Способ азотирования оксидных соединений, находящихся в твердой фазе

Изобретение относится к области термо-химической обработки материалов. Способ плазменного азотирования оксида кремния в твердой фазе в контролируемой среде включает воздействие на упомянутый оксид кремния низкотемпературной азотной плазмой при атмосферном давлении в течение 7-10 секунд. Низкотемпературную азотную плазму генерируют плазмотроном постоянного тока со среднемассовой температурой плазменного потока 7÷10 кK. Обеспечивается значительное уменьшение, примерно на 3 порядка, времени азотирования оксида цинка в твердой фазе и получение высоких эксплуатационных характеристик оксидных соединений. 1 ил.

.

 

Изобретение относится к области термо-химической обработки материалов, находящихся в твердой фазе в контролируемой среде, путем воздействия низкотемпературной плазмы азота атмосферного давления.

Оксид цинка ZnO благодаря значительной запрещенной зоне (3.3 eV при 300 K) и большой энергии связи экситонов (60 MeV) является весьма перспективным для создания самого широкого класса оптоэлектронных устройствах. Одним из основных направлений является ультрафиолетовая (УФ) электроника, в частности, изготовление фотодетекторных устройств на основе ZnO.

Известно несколько способов получения пленок ZnO допированных азотом: магнетронное распыление в атмосфере азота [Gorbatenko L.S., Novodvorsky О.A., Panchenko V.Ya., Khramova О.D., Cherebilo Ye.A., Lotin A.A., Wenzel C, Trumpaicka N., Bartha J.W. / Laser Physics. 2009. Vol. 19, №5. P. 1152-1158]; постростовая обработка пленок в азотной плазме [Wang D., Zhao D., Wang F., Yao B. // Physica Status Solidi (a). 2015.V. 212. Is.4. P.846.]. Отмечается сложность получения и низкие эксплуатационные характеристики образцов.

Известен способ ионно-плазменного азотирования деталей из инструментальных сталей [В.Н. Климов, И.И. Богачев, И.Ю. Сапронов, С.В. Алешин, А.В. Климов С.Н. Туренко, Е.А. Зайцева. Способ ионно-плазменного азотирования деталей из инструментальных сталей // Патент РФ №2599950], который проводят в вакуумной камере, где после нагрева заготовки до температуры не ниже 450°С осуществляют ионно-плазменное азотирование в плазме азота или смеси газов аргона и азота вакуумно-дугового разряда при подаче на заготовку напряжения смещения в диапазоне от -50 В до -900 В. Однако этот способ азотирования неприменим для оксидных соединений, которые обладают значительно меньшей удельной электропроводностью, чем металлы, и не могут использоваться как электроды для создания вакуумно-дугового разряда без их разрушения.

Наиболее близкое к заявляемому техническое решение по азотированию оксидного соединения ZnO представлено в [D. Wang, D. Zhao, F. Wang, В. Yao, D. Shen. Nitrogen-doped ZnO obtained by nitrogen plasma treatment // Phys. Status Solidi A. 2015. V. 212. No. 4. P. 846-850.]: пластины монокристалла ZnO помещали в камеру плазменного очистителя с особо чистым азотом (5N), находящимся под давлением 5 Па. Плазменная обработка проводилась под напряжением 720 В, с током 25 мА и мощностью разряда 18 Вт, соответственно. Методами спектроскопии комбинационного рассеяния и по вольт-амперным характеристикам установили, что частичное азотирование ZnO имело место при воздействии азотной плазмы на образец в течение 20÷40 ч.

В основу изобретения положена задача значительного уменьшения (примерно на 3 порядка) времени азотирования ZnO и получения высоких эксплуатационных характеристик оксидных соединений.

Поставленная задача решается тем, что при плазменном азотировании в контролируемой среде оксидных соединений, находящихся в твердой фазе (пленки, покрытия, кристаллы), путем воздействия на них низкотемпературной азотной плазмой процесс азотирования происходит при атмосферном давлении, а плазма генерируется плазмотроном постоянного тока со среднемассовой температурой плазменного потока 7÷10 кK.

Из всех типов генераторов низкотемпературной плазмы (ГНП) наибольшую рабочую температуру могут обеспечить ГНП постоянного тока, являющийся одним из наиболее простых источников низкотемпературной плазмы (Т<25000 К). Для ВЧ и СВЧ плазмотронов для достижения приемлемого теплового КПД плазменного потока, достаточного для азотирования, необходимо затратить значительно больше электроэнергии, чем для плазмотрона постоянного тока. Кроме того, значительно усложняется и конструкция источников питания для данного типа плазмотронов.

Использование в предлагаемом способе азотной плазмы атмосферного давления позволяет получить степень ионизации более 10-2, что на несколько порядков больше чем, например, при тлеющем разряде (10-6÷10-4), протекающего при низких давлениях, где концентрация атомарного и ионизированного атома азота очень мала (плазма в основном состоит из молекулярных ионов и молекулярных атомов в возбужденном состоянии). Известно, что степень термической ионизации является функцией температуры и давления, которую можно оценить по формуле Саха: степень ионизации прямо пропорциональна температуре в степени 5/2 и обратно пропорциональна давлению.

