Способ распознавания пигментных новообразований кожи



Способ распознавания пигментных новообразований кожи
Способ распознавания пигментных новообразований кожи
Способ распознавания пигментных новообразований кожи
Способ распознавания пигментных новообразований кожи
Способ распознавания пигментных новообразований кожи

Владельцы патента RU 2712919:

федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) (RU)

Изобретение относится к медицине и может быть использовано для распознавания пигментных новообразований кожи для оценки степени их злокачественности. Для этого с поверхности кожи с помощью дерматоскопа получают цветное изображение пигментных пятен. На изображениях выделяют фрагменты структур, таких как линии, круги, комки, точки, сетчатость. Проводят анализ областей полученного изображения на основе сканирования строк, пороговых и бинарных операций. Осуществляют распознавание фрагментов структур путем сравнения с эталонами. На основе пространственно-яркостного распределения во фрагменте измеряют характеристики и формируют числовые векторы признаков. Проводят классификацию фрагментов структур и устанавливают количественные оценки степени злокачественности новообразования кожи. На основании такой оценки подбирают схемы лечения пациентов с меланомой кожи. Изобретение позволяет по сформированным числовым векторам признаков провести количественную оценку и установить степень злокачественности новообразования кожи с точностью 74% у пациентов с меланомой кожи. 3 з.п. ф-лы, 9 ил.

 

Изобретение относится к области медицины и может быть использовано для диагностики новообразований кожи.

Актуальной на современном этапе для врачей дерматовенерологов является задача диагностики и лечения новообразований кожи. По данным отечественных исследований доля новообразований кожи в структуре первичной обращаемости к дерматологу составляет от 16 до 24,9% [Сергеев Ю.Ю., Мордовцева В.В., Сергеев В.Ю. Меланома кожи в практике дерматолога. Фарматека. 20171; №17: 67-72].

Особое место среди новообразований занимает меланома кожи. Меланома является злокачественной опухолью, которая возникает из-за неконтролируемой пролиферации клеток, продуцирующих меланоциты. [Tsatmali М, Ancans J, Thody AJ. Melanocytefunctionandits control by melanocortin peptides. J HistochemCytochem. 2002; 50(2): 125-33]. Меланома занимает уникальное место среди злокачественных новообразований кожи, так как, одной стороны, некоторые формы данной опухоли способны быстро метастазировать, приводя к гибели пациента, а сдругой стороны, образования на коже доступны для непосредственного обнаруженияи своевременное удаление сопровождается хорошим долгосрочным прогнозом. Исследования указывают на 82-97% 10-летнюю выживаемость пациентов с толщиной удаленной меланомы кожи не более 1 мм [Vecchiato A., ZontaE., CampanaL., Dal Bello G., Rastrelli M., Rossi CR., Alaibac M. Long-termsurvivalofpatientswithinvasiveultra-thincutaneousmelanoma: asingle-centerretrospectiveanalysis. Medicine. 2016; 95 (2): e2452].

За последние несколько десятилетий был отмечен неуклонный рост заболеваемостью меланомой [Whiteman DC, Green AC, Olsen CM. The growing burden of invasive melanoma: Projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Investig Dermatol. 2016; 136(6):1161-71].

Ежегодно отмечается прирост заболеваемости меланомой на 4-6% у лиц со светлым фототипом кожи, которые проживают в таких регионах, как Россия, Северная Америка, Северная Европа, Австралия и Новая Зеландия [Kosary CL, Altekruse SF, Ruhl J, Lee R, Dickie L. Clinical and prognostic factors for melanoma of the skin using SEER registries: Collaborative stage data collection system, version 1 and version 2. Cancer. 2014; 120Suppl 23:3807-14] [Stang A, Pukkala E, Sankila R, Soderman B, Hakulinen T. Time trend analysis of the skin melanoma incidence of Finland from 1953 through 2003 including 16,414 cases. Int J Cancer. 2006; 119(2): 380-4].

По данным Российского Центра информационных технологий иэпидемиологических исследований в области онкологии за 2016 год число умерших от меланомы кожи составило 1710 человек (прирост 28% за 10 лет), число же впервые установленных диагнозов меланомы кожи - 4076 (прирост 51% за 10 лет). Необходимость совершенствования в первую очередь диагностики меланомы кожи очевидна при сравнении структуры впервые установленных диагнозов злокачественных новообразований кожи, в которой меланома кожи занимает всего 14%, и структуры умерших, в которой доля меланомы кожи преобладает и составляет 69%.

