Высоковольтная оксидно-цинковая варисторная керамика


H01C7/044 - Нерегулируемые резисторы, имеющие один или несколько слоев или покрытий; нерегулируемые резисторы из порошкообразного токопроводящего или порошкообразного полупроводникового материала с диэлектриком или без него (состоящие из свободного, т.е.незакрепленного, порошкообразного или зернистого материала H01C 8/00; резисторы с потенциальным или поверхностным барьером, например резисторы с полевым эффектом H01L 29/00; полупроводниковые приборы, чувствительные к электромагнитному или корпускулярному излучению, например фоторезисторы H01L 31/00; приборы, в которых используется сверхпроводимость H01L 39/00; приборы, в которых используется гальваномагнитный или подобные магнитные эффекты, например резисторы, управляемые магнитным полем H01L 43/00; приборы на твердом теле для выпрямления, усиления, генерирования или переключения без потенциального или

Владельцы патента RU 2712822:

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) (RU)

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения. Высоковольтная оксидно-цинковая варисторная керамика содержит оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля в следующем количественном соотношении, мас. %: ZnO 77,5-82,5, Bi2O3 4,66-6,56, Sb2O3 2,05-2,95, Al2O3 4,08-5,83, Со2О3 3,32-4,37, NiO 1,92-3,48. Оксиды сурьмы и никеля соотносятся как 0,66-1,51. Технический результат изобретения – понижение плотности тока утечки варисторной керамики при обеспечении высоких значений напряжения пробоя и коэффициента нелинейности. Получаемая варисторная керамика имеет напряжение пробоя 3,7-5,1 кВ/мм, коэффициент нелинейности 56-74, плотность тока утечки 0,1-0,2 мкА/см2 и менее. 9 пр., 1 табл.

 

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения.

Основными характеристиками варисторной керамики на основе оксида цинка являются напряжение пробоя (Ub), коэффициент нелинейности (α) и плотность тока утечки (Iym). В промышленном масштабе выпускаются варисторы на основе ZnO-керамики с Ub=0,2-0,5 кВ/мм. Для высоковольтных линий электропередач необходимы варисторы с повышенным (3-4 кВ/мм) напряжением пробоя. Необходимым условием надежной работы варистора являются малые значения плотности тока утечки, протекающего через варистор при нормальной работе электрической цепи и определяющего значение стационарного рабочего напряжения. При избыточной величине плотности тока утечки происходит саморазогрев варистора и его тепловой пробой. Поэтому необходимо стремиться к получению высоковольтной варисторной керамики с минимальным значением тока утечки при высоких значениях напряжения пробоя и коэффициента нелинейности.

Известна высоковольтная оксидно-цинковая варисторная керамика (см. пат. 8217751 США, МПК Н01С 7/10 (2006.1), 2012), имеющая состав, мас. %: ZnO 94,69, Bi2O3 3,0, Sb2O3 1,5, Al2O3 0,01, Co3O4 0,5, NiO 0,2, Mn2O3 или Li2CO3 0,1. Керамику получают путем прокалки смеси исходных нанодисперсных оксидов при 550°С, таблетирования образующегося порошка и спекания таблеток горячим прессованием при 800-850°С. Полученная керамика имеет напряжение пробоя 1,71-1,85 кВ/мм, коэффициент нелинейности 75-77, плотность тока утечки около 10 мкА/см2.

Недостатками данной варисторной керамики является то, что при обеспечении достаточно высоких значений коэффициента нелинейности керамика имеет относительно высокую плотность тока утечки и низкое напряжение пробоя.

