха, измельченных частиц твердого материала и материала-заполнителя, отличающийся тем, что до приготовления смеси выбирают материал-заполнитель, который можно перевести в твердое состояние, далее до приготовления смеси измеряют теплопроводность материала-заполнителя в его твердом состоянии при различных температурах в заданном диапазоне температур и определяют зависимость теплопроводности материала-заполнителя от температуры в заданном диапазоне температур, измеряют эффективную теплопроводность образца смеси при различных температурах в заданном диапазоне температур, далее определяют теплопроводность частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, описывающему эффективную теплопроводность образца смеси частиц твердого материала с материалом-заполнителем.

2. Способ по п.1, отличающийся тем, что дополнительно до приготовления смеси измеряют температуропроводность материала-заполнителя в его твердом состоянии при различных температурах в заданном диапазоне температур и определяют зависимость температуропроводности материала-заполнителя от температуры в заданном диапазоне температур, дополнительно измеряют эффективную температуропроводность образца смеси при различных температурах в заданном диапазоне температур, далее определяют температуропроводность частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, описывающему эффективную температуропроводность образца смеси частиц твердого материала с материалом-заполнителем.

3. Способ по п.1, отличающийся тем, что дополнительно до приготовления смеси измеряют объемную теплоемкость материала-заполнителя в его твердом состоянии при различных температурах в заданном диапазоне температур и определяют зависимость объемной теплоемкости материала-заполнителя от температуры в заданном диапазоне температур, дополнительно измеряют эффективную объемную теплоемкость образца смеси при различных температурах в заданном диапазоне температур, далее определяют объемную теплоемкость частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, описывающему эффективную объемную теплоемкость образца смеси частиц твердого материала с материалом-заполнителем.

4. Способ по п.2, отличающийся тем, что по результатам определения теплопроводности и температуропроводности частиц твердого материала вычисляют объемную теплоемкость частиц твердого материала при различных температурах в заданном диапазоне температур по соотношению, связывающему температуропроводность, теплопроводность и объемную теплоемкость материалов.

5. Способ по п.1, отличающийся тем, что в качестве материала-заполнителя используют смесь из нескольких различных материалов, один из которых находится в жидком состоянии, сначала смешивают измельченные частицы твердого материала с твердыми компонентами материала-заполнителя до получения однородной смеси, затем добавляют жидкий компонент материала-заполнителя и доводят смесь до однородного состояния.



 

Похожие патенты:

Предлагаемый способ относится к области геофизики и может быть использован для дистанционного радиоволнового обнаружения залежей нефти на суше. Способ основан на представлении о залежи нефти как о природной, активно функционирующей электрохимической системе, получившей название «топливный элемент».

Изобретение относится к области геофизики и может быть использовано для мониторинга плотности верхней атмосферы и риска сильных коровых землетрясений суши. Для диагностики сейсмоорбитальных эффектов и вариаций плотности верхней атмосферы предложено использовать бортовую навигационную аппаратуру не менее одного космического аппарата (КА), соответствующего общей тенденции минимизации массогабаритов.

Изобретение относится к области исследований свойств пород сланцевых толщ. При осуществлении способа определяют литологические типы пород в интервалах глубин сланцевой толщи.

Изобретение относится к способам исследования вещества с использованием интегрально-сцинтилляционного метода и может быть использовано для поиска полезных ископаемых и экологических загрязнений.

Изобретение относится к области сейсмологии и может быть использовано для определения эпизодов когерентности динамической системы сейсмогенеза исследуемой территории.

Изобретение относится к геофизике и может быть использовано для технического контроля состояния литосферы по кинематическому типу подвижек в очагах землетрясений при инструментальной регистрации землетрясений и обработке данных.

Группа изобретений относится к контрольно-измерительной технике и может быть использована для контроля состояния длинномерных объектов, а именно протяженных приповерхностных слоев литосферы в виде участков земли толщиной несколько километров и площадью сотни квадратных километров, расположенных в сейсмоопасных зонах на поверхности земли и морском дне, с целью предсказания землетрясений, цунами, техногенных катастроф, а также поиска и разведки полезных ископаемых.

