Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом



Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом
H03K3/00 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2712410:

федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) (RU)

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения буферного усилителя (БУ) на комплементарных полевых транзисторах, обеспечивающего малые значения напряжения смещения нуля. Буферный усилитель содержит полевые транзисторы, токостабилизирующий резистор, дополнительные резисторы и источник питания и источники опорного тока. Предложенный БУ допускает параметрическую оптимизацию параметров по критерию минимизации напряжения смещения нуля, которое в реальных схемах обеспечивается за счет оптимального выбора сопротивлений первого и второго дополнительных резисторов, а также токов первого и второго дополнительных источников опорного тока. 1 з.п. ф-лы, 10 ил.

 

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в качестве двухтактных буферных усилителей и выходных каскадов в различных аналоговых устройствах (операционных усилителях, драйверах линий связи и т.п.), допускающих работу в условиях воздействия проникающей радиации и низких температур.

Известно значительное количество схем микроэлектронных двухтактных буферных усилителей (БУ), которые реализуются на комплементарных биполярных (BJT) или полевых (JFet, КМОП, КНИ, КНС и др.) транзисторах, а также при их совместном включении [1-28]. Вышеназванные схемотехнические решения БУ наиболее популярны как в зарубежных, так и в российских аналоговых микросхемах, реализуемых на основе типовых технологических процессов [1-28].

Ближайшим прототипом заявляемого устройства является буферный усилитель (фиг. 1) на комплементарных полевых транзисторах, представленный в патенте РФ 2684489, 2019 г. Схема БУ-прототипа фиг. 1 содержит вход 1 и выход 2 устройства, первый 3 входной полевой транзистор, затвор которого соединен со входом 1 устройства, сток подключен к первой 4 шине источника питания, второй 5 входной полевой транзистор, затвор которого подключен ко входу устройства 1, а сток соединен со второй 6 шиной источника питания, токостабилизирующий резистор 7, включенный между истоками первого 3 и второго 5 входных полевых транзисторов, первый 8 и второй 9 выходные полевые транзисторы, затвор первого 8 выходного полевого транзистора соединен с истоком второго 5 входного полевого транзистора, а его сток соединен с первым 10 токовым выходом устройства, согласованным с первой 4 шиной источника питания, затвор второго 9 выходного полевого транзистора соединен с истоком первого 3 входного полевого транзистора, а его сток соединен со вторым 11 токовым выходом устройства, согласованным со второй 6 шиной источника питания.

БУ-прототип перспективен для использования в качестве выходных каскадов ОУ с потенциальной отрицательной обратной связью [29] (когда используется только выход 2 устройства), а также входных каскадов ОУ с токовой отрицательной обратной связью [28,29], когда используется первый 10 и второй 11 токовые выходы. В последнем случае к величине напряжения смещения нуля БУ предъявляются повышенные требования [28]. Однако из-за неидентичности стоко-затворных характеристик первого 3 входного и первого 8 выходного, а также второго 5 входного и второго 9 выходного полевых транзисторов, которую практически невозможно устранить технологическим путем, численные значения напряжения смещения нуля (Uсм) БУ лежат в пределах сотен милливольт [28]. Для ряда задач аналоговой микросхемотехники это недопустимо.

Основная задача предполагаемого изобретения состоит в создании радиационно-стойкого и низкотемпературного схемотехнического решения БУ на комплементарных полевых транзисторах, обеспечивающего (при высокой линейности амплитудной характеристики) малые значения напряжения смещения нуля.

Поставленная задача достигается тем, что в буферном усилителе фиг. 1, содержащем вход 1 и выход 2 устройства, первый 3 входной полевой транзистор, затвор которого соединен со входом 1 устройства, сток подключен к первой 4 шине источника питания, второй 5 входной полевой транзистор, затвор которого подключен ко входу устройства 1, а сток соединен со второй 6 шиной источника питания, токостабилизирующий резистор 7, включенный между истоками первого 3 и второго 5 входных полевых транзисторов, первый 8 и второй 9 выходные полевые транзисторы, затвор первого 8 выходного полевого транзистора соединен с истоком второго 5 входного полевого транзистора, а его сток соединен с первым 10 токовым выходом устройства, согласованным с первой 4 шиной источника питания, затвор второго 9 выходного полевого транзистора соединен с истоком первого 3 входного полевого транзистора, а его сток соединен со вторым 11 токовым выходом устройства, согласованным со второй 6 шиной источника питания, предусмотрены новые элементы и связи – исток второго 9 выходного полевого транзистора связан с первой 4 шиной источника питания через первый 12 дополнительный источник опорного тока и подключен к выходу 2 устройства через первый 13 дополнительный резистор, а исток первого 8 выходного полевого транзистора связан со второй 6 шиной источника питания через второй 14 дополнительный источник опорного тока и связан с выходом 2 устройства через второй 15 дополнительный резистор.

