Стационарный преобразователь энергии морских волн

Изобретение относится к области электротехники и может быть использовано для преобразования энергии морских волн в электроэнергию. Сущность изобретения заключается в том, что стационарный преобразователь энергии морских волн преобразует энергию угловых перемещений плавающего тела на профиле волны, а также кинетическую энергию подъема и опускания плавающего тела при прохождении волны. Технический результат – повышение эффективности преобразования энергии морских волн в электроэнергию. 2 ил.

 

Изобретение относится к области электротехники и может быть использовано для преобразования энергии морских волн в электроэнергию.

Из уровня техники известен Гироскопический преобразователь энергии морских волн (патент РФ №2626312, МПК G01C 19/06, опубл. 25.07.2017 г.), который представляет собой герметичный поплавок, содержащий внутреннюю платформу, к которой с нижней стороны прикреплены гироскопические модули - преобразователи, которые под воздействием качки (угловых перемещений поплавка) на морских волнах вырабатывают электроэнергию.

Недостатком этого устройства является использование только части энергии морских волн, а именно, только энергию качания поплавка на волнах.

Известно стационарное поплавковое устройство компании Wave Star Energy (Дания) (http://wavestarenergy.com/), которое представляет надводную стационарную платформу, закрепленную на морском дне. На платформе закреплены осевые шарниры с качающимися на них горизонтальными штангами. С одного конца штанг закреплены поплавки, плавающие на поверхности моря, а на другом конце - гидронасосы, находящиеся на платформе. Под воздействием морских волн поплавки поднимаясь и опускаясь, качают штангу и приводят в действие гидронасосы, которые посредством гидросистемы приводят в действие электрогенератор, вырабатывающий электроэнергию.

Недостатком этого устройства является использование только части энергии морских волн а именно, только кинетической энергии подъема и опускания поплавков на волнах.

Задачей изобретения является расширение функциональных возможностей устройства за счет более полного использования энергии морских волн.

Технический результат изобретения заключается в повышении эффективности преобразования энергии морских волн в электроэнергию, благодаря использованию как энергии угловых перемещений плавающего тела на профиле волны, так и кинетической энергии подъема и опускания плавающего тела при прохождении волны.

Технический результат достигается стационарным преобразователем энергии морских волн, содержащим надводную платформу, закрепленную с помощью свай на морском дне, на которой посредством центрального шарнирного узла закреплен рычажный параллелограммный механизм, на одном плече которого, находящегося над поверхностью воды, посредством левого шарнирного узла прикреплен вертикальный шток с закрепленном на нем поплавком, а на другом плече посредством правого шарнирного узла прикреплен горизонтальный шток, связанный с ротором линейного электрогенератора, закрепленного на платформе, причем поплавок состоит из герметично соединенных между собой верхней и нижней обечаек, а внутри поплавка расположена опорная горизонтальная площадка, жестко соединенная с проходящим через отверстие в верхней обечайке и через ее центр вертикальным штоком, к нижней поверхности опорной горизонтальной площадки соосно вертикальному штоку закреплен статор сферического электрогенератора, выполненный из ферромагнитного материала в виде кольцевого сферического сегмента с заданным радиусом внутренней поверхности, на которой перпендикулярно ей установлены равномерно стержневые полюсные сердечники с размещенными на них электрообмотками, а на нижнем конце вертикального штока закреплен шарнир равных угловых скоростей, к выходному штоку которого закреплен тарельчатый ротор с ободом, выполненным в виде кольцевого магнита с тангенциальной намагниченностью, а нижний конец выходного штока прикреплен к центру днища нижней обечайки поплавка, при этом центр качания шарнира равных угловых скоростей, центр обода тарельчатого ротора и центр внутренней сферической поверхности статора совпадают, а между внешней поверхностью обода тарельчатого ротора и внутренней сферической поверхностью статора, образованной стержневыми полюсными сердечниками, предусмотрен заданный зазор.

Сущность изобретения поясняется чертежами: фиг. 1 - общий вид стационарного преобразователя энергии морских волн, Фиг. 2 - устройство поплавка стационарного преобразователя энергии морских волн.