Известна также принятая в качестве прототипа высоковольтная оксидно-цинковая варисторная керамика (см. пат. 2568444 РФ, МПК С04В 35/453, H01C 7/112 (2006.01), 2015), имеющая состав, мас. %: ZnO 60,0-85,0, Bi2O3 3,42-9,11, Sb2O3 4,79-12,76, Al2O3 3,18-8,47, Со2О3 2,53-6,74, NiO 1,08-2,92, при этом оксиды висмута, сурьмы, алюминия, кобальта и никеля соотносятся как 1,0:1,4:0,93:0,74:0,32. Для получения керамики в качестве исходных компонентов используют порошкообразные гидратированные нитраты цинка, висмута, алюминия, кобальта, никеля и виннокислый раствор сурьмы. Исходные компоненты смешивают в стехиометрическом количестве с коммерческим сахаром, нагревают смесь при 145°С и затем прокаливают при 700°С. Из полученного керамического порошка со средним размером частиц 30 нм прессуют таблетки, которые подвергают двухступенчатому спеканию при температуре 700°С и 935°С. Полученная высоковольтная варисторная керамика имеет напряжение пробоя 3,5-4,4 кВ/мм, коэффициент нелинейности α=40-55.

Известная варисторная керамика имеет довольно высокие значения напряжения пробоя и коэффициента нелинейности, но, как показывают экспериментальные данные, плотность тока утечки керамики относительно высока.

Настоящее изобретение направлено на достижение технического результата, заключающегося в понижении плотности тока утечки варисторной керамики при обеспечении высоких значений напряжения пробоя и коэффициента нелинейности.

Технический результат достигается тем, что высоковольтная оксидно-цинковая варисторная керамика, включающая оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля, согласно изобретению, содержит оксидные компоненты в следующем количественном соотношении, мас. %: ZnO 77,5-82,5, Bi2O3 4,66-6,56, Sb2O3 2,05-2,95, Al2O3 4,08-5,83, Co2O3 3,32-4,37, NiO 1,92-3,48, при этом оксиды сурьмы и никеля соотносятся как 0,66-1,51.

Существенные признаки заявляемого изобретения, определяющие объем правовой защиты и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Оксид цинка является основным компонентом заявляемой керамики. Содержание его в количестве 77,5-82,5 мас. % обеспечивает получение керамики с высокими величинами напряжения пробоя и коэффициента нелинейности и низким значением плотности тока утечки.

Содержание в составе керамики 4,66-6,56 мас. % Bi2O3 и 3,32-4,37 мас. % Co2O3 способствует формированию межзеренных границ ZnO с высоким напряжением пробоя и повышенным коэффициентом нелинейности.

Содержание в составе керамики 4,08-5,83 мас. % Al2O3 и 2,05-2,95 мас. % Sb2O3 обеспечивает подавление роста зерен ZnO и, тем самым, увеличивает напряжение пробоя и снижает плотность тока утечки.

Содержание в составе керамики 1,92-3,48 мас. % NiO способствует более эффективному спеканию керамического порошка с получением керамики с низкой плотностью тока утечки.

Соотношение оксидов сурьмы и никеля в диапазоне значений 0,66-1,51 обеспечивает получение высоковольтной варисторной керамики с плотностью тока утечки на уровне 0,1-0,2 мкА/см2 и менее при высоких значениях напряжения пробоя и коэффициента нелинейности.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в понижении плотности тока утечки варисторной керамики при сохранении высоких значений напряжения пробоя и коэффициента нелинейности.

Особенности и преимущества заявляемого изобретения могут быть пояснены нижеследующими Примерами 1-8.

В Примерах керамику согласно изобретению получают следующим образом. Вначале осуществляют синтез нанодисперсного керамического порошка методом сжигания с использованием в виде топлива коммерческого сахара. В качестве исходных компонентов берут порошкообразные гидратированные нитраты металлов: Zn(NO3)2⋅6H2O, Bi(NO3)3⋅5H2O, Al(NO3)3⋅9H2O, Co(NO3)2⋅6H2O, Ni(NO3)2⋅6H2O и виннокислый раствор сурьмы.