Разнообразие клинических проявлений нозологических форм требует большого опыта и специальных знаний для проведения их дифференциальной диагностики. Доброкачественные меланоцитарные невусы, ряд немеланоцитарных новообразований (себорейныйкератоз, базальноклеточный рак, дерматофиброма, ангиокератома) могут имитировать меланому. Недостаточная подготовка в области дерматоскопии, ошибки проведения осмотра, клиническая гипердиагностика, расхождения при трактовке гистологических препаратов приводят к позднему выявлению и неблагоприятному прогнозу в большинстве случаев [Сергеев Ю.Ю., Мордовцева В.В. Скрининг рака кожи в амбулаторных условиях. Кремлевская медицина. Клинический вестник. 2018; №1: 84-88].

Появление доступной цифровой системы для проведения дерматоскопии открывает новые горизонты в решении целого ряда задач диагностики с использованием информационных технологий. Среди них: оптимизация осмотра кожных покровов с картированием новообразований и получением снимков высокого разрешения, организация динамического наблюдения на основе стандартизованных изображений, внедрение телемедицины и дистанционного обучения, а также разработка эвристических систем поддержки принятия врачебных решений (искусственный интеллект).

Современные подходы к распознаванию изображений новообразований кожи основываются на количестве, расположении и описании элементов новообразования, таких как «линии», «псевдоподии», «круги», «комки», «точки» и т.д. Поэтому выделение и описание областей элемент пигментного новообразования кожи является важным этапом при диагностике новообразований кожи.

Таким образом, важнейшим на данный момент является разработка подхода для установления количественной оценки и получения степени злокачественности новообразования кожи.

Известен способ «Способ дифференциальной диагностики меланоцитарных новообразований кожи» [Патент РФ №2385494] Изобретение относится к медицине, в частности к дерматологии. Выполняют спектрофотометрический интрадермальный анализ. Способ за счет специфичности используемых показателей, позволяет проводить дифференциальную диагностику с доброкачественными меланоцитарными новообразованиями кожи, а также дифференциальную диагностику меланомы кожи с заболеваниями немеланоцитарного генеза.

Однако предложенный способ не позволяет определять тип фрагмента структуры новообразования кожи как линии, круги, комки, точки, сетчатость, необходимые для установления количественной оценки и получения степени злокачественности новообразования кожи.

Известен способ «Автоматическое определение признаков для диагностики злокачественной меланомы» [Патент US №7689016 В2]. Способ автоматического определения границы между поражением кожи и окружающей кожей на цифровом изображении поражения кожи, включающий: предварительная обработка изображения для идентификации пикселей, которые представляют собой объекты, отличные от кожи и поражения.

Данный способ определяет только область где находит злокачественное новообразования и нет сведений о анализе внутренних структур новообразования для получения степени злокачественности.

По мнению заявителя, наиболее близких аналогов заявленного решения не обнаружено.

Технический результат предлагаемого изобретения заключается в расширении функциональных возможностей за счет измерения цветовых, текстурных и морфологических характеристик области структур, таких как линия, псевдоподии, круги, комки, точки, сетчатость, соответствующей пигментным областям на изображениях для установления количественной оценки и получения степени злокачественности новообразования кожи.

Указанный технический результат заявленного решения достигается в способе распознавания пигментных новообразований кожи, за счет получения цветного изображения с поверхности кожи и последующим выделением фрагментов структур, таких как линии, круги, комки, точки, сетчатость, посредствам анализа областей полученного изображения на основе сканирования строк, пороговых и бинарных операций, после чего проводят процедуру распознавания фрагментов структур путем сравнения с эталонами для установления типа фрагмента структуры, затем на основе пространственно-яркостного распределения во фрагменте структуры, проводится измерение характеристик, а также морфологических характеристик по фрагменту структуры, на основе полученных измерений формируют числовые вектора признаков для проведения классификации структур и устанавливают количественные оценки степени злокачественности новообразования кожи с последующим принятием клинических решений и адекватного подбора терапевтических схем лечения у пациентов с меланомой кожи.

В частном случае цветное изображение получают с дерматоскопа.

В другом частном случае для проведения классификации используется метод k-ближайших соседей.

В следующем частном случае измерения характеристик фрагмента структуры проводится на основе пространственно-яркостного распределения по матрице пространственной смежности, матрицы длин серий, пикселей минимального, максимального, среднего значения яркости, размах по яркости и среднеквадратическое отклонение яркости для компонент цветовых моделей из ряда RGB и HSV.