Первый 10 и второй 11 токовые выходы заявляемого БУ фиг. 2 могут подключаться (в некоторых практических схемах, например, в усилителях с токовой отрицательной обратной связью [28,29]) к токовым зеркалам и другим выходным подсхемам того или иного проектируемого аналогового устройства, решающего практические задачи обработки аналоговых сигналов. В частном случае, в соответствии с п. 2 формулы изобретения, первый 10 токовый выход устройства соединен с первой 4 шиной источника питания, а второй 11 токовый выход устройства соединен со второй 6 шиной источника питания. В данном варианте построения БУ фиг. 2 токовые выходы 10 и 11 не используются, а БУ выполняет только одну функцию – согласование с источником сигнала (по величине входного сопротивления), а также передачу в нагрузку 16 входного напряжения с коэффициентом передачи, близким к единице.

На чертеже фиг. 1 представлена схема БУ-прототипа, а на чертеже фиг. 2 – схема заявляемого буферного усилителя в соответствии с п.1, п.2 формулы изобретения.

На чертеже фиг. 3 показан статический режим схемы БУ фиг. 2, оптимизированной для температуры +27°С при температуре окружающей среды +27°С, а на чертеже фиг. 4 - статический режим схемы БУ фиг. 2, оптимизированной для температуры +27°С при температуре окружающей среды -197°С.

На чертеже фиг. 5 приведена зависимость напряжения смещения нуля схемы БУ фиг. 3, оптимизированной для температуры +27°С, в диапазоне температур, а на чертеже фиг. 6 - амплитудно-частотная характеристика коэффициента усиления по напряжению схемы БУ фиг. 3, оптимизированной для температуры +27°С, при разных температурах.

На чертеже фиг. 7 представлен статический режим схемы БУ фиг. 2, оптимизированной для -197°С при температуре окружающей среды +27°С, а на чертеже фиг. 8 - статический режим схемы БУ фиг. 2, оптимизированной для -197°С при температуре -197°С.

На чертеже фиг. 9 показана зависимость напряжения смещения нуля оптимизированной схемы БУ фиг. 8 для -197°С в диапазоне температур, а на чертеже фиг. 10 - амплитудно-частотная характеристика коэффициента усиления схемы БУ фиг. 8, оптимизированной для -197°С, при разных температурах.

Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом фиг. 2 содержит вход 1 и выход 2 устройства, первый 3 входной полевой транзистор, затвор которого соединен со входом 1 устройства, сток подключен к первой 4 шине источника питания, второй 5 входной полевой транзистор, затвор которого подключен ко входу устройства 1, а сток соединен со второй 6 шиной источника питания, токостабилизирующий резистор 7, включенный между истоками первого 3 и второго 5 входных полевых транзисторов, первый 8 и второй 9 выходные полевые транзисторы, затвор первого 8 выходного полевого транзистора соединен с истоком второго 5 входного полевого транзистора, а его сток соединен с первым 10 токовым выходом устройства, согласованным с первой 4 шиной источника питания, затвор второго 9 выходного полевого транзистора соединен с истоком первого 3 входного полевого транзистора, а его сток соединен со вторым 11 токовым выходом устройства, согласованным со второй 6 шиной источника питания. Исток второго 9 выходного полевого транзистора связан с первой 4 шиной источника питания через первый 12 дополнительный источник опорного тока и подключен к выходу 2 устройства через первый 13 дополнительный резистор, а исток первого 8 выходного полевого транзистора связан со второй 6 шиной источника питания через второй 14 дополнительный источник опорного тока и связан с выходом 2 устройства через второй 15 дополнительный резистор. В схеме фиг. 2 двухполюсник 16 моделирует свойства нагрузки БУ, подключаемой к выходу 2.

На чертеже фиг. 2, в соответствии с п. 2 формулы изобретения, первый 10 токовый выход устройства соединен с первой 4 шиной источника питания, а второй 11 токовый выход устройства соединен со второй 6 шиной источника питания. Такое включение токовых выходов характерно для ОУ с потенциальной отрицательной обратной связью.