Использование процесса азотирования пленок ZnO существенно расширяет их функциональность. При близких значениях ионного радиуса (N+) и (O+) величина электроотрицательности у азота (3.0) меньше, чем у кислорода (3.5). По этой причине атомы азота внедряются в анионную подрешетку, например ZnO как примесь замещения, уменьшая концентрацию точечных вакансий VO и проявляя себя в ZnO, как акцепторная примесь. Следовательно, внедрение примеси азота приводит к увеличению сопротивления, а при достаточной концентрации может привести и к смене типа проводимости в ZnO.

Эффективность азотирования оксидных соединений зависит от бомбардировки поверхности атомарным и ионизированным атомом азотом. В диапазоне температур 7÷10 кК при атмосферном давлении концентрация атомарного азота достигает максимума ~1018 см-3, а концентрация однократно ионизованного атома азота составляет ~1016 см-3. Известно, что максимальное значение концентрации однократных ионов атома азота ~1017 см-3 достигается при 17 кК, при этом концентрация атомарного азота уменьшается на порядок. Однако такая высокая температура может привести к разрушению подложки.

Таким образом, сокращению времени релаксации фототока может способствовать формирование высокой концентрации центров захвата и рекомбинации носителей заряда в тонких пленках ZnO:N путем внедрения азота потоком плазмы среднемассовой температурой 7÷10 кK.

Ниже приведен пример для иллюстрации условий реализации предложенного способа.

В качестве источника низкотемпературной высокоэнтальпийной плазмы использовался плазмотрон с расширяющимся каналом выходного электрода, генерирующий на выходе слабо расходящуюся плазменную струю азота диаметром D=8÷10 мм с энтальпией до 50 кДж/г и среднемассовой температурой 7÷10 кК, при полной электрической мощности дугового разряда 20÷50 кВт и расходе плазмообразующего газа 1÷3 г/с. Время взаимодействия плазмы с образцом составляло 7÷10 сек.

Оценка параметров плазмы в зоне взаимодействия с образцом производилась по данным анализа спектров, полученных трехканальным оптоволоконным спектрометром AvaSpec 3648 со спектральным разрешением 0.2÷0.5 нм в диапазоне 220÷850 нм. В зоне взаимодействия плазмы с образцом среднемассовая температура потока составляла ~7 кК с концентрацией электронов 1015 см-3.

На рисунке 1 представлены электронно-микроскопические изображения и данные рентгеновского элементного микроанализа пленки ZnO на сапфире до обработки (а) и после обработки в потоке низкотемпературной плазмы азота (b).

Электронно-микроскопическое изображение поверхности пленки ZnO до и после обработки в потоке плазмы азота обнаружило значительные различия, как в морфологии, так и в шероховатости. По данным атомно-силового микроскопа шероховатость после обработки увеличивается в 1.2 раз. Воздействие на образец потоком плазмы азота приводит к модификации его приповерхностного слоя в виде уплотнения и рекристаллизации в результате разогрева до температур свыше 1000 К и заполнения атомами азота точечных вакансий VO. По данным рентгеновского микроанализа концентрация примесных атомов азота увеличивается с 1.27 до 2.41 процента.

Преимущество заявляемого способа заключается в том, что кратковременное воздействие (7÷10 сек) высокоэнтальпийной низкотемпературной плазмы азота со среднемассовой температурой 7÷10 кК создает концентрацию потока электронов 1015 cm-3 на пленки ZnO, что позволяют увеличивать их сопротивление в 104 раз. После модифицирования пленки ZnO демонстрируют отчетливый отклик на ультрафиолетовой освещение. УФ-фоточувствительность по току и контрастность тока образцов при напряжении 6 В достигает величин 3.6⋅10-5 А/Вт и 16, соответственно. Время нарастания и спада фототока ~ 0.45 с.

Способ плазменного азотирования оксида кремния в твердой фазе в контролируемой среде, включающий воздействие на упомянутый оксид кремния низкотемпературной азотной плазмой, отличающийся тем, что упомянутое воздействие проводят при атмосферном давлении в течение 7-10 секунд, при этом низкотемпературную азотную плазму генерируют плазмотроном постоянного тока со среднемассовой температурой плазменного потока 7÷10 кK.



 

Похожие патенты:

Изобретение относится к области химико-термической обработки, а именно к вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструментов, изготовленных из стали.

Изобретение относится к области технологии машиностроения, а именно к зубчатым передачам, и предназначено для обеспечения высокой износостойкости зубчатого зацепления, позволяет повысить долговечность зубчатых передач.

Изобретение относится к ионно-плазменной технологии и может быть использовано для упрочнения режущего инструмента. Способ комбинированного упрочнения режущего инструмента включает заполнение газовой плазмой рабочей вакуумной камеры с установленным внутри нее режущим инструментом, нагрев и выдержку режущего инструмента в азотной плазме и синтез на его поверхности из плазмы износостойкого покрытия.