Стационарный преобразователь энергии морских волн (фиг. 1) содержит надводную платформу 1, закрепленную посредством опор 2 на морском дне. На поверхности платформы закреплен центральный шарнирный узел 3 рычажного параллелограммного механизма. На концах коромысел 4 и 5 рычажного параллелограммного механизма закреплены левый и правый оконечные шарнирные узлы, соответственно, 6 и 7. К левому шарнирному узлу 6 прикреплен вертикальный шток 8 с закрепленным на нем поплавком 9. К правому шарнирному узлу 7 прикреплен горизонтальный шток 10, приводящий в возвратно - поступательное движение ротор линейного электрогенератора 11, закрепленного на платформе 1.

Поплавок 9 содержит (фиг. 2) верхнюю 12 и нижнюю 13 обечайки, которые герметично соединены между собой. Внутри поплавка расположена опорная горизонтальная площадка 14, жестко соединенная с проходящим через отверстие в верхней обечайке вертикальным штоком 8, который соединен с верхней обечайкой 12 поплавка гибким герметизирующим чехлом 15. Диаметр отверстия верхней обечайки позволяет качаться поплавку 9 относительно вертикального штока 8.

К нижней поверхности опорной горизонтальной площадки 14 соосно вертикальному штоку 8 закреплен статор 16 сферического электрогенератора. На нижнем конце вертикального штока 8 закреплен шарнир равных угловых скоростей - ШРУС 17, к выходному штоку 18 которого соосно ему закреплен тарельчатый ротор 19 с ободом 20, выполненным в виде кольцевого магнита с тангенциальной намагниченностью. Центр качания ШРУС, центр обода тарельчатого ротора и центр внутренней сферической поверхности статора совпадают. На внутренней сферической поверхности статора 16 перпендикулярно к ней равномерно установлены стержневые полюсные сердечники 21 с размещенными на них электрообмотками 22. Нижний конец выходного штока 18 прикреплен к центру днища нижней обечайки 13 поплавка 9. Устройство работает следующим образом.

При начале волнения водной поверхности поплавок 9, находящийся в полупогруженном состоянии на поверхности воды, начнет совершать периодические колебательные движения вверх и вниз согласно приходящим волнам. Эти движения через вертикальный шток 8 приведут к вертикальному периодическому качанию рычажного параллелограммного механизма в центральном шарнирном узле 3, закрепленном на надводной платформе 1. Вследствие этого горизонтальный шток 10, закрепленный на правом шарнирном узле 7, также начнет совершать периодические колебательные движения в вертикальной плоскости и приведет в действие линейный электрогенератор 11, закрепленный на надводной платформе 1, что вызовет ЭДС. В то же время поплавок 9, закрепленный на выходном штоке 18 ШРУС 17 будет совершать угловые перемещения, согласно изменению профиля волн, относительно центра качания ШРУС 17. Вследствие этого ротор 19 будет совершать угловые перемещения внутри статора сферического генератора, что вызовет выработку ЭДС. Вертикальный шток 8, закрепленный в левом шарнирном узле 6, при вертикальном качании коромысел 4 и 5 рычажного параллелограммного механизма будет сохранять вертикальное положение относительно надводной платформы 1. ЭДС, выработанная линейным электрогенератором 11 и сферическим электрогенератором поплавка 9, может быть направлена потребителю.

Полная энергия морской волны состоит из суммы кинетической энергии подъема и опускания условного водоизмещающего тела и энергии угловых перемещений условного водоизмещающего тела. Причем и та и другая энергии равны по величине. Следовательно, предлагаемое устройство, суммируя оба вида энергии, составляющие полную энергию морской волны, позволяет вырабатывать на 100% больше электроэнергии.

Таким образом, заявленное изобретение повышает эффективность преобразования энергии морских волн в электроэнергию благодаря использованию как энергии угловых перемещений плавающего тела на профиле волны, так и кинетической энергии подъема и опускания плавающего тела при прохождении волны.