Рассмотрим работу предлагаемого БУ.

Особенность схемы БУ фиг. 2 состоит в том, что статический режим первого 3 и второго 5 входных полевых транзисторов по току определяется токостабилизирующим резистором 7, что позволяет за счет изменения его сопротивления выбирать заданные значения токов стоков (Ic3, Ic5) данных активных элементов:

где Uзи.i – напряжение затвор-исток i-го полевого транзистора при токе истока, равном IR.

Введение новых элементов и связей между ними в соответствии с п. 1 формулы изобретения позволяют получить малые значения напряжения смещения нуля в схеме БУ фиг. 2 в условиях неидентичности стоко-затворных характеристик применяемых полевых транзисторов с p- и n- каналами. Возможности такой подстройки величины напряжения смещения нуля БУ продемонстрированы в схемах фиг. 3, фиг. 4, фиг. 5, а также схемах фиг. 7, фиг. 8, фиг. 9.

За счет оптимизации (целенаправленного изменения) параметров первого 12 дополнительного источника опорного тока, первого 13 дополнительного резистора, второго 14 дополнительного источника опорного тока и второго 15 дополнительного резистора, которая была выполнена с помощью специальной САПР в среде LTspice для решения данных задач, в схеме фиг. 2 при комнатной (фиг. 3, фиг. 4, фиг. 5), а также при криогенной (фиг. 7, фиг. 8, фиг. 9) температурах могут быть получены малые Uсм (на уровне десятков микровольт, без учета технологического разброса параметров элементов). Это значительно (в сотни раз) лучше, чем в схеме БУ-прототипа фиг. 1.

При этом амплитудно-частотные характеристики коэффициентов усиления по напряжению схем БУ, оптимизированных для разных температур, существенно не изменяются (фиг. 6, фиг. 10).

Таким образом, заявляемый БУ допускает параметрическую оптимизацию параметров, например, по критерию минимизации напряжения смещения нуля, которое в реальных схемах обеспечивается за счет оптимального выбора сопротивлений первого 13 и второго 15 дополнительных резисторов, а также токов первого 12 и второго 14 дополнительных источников опорного тока. Физически данный эффект можно объяснить тем, что указанные выше элементы образуют мостовую схему, выход которой соответствует выходу 2 устройства. Другие известные БУ рассматриваемого класса таким свойством не обладают. В них из-за неидентичности напряжения отсечки полевых транзисторов с p- и n-каналами, которую невозможно устранить технологическим путем, напряжение смещения нуля БУ всегда остается достаточно большим (сотни милливольт).

Таким образом, компьютерное моделирование в среде LTspice и оптимизация заявляемой схемы БУ (фиг. 3, фиг. 4, фиг. 5, фиг. 7, фиг. 8, фиг. 9) показывает, что предлагаемый буферный усилитель, схемотехника которого адаптирована на применение в диапазоне низких температур и воздействия проникающей радиации [30,31], имеет существенные достоинства в сравнении с известными вариантами построения БУ.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 6.215.357, fig. 3, 2001 г.

2. Патент US 5.351.012, 1994 г.

3. Патент US 5.973.534, 1999 г.

4. Патент US 5.197.124, fig. 25, 1993 г.

5. Патент US 7.764.123, fig. 3, 2010 г.

6. Патент US № 6.268.769 fig.3, 2001 г.

7. Патент US № 6.420.933, 2002 г.

8. Патент US № 5.223.122, 1993 г.

9. Патентная заявка US № 2004/0196101, 2004 г.

10. Патентная заявка US № 2005/0264358 fig.1, 2005 г.

11. Патентная заявка US № 2002/0175759, 2002 г.

12. Патент US № 5.049.653 fig.8, 1991 г.

13. Патент US № 4.837.523, 1989 г.

14. Патент US № 5.179.355, 1993 г.

15. Патент Японии JP 10.163.763, 1991 г.

16. Патент Японии JP 10.270.954, 1992 г.

17. Патент US № 5.170.134 fig.6, 1992 г.

18. Патент US № 4.540.950, 1985 г.

19. Патент US № 4.424.493, 1984 г.

20. Патент Японии JP 6310950, 2018 г.

21. Патент US № 5.378.938, 1995 г.

22. Патент US № 4.827.223, 1989 г.

23. Патент US № 6.160.451, 2000 г.