Технические средства для реализации способа полнофункциональная цифровая система для фотодерматоскопии РДС-2 для получения изображения и компьютерная система для выполнения предложенного способа проводилась на базе компьютера Intel(R) Core(TM) i5-3450 CPU @ 3.10 GHz 3.10 GHz 4GB RAM Windows 7,

В качестве входных данных программы выступают дерматоскопические изображения:

• Размеры: 2560x1920 пикселей

• Глубина цвета: 24 бита

• Формат: jpg

Ниже приведен пример конкретной реализации предложенного способа.

Предлагаемый способ состоит выделения пигментного новообразования и анализа фрагментов структур с последующим определение степени злокачественности пигментного новообразования.

Этап 1 автоматизированное выделение новообразований кожи (фиг. 1 пунктирные линии - автоматизированное описание новообразования кожи осуществляется следующим образом):

• (1→2): задается дерматоскопическое изображение (ДИ), которое загружается в систему (фиг.2).

• (3→4): ДИ преобразуется к максимально информативному изображению для дальнейших алгоритмов обработки

• (5→6): ДИ изображение испытывает предобработку посредствам анализа областей изображения на основе сканирования строк, пороговых, бинарных операций, а также процедуры анализа связанных областей, результатом которой являются координаты выделенных сегментов. Обратите внимание, что предобработка не настраивается пользователем и является автоматической.

• (7а+7б→8): Обеспечивает описание всех выделенных областей (фиг.3 выделение области новообразования кожи и внутренних структур), используя исходное ДИ и координаты сегментов. Результаты заносятся в таблицу, строчками которой будут описания сегментов, а колонками - их признаки.

• (9→13а): Классификатор, в режиме применения, производит классификацию сегментов. Результатом будут метки классов сегментов.

• (13а→13б): Зная метки классов сегментов, нужно будет провести объединение однотипных сегментов.

• (15а+15б→16): Конечная визуализация сегментов на исходном изображении.

Этап 2: автоматизированное выделение элементов новообразований кожи (фиг.4 пунктирные линии - автоматизированное описание):

• 1→2: Пользователь задает файловый путь к ДИ через интерфейс.

• 2→3: Далее происходит загрузка ДИ в оперативную память.

• 3→5: ДИ испытывает ряд преобразований (4), целью которых является получение координат центрального сегмента, который в большинстве случаев является сегментом в новообразовании кожи.

Берется синий план ДИ.

Данный план бинаризуется по Отсу.

Полученные одноцветные сегменты объединяются (сливаются) с соседствующими сегментами, если их площадь меньше заданного порога.

Из полученных сегментов выбирается центральный (т.е. тот, кому принадлежит точка {ширина/2, высота/2}).

• 3,5→6: Используя координаты центрального сегмента, программа получает изображение центрального сегмента на фоне (или в виде пары "изображение-маска").

• 6→8: Изображение центрального сегмента испытывает ряд преобразований (7), целью которых является получение координат элементов пигментного новообразования.

• 6,8→9: Используя координаты элементов новообразований кожи, программа получает изображение новообразования кожи с выделенными элементами (фиг. 5 изображения с точками, фиг. 6 пигментной сетью, фиг. 7 точек и глобул, фиг. 8 точек и глобул, фиг. 9 сетчатой структуры новообразования кожи).

• 9→10: Отображение результатов выделения на монитор.

Далее проводится на основе результатов 6 и 8, полученного в автоматизированном выделении элементов новообразований кожи

• 1→11: Пользователь задает имя сохраняемого файла.

• 6,8→12: На основании координат ЭПНК и изображения центрального сегмента производится расчет признаков: число соседних сегментов, площадь, средние яркости и СКО внутри и вне сегмента (по синему каналу), а также радиальная цветовая асимметрия при разных функциях штрафа (по синему каналу).

• 12→13: Составление матрицы объектов-признаков.

• 11,13→14: Сохранение матрицы в виде CSV файла по заданному пользователем имени.

Точность выделения границ составляет 82%. Точностные характеристики обученной модели на тестовом наборе для классов: "benign" - 74%, "malignant"-75%. Среднее значение составило 74%.

В результате предложенный способ позволяет по сформированным числовым векторам признаков с получением количественной оценки по фрагментам структур, таких как линии, кругу, комки, точки, сетчатость установить степень злокачественности новообразования кожи с точностью 74% для принятия клинических решений и адекватному подбору терапевтических схем лечения у пациентов с меланомой кожи.