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: регистрируют волны плотности электронной концентрации зондируемого слоя ионосферы на частоте ниже критической в виде дискретных цифровых отсчетов сигналов.

Изобретение относится к области геофизики и может быть использовано для поиска зон развития вторичных коллекторов углеводородов трещинного типа в осадочном чехле.

Изобретение относится к области геофизики, а именно к сейсмологии, и может быть использовано для детального сейсмического районирования территорий. Выделение очаговых зон потенциальных землетрясений в земной коре осуществляют путем математической обработки данных 3D-сейсмотомографии и гравиразведки в одних и тех же узлах пространственной сетки, покрывающей исследуемую область.

Группа изобретений относится к охране окружающей среды и рациональному природопользованию, а именно к способам оценки экологического состояния окружающей среды с помощью биоиндикации.

Изобретение относится к сельскому хозяйству и почвоведению применительно к повышению урожайности за счет уменьшения количества в почвах аллелотоксинов (токсикоза почв) путем внесения в почвы различных веществ.

Изобретение относится к строительству, а именно к способам испытания грунта. Способ испытания грунта методом статического зондирования, включающий периодическое погружение зонда в массиве грунта с остановками и измерение сопротивления грунта внедрению зонда во времени.

Изобретение относится к области мелиорации земель. В способе определения наименьшей влагоемкости (НВ) черноземных и каштановых почв степного и сухостепного типов почвообразования адаптируют аналитическое определение наименьшей влагоемкости почвы – сложно определяемого почвенного параметра по экспериментально устанавливаемым почвенным характеристикам – значениям содержания в почве физической глины ((Wг)i, % МСП) и гумуса ((gгум)i, %), плотности сложения почвы (γi, т/м3) и мощности гумусового горизонта (hгум, м) с использованием зависимостей: для определения послойных значений НВ почв (WHB)i, % МСП: где i - номер почвенного слоя; - средняя по почвенному профилю плотность сложения почвы, т/м3; для определения среднепрофильных значений НВ % МСП: а) в случае проведения измерений по слоям одинаковой мощности: , б) при проведении погоризонтных измерений (WHB)i с разной мощностью генетических горизонтов по зависимости вида: , где j - глубина рассматриваемого профиля, м; n - количество слоев почвы одинаковой мощности; hгор A, hгор В1, hгор В2, hгор Вс - мощность генетических горизонтов А, В1, В2 и Вс в пределах рассматриваемого метрового почвенного профиля, м; в) при известных средних или осредненных значениях по: .

Лизиметр // 2709475
Изобретение относится к приборам, применяемым в сельском хозяйстве при балансовых исследованиях на мелиорируемых землях, в частности для определения инфильтрации поливных, талых и дождевальных вод.

Изобретение относится к сельскохозяйственному приборостроению. Полевой бесконтактный профилограф содержит массивное основание, на которое установлен стержень.

Изобретение относится к биотехнологии и может быть использовано для определения уровня заселенности почв грибами родов Pythium, Fusarium и Helminthosporium возбудителей питиозной, фузариозной и обыкновенной корневых и прикорневых гнилей сельскохозяйственных культур.

Изобретение относится к агрохимии, предназначено для использования в растениеводстве при расчете оптимальных доз калийных удобрений, вносимых в почвы под сельскохозяйственные культуры.

Изобретение относится к экологии и может быть использовано в системе мониторинга окружающей среды в зоне освоения нефтегазовых месторождений в районах Крайнего Севера.

Способ агрохимического обследования земель сельскохозяйственного назначения относится к сельскому хозяйству, а именно к агрохимическому картографированию земель сельскохозяйственного назначения.

Изобретение относится к области приборостроения и может быть использовано для проведения комбинированных in-situ исследований структуры и теплофизических свойств материалов различного типа в широком температурном интервале.
Наверх