24. Патент US № 4.639.685, 1987 г.

25. А.св. СССР 1506512, 1986 г.

26. Патент US № 5.399.991, 1995 г.

27. Патент US № 6.542.032, 2003 г.

28. M. Djebbi, A. Assi and M. Sawan. An offset-compensated wide-bandwidth CMOS current-feedback operational amplifier // CCECE 2003 - Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436), 2003, pp. 73-76 vol.1. DOI: 10.1109/CCECE.2003.1226347

29. N.N. Prokopenko, A.S. Budyakov, J.M. Savchenko, S.V. Korneev. Maximum rating of Voltage Feedback and Current Feedback Operational Amplifiers in Linear and Nonlinear Modes // Proceeding of the Third International Conference on Circuits and Systems for Communications – ICCSC’06, Politehnica University, Bucharest, Romania: July 6-7, 2006, pp.149-154.

30. Элементная база радиационно-стойких информационно-измерительных систем: монография / Н.Н. Прокопенко, О.В. Дворников, С.Г. Крутчинский; под общ. ред. д.т.н. проф. Н.Н. Прокопенко; ФГБОУ ВПО «Южно-Рос. гос. ун-т экономики и сервиса». - Шахты: ФГБОУ ВПО «ЮРГУЭС», 2011. - 208 с.

31. O. V. Dvornikov, V. L. Dziatlau, N. N. Prokopenko, K. O. Petrosiants, N. V. Kozhukhov and V. A. Tchekhovski. The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors // 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998507

1. Буферный усилитель с малым напряжением смещения нуля на комплементарных полевых транзисторах с управляющим p-n переходом, содержащий вход (1) и выход (2) устройства, первый (3) входной полевой транзистор, затвор которого соединен со входом (1) устройства, сток подключен к первой (4) шине источника питания, второй (5) входной полевой транзистор, затвор которого подключен ко входу устройства (1), а сток соединен со второй (6) шиной источника питания, токостабилизирующий резистор (7), включенный между истоками первого (3) и второго (5) входных полевых транзисторов, первый (8) и второй (9) выходные полевые транзисторы, затвор первого (8) выходного полевого транзистора соединен с истоком второго (5) входного полевого транзистора, а его сток соединен с первым (10) токовым выходом устройства, согласованным с первой (4) шиной источника питания, затвор второго (9) выходного полевого транзистора соединен с истоком первого (3) входного полевого транзистора, а его сток соединен со вторым (11) токовым выходом устройства, согласованным со второй (6) шиной источника питания, отличающийся тем, что исток второго (9) выходного полевого транзистора связан с первой (4) шиной источника питания через первый (12) дополнительный источник опорного тока и подключен к выходу (2) устройства через первый (13) дополнительный резистор, а исток первого (8) выходного полевого транзистора связан со второй (6) шиной источника питания через второй (14) дополнительный источник опорного тока и связан с выходом (2) устройства через второй (15) дополнительный резистор.

2. Усилитель по п.1, отличающийся тем, что первый (10) токовый выход устройства соединен с первой (4) шиной источника питания, а второй (11) токовый выход устройства соединен со второй (6) шиной источника питания.



 

Похожие патенты:

Предлагаемое изобретение относится к импульсной технике и приборостроению. Техническим результатом изобретения является уменьшение потерь на переключение силовых транзисторов с изолированным затвором, а также повышение качества импульсов.

Изобретение относится к цифровой схемотехнике, автоматике и промышленной электронике. Оно, в частности, может быть использовано в блоках вычислительной техники, построенных на логических элементах.

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения БУ на комплементарных полевых транзисторах, обеспечивающего повышенную стабильность статического режима транзисторов и низкий уровень шумов, в том числе при работе в диапазоне низких температур.

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании условий, которые позволяют повысить быстродействие выходного каскада за счет форсирования процесса перезаряда одного из его паразитных конденсаторов и исключения влияния второго паразитного конденсатора.

Изобретение относится к радиотехнике. Технический результат заключается в создании неинвертирующего CJFet усилителя, обеспечивающего опцию rail-to-rail по выходу и получение повышенных выходных сопротивлений.