1. Способ распознавания пигментных новообразований кожи для количественной оценки степени их злокачественности, включающий получение цветного изображения с поверхности кожи и последующим выделением фрагментов структур, таких как линии, круги, комки, точки, сетчатость, посредствам анализа областей полученного изображения на основе сканирования строк, пороговых и бинарных операций, после чего проводят процедуру распознавания фрагментов структур путем сравнения с эталонами для установления типа фрагмента структуры, затем на основе пространственно-яркостного распределения во фрагменте структуры, проводится измерение характеристик, а также морфологических характеристик по фрагменту структуры, на основе полученных измерений формируют числовые векторы признаков, далее проводят классификацию фрагментов структур и устанавливают количественные оценки степени злокачественности новообразования кожи с последующим принятием клинических решений и адекватного подбора терапевтических схем лечения у пациентов с меланомой кожи.

2. Способ по п. 1, отличающийся тем, что цветное изображение получают с помощью дерматоскопа.

3. Способ по п. 1, отличающийся тем, что для проведения классификации фрагментов структур используется метод k-ближайших соседей,

4. Способ по п. 1, отличающийся тем, что измерения характеристик фрагмента структуры проводятся на основе пространственно-яркостного распределения по матрице пространственной смежности, матрицы длин серий, пикселей минимального, максимального, среднего значений яркости, размаха по яркости и среднеквадратического отклонения яркости для компонент цветовых моделей из ряда RGB и HSV.



 

Похожие патенты:

Изобретение относится к медицине, а именно к психиатрии, и раскрывает способ прогнозирования риска формирования органического тревожного расстройства. Способ характеризуется тем, что дополнительно к общеклиническим показателям у пациентов с органическим эмоционально-лабильным (астеническим) расстройством определяют психологические и иммунобиологические показатели и при повышении уровня личностной тревожности более 52 баллов, количества лимфоцитов с рецепторами готовности к апоптозу более 16%, значении иммунорегуляторного индекса менее 1,3 ед.
Изобретение относится к области ветеринарной медицины. Способ сбора яиц in vitro от самок возбудителя трихоцефалеза домашних и диких жвачных Trichocephalus ovis заключается в том, что из материала толстой кишки спонтанно зараженных животных при исследовании гельминтологическими методами на вскрытии животных после предварительной отмывки в изотоническом растворе 0,9% хлорида натрия отбирают 250 и более живых половозрелых самок Trichocephalus ovis.
Изобретение относится к медицине, а именно кардиохирургии и кардиологии, и может быть использовано для прогнозирования сердечно-сосудистых осложнений у пациентов ишемической болезнью сердца в сочетании с ишемической митральной недостаточностью после коронарного шунтирования с пластикой митрального клапана.

Раскрыты интегрированные устройства, которые содержат компонент подготовки образца, интегрированный с компонентом обнаружения. Компонент подготовки образца может представлять собой цифровой микрожидкостный модуль или модуль поверхностных акустических волн, причем эти модули используют для объединения капельки образца с капелькой реактивов и для выполнения дополнительной стадии подготовки образца, ведущей к капельке, которая содержит бусины/частицы/метки, которые указывают на присутствие или отсутствие анализируемого вещества, представляющего интерес, в образце.

Изобретение относится к клинической медицине, в частности к акушерству и гинекологии, а именно к прогнозирования невынашивания беременности у женщин с гипоталамическим синдромом.

Изобретение относится к ветеринарии, в частности к гельминтологии, и может быть использовано для качественного и количественного учета гельминтов при ветсанэкспертизе органов или при выявлении причин смерти животного.

Группа изобретений относится к медицине и может быть использована для высвобождения и сбора тромбоцитарных факторов роста. Для этого на образец богатой тромбоцитами плазмы воздействуют последовательностью из одного или более электрических импульсов для запуска высвобождения факторов роста в образце.

Изобретение относится к области медицины, а именно к способу определения относительного количества этотически трансформированных фагоцитов. Способ заключается в проведении концом размазывающей поверхности пластины по рабочей поверхности рабочего стекла, на которую наносится мазок, при этом мазок крови изготавливают равномерным по толщине в один слой эритроцитов с плотностью эритроцитов в нем 4-15 тысяч на мм2, при этом для определения количества этотически сильно трансформированных фагоцитов при приготовлении мазка в кровь добавляют альбумин в концентрации 1-5%, для определения количества всех этотически трансформированных фагоцитов образец крови для мазка смешивают с изотоническим солевым раствором, и доля крови в смеси составляет от 25% до 75%, а для определения общего количества средне и сильно этотически трансформированных фагоцитов исследуют цельную кровь; сушку мазков осуществляют в течение 5-30 с; рабочие стекла для приготовления мазков предварительно калибруют, при этом изготавливают контрольные мазки из цельной крови по меньшей мере 10 здоровых доноров, определяют общее количество этотически средне и сильно трансформированных фагоцитов в каждом мазке, и при определении их значений в пределах 1-11% не менее чем в 95% результатов и их среднеарифметическом значении в пределах 4-6% такие стекла используют для приготовления мазков; а для определения относительного количества этотически трансформированных фагоцитов в исследуемом мазке определяют количество нативных фагоцитов, и по отношению соответствующих этотически трансформированных фагоцитов к сумме этих этотически трансформированных фагоцитов и нативных фагоцитов определяют относительное количество соответствующих этотически трансформированных фагоцитов.