Исходные компоненты в стехиометрическом количестве смешивают с коммерческим сахаром, засыпают в стеклянный термостойкий стакан, помещают его в предварительно нагретую до 500°С муфельную печь, выдерживают в течение 5-10 минут, извлекают из печи и охлаждают до комнатной температуры. Продукт термообработки (сжигания) измельчают с помощью стержневого миксера и прокаливают в муфельной печи при температуре 700°С в течение 1 часа. Синтезированный керамический порошок таблетируют, таблетки спекают при 975°С с изотермической выдержкой в течение 2,5 часов. Полученная варисторная керамика имеет состав, мас. %: ZnO 77,5-82,5, Bi2O3 4,66-6,56, Sb2O3 2,05-2,95, Al2O3 4,08-5,83, Со2О3 3,32-4,37, NiO 1,92-3,48, при этом оксиды сурьмы и никеля соотносятся как 0,66-1,51.

Для определения варисторных свойств керамики на торцевые поверхности керамических таблеток наносят пленочные электроды с использованием серебряной пасты.

Состав и свойства варисторной керамики, полученной согласно Примерам 1-8 осуществления изобретения и согласно Примеру 9 по прототипу, представлены в Таблице.

Из представленных в Таблице данных следует, что получаемая высоковольтная варисторная керамика на основе оксида цинка имеет по сравнению с прототипом более высокое напряжение пробоя, повышенный коэффициент нелинейности и значительно меньшую величину плотности тока утечки. Так, напряжение пробоя составляет 3,7-5,1 кВ/мм, коэффициент нелинейности 56-74, плотность тока утечки 0,1-0,2 мкА/см2 и менее. Получаемая керамика перспективна для производства варисторов с высокой стабильностью рабочих характеристик.

Высоковольтная оксидно-цинковая варисторная керамика, включающая оксиды цинка, висмута, сурьмы, алюминия, кобальта и никеля, отличающаяся тем, что керамика содержит оксидные компоненты в следующем количественном соотношении, мас. %: ZnO 77,5-82,5, Bi2O3 4,66-6,56, Sb2O3 2,05-2,95, Al2O3 4,08-5,83, Со2О3 3,32-4,37, NiO 1,92-3,48, при этом оксиды сурьмы и никеля соотносятся как 0,66-1,51.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к устройству для ограничения перенапряжений с функцией самодиагностики состояния защитного элемента, и может быть использовано для повышения надежности работы электрооборудования, в целях повышения пожарной безопасности.

Изобретение относится к импульсному разряднику (100) и способу изготовления импульсного разрядника (100), причем импульсный разрядник (100) содержит предварительно собранную активную часть (110), проходящую в продольном направлении, и отдельно изготовленный гибкий корпус (120), ограничивающий канал в продольном направлении и имеющий отверстие в торцевой поверхности гибкого корпуса (120), при этом гибкий корпус (120) окружает активную часть (110) посредством канала (121) и контактирует с активной частью (110), причем контакт приводит к деформации гибкого корпуса (120) в окружном направлении, а деформация создает давление, оказываемое на активную часть (110) вдоль радиального направления.

Изобретение относится к области электротехники. Предложен варистор (1), содержащий размыкатель (А), выполненный с возможностью прерывания прохождения тока через варистор (1) в случае неисправности, при этом размыкатель (А) имеет контактный вывод (5), формирующий электрический контакт с первым выводом (2) варистора (1), причем электрический контакт обеспечен терморазмягчаемым держателем (4), при этом размыкатель (А) дополнительно имеет поджатый аккумулятором (7) энергии высвободитель (6), который в случае неисправности, при размягчении терморазмягчаемого держателя (4), производит механическое отсоединение контактного вывода (5) от первого вывода (2) варистора (1), при этом высвободитель (6) выполнен резистивным для ограничения тока через варистор (1) и во избежание образования электрической дуги.