Изобретение относится к электрическим воздействиям в импульсной форме, таким как клеточная терапия. Система для обработки образца электрическими импульсами содержит память; дисплей; пользовательское устройство ввода; держатель образца, содержащий первый электрод и второй электрод, размещенные на противоположных сторонах держателя образца, сконфигурированного для приема контейнера для образца; схему формирования импульсов для подачи импульса на первый и второй электроды; емкостной элемент, внешний по отношению к держателю образца и включенный последовательно между схемой формирования импульсов и держателем образца; и процессор для выполнения хранящихся в памяти инструкций для управления схемой формирования импульсов, которая сконфигурирована для емкостной связи с контейнером для образца.

Изобретение относится к импульсной технике. Технический результат: увеличение величины и мощности импульса тока в нагрузке путём увеличения доли энергии, передаваемой в нагрузку.

Изобретение относится к устройствам автоматики и может найти применение в устройствах управления ракетно-космической техники. Технический результат заключается в повышении надежности устройства путем контроля кода выданной команды и исключении возможности создания помех путем введения формирователя с заданной крутизной фронтов.

Изобретение относится к средствам электропитания потребителей, использующих аккумуляторы, и может быть применено для электроснабжения различных автономных объектов.

Изобретение относится к средствам получения высоковольтного импульсного напряжения. Технический результат - снижение уровня импульсных электромагнитных помех, излучаемых ранее применяемыми устройствами для получения высоковольтного импульсного напряжения из-за инерционности нелинейных элементов, и в первую очередь диода, соединённого с первым конденсатором.

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании условий, которые позволяют повысить быстродействие выходного каскада за счет форсирования процесса перезаряда одного из его паразитных конденсаторов и исключения влияния второго паразитного конденсатора.

Изобретение относится к области микроэлектроники. Технический результат: создание составного транзистора на комплементарных транзисторах, который по своим стоко-затворным характеристикам подобен КМОП полевому транзистору, т.е.

Изобретение относится к радиотехнике. Технический результат заключается в создании неинвертирующего CJFet усилителя, обеспечивающего опцию rail-to-rail по выходу и получение повышенных выходных сопротивлений.

Изобретение относится к области радиотехники. Технический результат: создание условий, при которых обеспечиваются более высокие значения коэффициента ослабления входных синфазных сигналов и коэффициента подавления помех по шинам питания.

Изобретение относится к линейным усилителям мощности. Технический результат - уменьшение габаритов при расположении модуля питания в едином корпусе, увеличение диапазона рабочих частот, высокий уровень помехозащищенности.

Изобретение относится к области радиотехники и связи и может быть использовано при разработке современных широкополосных радиопередатчиков в диапазоне 1,5-30 МГц. Технический результат заключается в построении усилителя мощности по принципу усилителя с распределенной полосой.

Изобретение относится к области радиотехники, в частности к ламповым усилителям низкой частоты. Технический результат заключается в улучшении массогабаритных характеристик лампового усилителя при одновременном повышении качества звука.

Изобретение относится к области передачи радиосигналов и может быть использовано для исправления искажения радиосигналов. Техническим результатом является упрощение конструкции, снижение потребляемой мощности и повышение быстродействия.

Изобретение относится к дифференциальным операционным усилителям. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения без ухудшения энергетических параметров.

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в качестве двухтактных буферных и выходных усилителей мощности различных аналоговых устройств (операционных усилителей, драйверов линий связи и т.п.), допускающих работу в условиях воздействия проникающей радиации и низких температур.

Изобретение относится к области радиотехники и микроэлектроники и может быть использовано в аналоговых микросхемах (АМ) и аналого-цифровых интерфейсах датчиков. Технический результат заключается в повышении крутизны преобразования входного дифференциального напряжения в токи первого и второго токовых выходов. Каскад содержит входные полевые транзисторы и выходные полевые транзисторы и полевые транзисторы с управляющим p-n переходом. 3 з.п. ф-лы, 8 ил.

Изобретение относится к аналоговой микроэлектронике. Технический результат заключается в создании радиационно-стойкого и низкотемпературного схемотехнического решения буферного усилителя на комплементарных полевых транзисторах, обеспечивающего малые значения напряжения смещения нуля. Буферный усилитель содержит полевые транзисторы, токостабилизирующий резистор, дополнительные резисторы и источник питания и источники опорного тока. Предложенный БУ допускает параметрическую оптимизацию параметров по критерию минимизации напряжения смещения нуля, которое в реальных схемах обеспечивается за счет оптимального выбора сопротивлений первого и второго дополнительных резисторов, а также токов первого и второго дополнительных источников опорного тока. 1 з.п. ф-лы, 10 ил.

Наверх