Стационарный преобразователь энергии морских волн, содержащий надводную платформу, закрепленную с помощью опор на морском дне, на которой посредством центрального шарнирного узла закреплен рычажный параллелограммный механизм, на одном плече которого, находящегося над поверхностью воды, посредством левого шарнирного узла прикреплен вертикальный шток с закрепленным на нем поплавком, а на другом плече посредством правого шарнирного узла прикреплен горизонтальный шток, связанный с ротором линейного электрогенератора, закрепленного на платформе, причем поплавок состоит из герметично соединенных между собой верхней и нижней обечаек, а внутри поплавка расположена опорная горизонтальная площадка, жестко соединенная с проходящим через отверстие в верхней обечайке вертикальным штоком, к нижней поверхности опорной горизонтальной площадки соосно вертикальному штоку закреплен статор сферического электрогенератора, выполненный из ферромагнитного материала в виде кольцевого сферического сегмента с заданным радиусом внутренней поверхности, на которой перпендикулярно ей установлены равномерно стержневые полюсные сердечники с размещенными на них электрообмотками, а на нижнем конце вертикального штока закреплен шарнир равных угловых скоростей, к выходному штоку которого закреплен тарельчатый ротор с ободом, выполненным в виде кольцевого магнита с тангенциальной намагниченностью, а нижний конец выходного штока прикреплен к центру днища нижней обечайки поплавка, при этом центр качания шарнира равных угловых скоростей, центр обода тарельчатого ротора и центр внутренней сферической поверхности статора совпадают, а между внешней поверхностью обода тарельчатого ротора и внутренней сферической поверхностью статора, образованной стержневыми полюсными сердечниками, предусмотрен заданный зазор.



 

Похожие патенты:

Изобретение относится к области высокоточной лазерной гироскопии, а именно к детектированию сигналов четырехчастотного лазерного гироскопа зеемановского типа. Оптический смеситель служит для формирования сигнала четырехчастотного лазерного гироскопа зеемановского типа и имеет функцию компенсации магнитной составляющей ошибки измерений с учетом различия магнитной чувствительности волн различных поляризаций.

Изобретение относится к области лазерной техники и может быть использовано при создании навигационных систем, в частности в бесплатформенных инерциальных навигационных системах.

Изобретение относится к метрологии, в частности, к твердотельным волновым гироскопам. Твердотельный волновой гироскоп содержит резонатор в виде осесимметричного тонкостенного элемента, способного к вибрации, один электрод резонатора, множество электродов датчиков, электродов управления, электронный блок управления, содержащий устройства вычисления угла, стабилизации амплитуды колебаний, подавления квадратурных колебаний и соединенный с электродами резонатора, электродами датчиков, электродами управления.

Изобретение относится к измерительной технике, а именно к микромеханическим элементам -гироскопам и акселерометрам. Способ автономного повышения точности применения микромеханической элементной базы, содержит этапы, на которых на основе синхронных измерений избыточного количества соосных ММЭ путем поворота, по крайней мере, одного из них на 180° и попарным сопоставлением с ним измерений остальных ММЭ, определяют суммарные (систематические плюс случайные) смещения нулей всех ММЭ, при этом повороты могут проводиться регулярно или эпизодически, автоматически или вручную, как в подготовительных стационарных режимах, так и в рабочих, при реальном возмущенном движении объекта; реализуют эффективную фильтрацию шумов измерений без динамических ошибок и детектирования; реализуют статистическую обработку и оценивание фильтром Калмана суммарных смещений ММЭ и их остаточной несоосности..

Изобретение относится к приборостроению и может быть использовано при создании зеемановских лазерных гироскопов. Способ уменьшения магнитного дрейфа зеемановских лазерных гироскопов содержит этапы, на которых создают поле, компенсирующее сумму всех действующих на зеемановский лазерный гироскоп постоянных магнитных полей путем подачи в катушку, охватывающую газоразрядный промежуток зеемановского лазерного гироскопа, постоянного тока, при этом величину постоянного тока, который подают в катушку, охватывающую газоразрядный промежуток зеемановского лазерного гироскопа, устанавливают равной 19 мкА.

Изобретение относится к области приборостроения и может применяться при построении датчиков угловой скорости (гироскопических датчиков), используемых в качестве источников первичных измерений инерциальных систем ориентации и навигации.

Изобретение относится к электромеханическим устройствам и может быть использовано для преобразования энергии колебания морских волн в электроэнергию. Сущность изобретения заключается в том, что гироскопический преобразователь энергии морских волн обеспечивает самоустановку гироскопов перед раскруткой и возможность активной адаптации к изменяющейся интенсивности волнения водной поверхности.