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для проведения цитологического исследования при дифференциальной диагностике узловых образований щитовидной железы.

Изобретение относится к медицине, а именно к кардиологии и профессиональным заболеваниям, и может использоваться для прогнозирования возникновения артериальной гипертензии у работников химических производств.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано при лечении рака пищевода для прогнозирования сроков развития его прогрессирования после операции. Способ индивидуального прогнозирования сроков прогрессирования плоскоклеточного рака пищевода II-III стадии после хирургического лечения, включающий забор опухолевой ткани при проведении операции, гомогенизацию и определение методом проточной цитофлюориметрии состава лимфоцитов с иммунофенотипом CD45+, CD3+, CD19+, CD3+CD4+, CD3+CD8+, CD16/56+ и CD3+CD4+CD127dim (T-reg), затем рассчитывают показатели: отсутствие риска прогрессирования в течение 2-х и более лет после операции - F0, прогрессирование заболевания в течение 6-12 месяцев после операции - F6-12, прогрессирование заболевания в течение 12-24 месяцев после операции - F12-24 по формулам, полученные значения показателей F0, F6-12, F12-24 сравнивают между собой и по максимальному значению F прогнозируют срок прогрессирования рака пищевода после хирургического лечения. Способ позволяет более точно прогнозировать прогрессирование рака пищевода II-III стадии, включая разграничение сроков его прогрессирования и их индивидуализацию. 1 табл., 3 пр.

Изобретение относится к области медицины и может быть использовано для оценки систематической и случайной составляющих искажения сигнала датчика изображения. Раскрыт способ коррекции сигнала датчика изображения слабоконтрастных объектов в системах компьютерной микроскопии при онкологической диагностике, включающий получение цветного изображения медицинского препарата, расположенного на предметном столике микроскопа, посредством тринокуляра с цифровой камерой, после чего проводится получение серии данного изображения, с последующим усреднением в одно изображение, при этом число изображений в серии выбирается так, чтобы измеренная оценка стандартного отклонения яркости среднего значения пикселя составляло менее одной градации яркости, далее проводится получение N серий изображений без препарата для разных положений регулятора яркости микроскопа так, чтобы разность яркости изображения в соседних положениях регулятора яркости отличилась на значение, соответствующее примерно 1/N от максимально возможной яркости, а крайние позиции регулятора яркости соответствовали яркостям изображения, отличающимся от максимальной и соответственно минимальной яркости примерно на 1/(2N) от максимально возможной яркости изображения, с расчетом средней яркости по изображению для каждого из положений регуляторов яркости, после чего проводят корректировку искажений сигнала изображения. Изобретение обеспечивает повышение точности расчета характеристик при автоматизации процесса диагностики. 4 ил., 1 табл., 1 пр.

Изобретение относится к медицине и может быть использовано для распознавания пигментных новообразований кожи для оценки степени их злокачественности. Для этого с поверхности кожи с помощью дерматоскопа получают цветное изображение пигментных пятен. На изображениях выделяют фрагменты структур, таких как линии, круги, комки, точки, сетчатость. Проводят анализ областей полученного изображения на основе сканирования строк, пороговых и бинарных операций. Осуществляют распознавание фрагментов структур путем сравнения с эталонами. На основе пространственно-яркостного распределения во фрагменте измеряют характеристики и формируют числовые векторы признаков. Проводят классификацию фрагментов структур и устанавливают количественные оценки степени злокачественности новообразования кожи. На основании такой оценки подбирают схемы лечения пациентов с меланомой кожи. Изобретение позволяет по сформированным числовым векторам признаков провести количественную оценку и установить степень злокачественности новообразования кожи с точностью 74 у пациентов с меланомой кожи. 3 з.п. ф-лы, 9 ил.

Наверх