Изобретение относится к области электротехники, в частности к защите линий электропередач от перенапряжений. Устройство ограничения перенапряжения, включающее наружную полимерную оболочку с ребрами, по меньшей мере, одну колонку варисторов, размещенную между двумя концевыми электродами в изоляционном каркасе.

Изобретение относится к электротехнике. Ветроэнергетическая установка содержит ротор с лопастями, электрический генератор, связанный с ротором, и силовой электронный блок, содержащий варисторный блок и предназначенный для преобразования входного напряжения с входной частотой в выходное напряжение с выходной частотой.

Разрядник (1) для защиты от перенапряжений при высоких напряжениях имеет высоковольтный разъем, который соединен с образующим нелинейное сопротивление блоком (3) разрядника, а также имеет температурный сенсор (13) для регистрации температуры блока (3) разрядника.

Устройство защиты от перенапряжения содержит по меньшей мере один разрядник (2) защиты от перенапряжений и термически расцепляемое переключающее устройство (3), включенное последовательно с разрядником (2).

Изобретение касается разрядника (1) для защиты от перенапряжений, имеющего трубчатый корпус (2), соединенную с одним концом корпуса (2) концевую арматуру (3), расположенный в корпусе (2) варисторный блок и расположенный в области концевой арматуры (3) опорный элемент (4), который имеет прилегающее к корпусу (2) опорное кольцо (5), имеющее конус (6), и прижимное кольцо (7), которое имеет соответствующий конусу (6) ответный конус (8).

Разрядник (1) защиты от перенапряжений с колонкой варисторных элементов содержит растяжимую манжету (8) для размещения натяжных элементов (4) и фиксации их в радиальном направлении.

Элемент защиты от перенапряжения содержит корпус (2), по меньшей мере один расположенный в корпусе (2) ограничивающий перенапряжение компонент (3), например варистор или газонаполненный разрядник защиты от перенапряжения, и два контактных элемента (4, 5) для электрического подключения элемента (1) защиты от перенапряжения к подлежащему защите пути тока или пути сигнала.

Изобретение относится к области защиты электрооборудования, а более конкретно касается соединения вставного элемента (картриджа), содержащего активный защитный компонент, с электрической цепью.

Изобретение относится к области защиты электрооборудования, а более конкретно касается соединения вставного элемента (картриджа), содержащего активный защитный компонент, с электрической цепью.

Изобретение относится к электронной технике и может быть использовано в технологии изготовления варисторов, предназначенных для применения в ограничителях перенапряжений.

Изобретение относится к материалу для покрытия для электрооборудования, способу получения материала покрытия для электрооборудования и закрытому изолирующему устройству, способные подавить всплывание и перемещение инородных тел в электрооборудовании.

Изобретение относится к материалу покрытия с нелинейным удельным сопротивлением, электрической шине и обмотке статора. Изобретение содержит: полимерную матрицу, изготовленную из эпоксидной, акриловой смолы или полиуретана, отверждаемых за счет нагрева; диспергированные в полимерной матрице ZnO-содержащие частицы и полупроводящие поверхностно-обработанные вискеры.
Изобретение относится к способу получения варисторной керамики. Технический результат изобретения заключается в повышении напряжения пробоя и коэффициента нелинейности при использовании холодного прессования.
Изобретение относится к электротехнике, а именно к технологии изготовления оксидно-цинковых варисторов. .

Изобретение относится к полимерному компаунду, содержащему полимерную матрицу и наполнитель, введенный в указанную матрицу. .

Изобретение относится к области электротехники, в частности к варисторам, предназначено для защиты от перенапряжений и может быть использовано в линиях высоковольтных электропередач, в различных электроустановках как стационарных, так и на транспорте.

Изобретение относится к радиотехнике и может быть использовано при производстве варисторов, содержащих в качестве основного компонента оксид цинка. .
Изобретение относится к области электронной техники и может быть использовано для производства чип-резисторов (SMD-резисторов), а также для производства толстоплёночных резисторов методом трафаретной печати.
Наверх