Изобретение относится к производству твердотельных волновых гироскопов. Способ определения дисбаланса масс полусферического резонатора твердотельного волнового гироскопа дополнительно содержит этапы, на которых измеряют реакцию в опоре в месте крепления резонатора, а математическая обработка сигнала заключается в определении величины амплитуды и углового положения колебаний относительно датчиков возбуждения, рассчитанных по формуле где a1 - амплитуда сигнала с первого пьезоэлектрического датчика;а2 - амплитуда сигнала со второго пьезоэлектрического датчика;а3 - амплитуда сигнала с третьего пьезоэлектрического датчика;А - амплитуда колебаний; где ϕ - угловое положение колебаний ножки относительно датчиков возбуждения.Технический результат – повышение точности определения дефектов резонатора.

Изобретение относится к области измерительной техники, а именно к устройствам для измерения угловой скорости. Сущность: формируют пучок когерентного оптического излучения с управляемой частотой излучения.

Способ определения давления в кольцевых лазерных гироскопах заключается в том, что в кольцевом лазерном гироскопе с гелий-неоновой смесью кратковременно возбуждают электрический разряд, устанавливают рабочий ток и регистрируют спектр излучения в диапазоне длин волн от 500 нм до 600 нм, определяют интенсивности линий неона 585,2 нм и гелия 587,5 нм, рассчитывают отношение интенсивности линии неона 585,2 нм к интенсивности линии гелия 587,5 нм и определяют давление гелий-неоновой смеси кольцевого лазерного гироскопа по калибровочному графику.

Изобретение относится к гидроэнергетике, а именно к гирляндным гидроэлектростанциям. Гидроэлектростанция содержит последовательно соединенные узлом 8 карданного типа турбины, выполненные в виде цилиндрических поплавков с закреплёнными рабочими лопастями 7.

Группа изобретений относится к плавучей турбине для выработки электроэнергии и к системе для накопления энергии, в которой используется такая турбина. Плавучая турбина (10A-10E) содержит вращающийся набор лопастей, которые вращаются вокруг общей оси и соединены с возможностью связи с системой выработки электроэнергии, выполненной с возможностью выработки электроэнергии при их вращении, систему управления плавучестью, выполненную с возможностью управляемого придания положительной плавучести турбине (10A-10E), одно или более воздушных сопел и направляющую для направления турбины (10A-10E) вдоль общей оси при ее движении.

Группа изобретений относится к системе сбора энергии от подвижной массы. Система содержит по меньшей мере один туннель и выполнена с возможностью внедрения в подвижную массу.

Изобретение относится к производству электроэнергии путем преобразования энергии волн. Поплавковая волновая электростанция содержит якорь 1, установленный на дне и связанный тросом 2 с герметичным поплавком 3, электрический генератор с вертикальными стойками 7.

Изобретение относится к турбоагрегатам. Турбоагрегат 1 содержит рабочую камеру с кожухом 12 и ротор 2 со встроенным в камеру центральным участком 7 и размещенными вне камеры передним и задним участками.

Изобретение относится к преобразователю энергии потока жидкости и может быть использовано для привода вентилятора калориферных установок. Преобразователь включает вал 1, трубчатую спираль 4 конической формы с каналами входа и выхода 2, 3.

Изобретение относится к производству электроэнергии путем преобразования энергии волн. Поплавковая волновая электростанция содержит обтекаемые герметичные пары поплавков 1 и 2.

Изобретение относится к гидроэнергетике. Гидроэлектростанция содержит два корпуса 1 и 2, установленные параллельно по обе стороны русла 3 реки или канала, разделенного перегородками 4 на две рабочие магистрали 5 с резервуарами 11 и 12, и расположенную между ними отводную магистраль 6, снабженные заслонками 7 и 8.

Изобретение относится к океанскому или морскому волновому прибрежному электрогенератору. Электрогенератор содержит башенку 1 с опорой 2 на дне, корпус силовой части 3 на верху башенки 1 с возможностью разворота, генераторы 4, установленные с двух сторон корпуса 3, рычаг 5, на оси нижнего конца которого расположен поплавок в виде тележки с килем 7 и баллонами 6 тороидальной формы.

Изобретение относится к производству электроэнергии путем преобразования энергии волн. Поплавковая волновая электростанция содержит поплавок 1, электрический генератор, два барабана 3, 4.

Изобретение относится к гидротехническим сооружениям, в частности к устройству для преобразования энергии волн в электрическую энергию. Устройство содержит аппарель с пятью направляющими 2 и рабочий орган, выполненный с возможностью перемещения по аппарели.
Наверх