Изобретение относится к изготовлению закаленных под прессом деталей из стальных листов или стальных лент с покрытием на основе алюминия. Предложен способ, в котором на стальной лист или стальную ленту наносят основной слой покрытия на основе алюминия методом горячего погружения, после которого до процесса формования стальной лист или стальную ленту с основным слоем покрытия подвергают плазменному оксидированию и/или обработке горячей водой, и/или обработке водяным паром, и на поверхности основного слоя покрытия путем образования оксидов или гидроксидов образуют поверхностный слой, содержащий оксид и/или гидроксид алюминия.

Изобретение относится к способу упрочнения твердого сплава и может найти применение в машиностроении при изготовлении изделий порошковой металлургии из твердых сплавов, применяемом для холодной и горячей механической обработки металлов и сплавов, например, резанием.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности.

Изобретение относится к способу и устройству для термохимического упрочнения деталей. Упомянутый способ включает по меньшей мере одну стадию науглероживания в углеродсодержащей газовой атмосфере с давлением менее 50 мбар, причем детали выдерживают при температуре от 900 до 1050°С, и по меньшей мере одну стадию азотирования в азотсодержащей газовой атмосфере с давлением менее 50 мбар, причем детали выдерживают при температурах от 800 до 1050°С, азотсодержащая газовая атмосфера содержит молекулярный азот (N2) в качестве донорного газа и возбуждается посредством разрядной плазмы.

Изобретение относится к упрочнению поверхности изделий из титана и титановых сплавов путем ионно-плазменного азотирования и может быть использовано в авиакосмической отрасли, машиностроении, медицине и других отраслях.

Изобретение относится к области металлургии, в частности к плазменной химико-термической обработке титановых сплавов, и может быть использовано в машиностроении для повышения износостойкости и коррозионной стойкости деталей машин.

Изобретение относится к химико-термической обработке и может быть использовано в машиностроении и других областях промышленности. Способ обработки поверхности стального изделия включает проведение интенсивной поверхностной пластической деформации и ионное азотирование.

Изобретение относится к технологии получения покрытий и может быть использовано в различных отраслях машиностроения при изготовлении или восстановлении деталей для придания поверхности повышенных механических характеристик.

Изобретение относится к области защитных полимерных покрытий, может быть использовано в машиностроительной, авиационной, приборостроительной промышленности и других областях техники.
Изобретение относится к материалу для нанесения покрытия, в частности борированному порошку для плазменного напыления. Может использоваться для формирования износостойких покрытий.

Изобретение относится к покрытой частице, образованной путем покрывания поверхности частицы основного материала углеродными частицами, полученными способом детонации.

Изобретение относится к составу для истираемого уплотнения турбомашины и может быть использовано для нанесения покрытия на опору уплотнения осевой турбомашины. Состав для истираемого покрытия (38) уплотнения (39) осевой турбомашины путем плазменного напыления содержит металл, содержащий алюминий, органический или минеральный наполнитель, причем в качестве органического наполнителя используют полимер, а в качестве минерального наполнителя используют гексагональный нитрид бора или фтористый кальций, при этом металл дополнительно содержит от 20 до 45 вес.% никеля, в частности никелевого порошка, и от 55 до 80 вес.% алюминия, в частности алюминиевого порошка.

Изобретение относится к металлургии, в частности к получению эрозионно-стойких теплозащитных покрытий методом плазменного напыления. Может применяться в ракетно-космической технике при изготовлении теплонагруженных элементов ЖРД, например камер сгорания.

Изобретение относится к области получения жаростойких материалов и может быть использовано для нанесения высокотемпературных антиокислительных защитных покрытий на особожаропрочные конструкционные материалы (углерод-углеродные и углерод-керамические композиционные материалы, углеграфитовые материалы, сплавы на основе Nb, Мо, W), широко применяемые в авиакосмической, ракетной и других отраслях промышленности.
Изобретение относится к способам получения светопоглощающего материала с перовскитоподобной структурой и может быть использовано для формирования светопоглощающего слоя при производстве фотоэлектрических преобразователей с обеспечением экономии материалов и повышения допустимых размеров преобразователей.

Изобретение относится к теплоизоляционным системам, в частности к термобарьерным покрытиям, и может быть использовано для защиты деталей авиационных и наземных турбин высокого давления.

Изобретение относится к установке для получения наноструктурированных покрытий из материалов с эффектом памяти формы на поверхности детали. Установка выполнена с возможностью достижения в вакуумной камере давления 2÷4 бар.

Изобретение относится к области термо-химической обработки материалов. Способ плазменного азотирования оксида кремния в твердой фазе в контролируемой среде включает воздействие на упомянутый оксид кремния низкотемпературной азотной плазмой при атмосферном давлении в течение 7-10 секунд. Низкотемпературную азотную плазму генерируют плазмотроном постоянного тока со среднемассовой температурой плазменного потока 7÷10 кK. Обеспечивается значительное уменьшение, примерно на 3 порядка, времени азотирования оксида цинка в твердой фазе и получение высоких эксплуатационных характеристик оксидных соединений. 1 ил..

Наверх